
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 1

Hierarchical and Controlled Advancement for
Continuous Collision Detection of Rigid and

Articulated Models
Min Tang, Member, IEEE, and Dinesh Manocha, Fellow, IEEE, and Young J. Kim, Member, IEEE

Abstract—We present fast CCD algorithm for general rigid and articulated models based on conservative advancement. We
have implemented the CCD algorithm with two different acceleration techniques which can handle rigid models, and have
extended one of them to articulated models. The resulting algorithms take a few milliseconds for rigid models with tens of
thousands of triangles, and a few milliseconds for articulated models with tens of links. We show that the performance of our
algorithms is much faster than existing CCD algorithms for polygon-soup models and it is also comparable to competing CCD
algorithms that are limited to manifold models. The preliminary version of this paper appeared in [1].

Index Terms—Continuous Collision Detection, Conservative Advancement, Distance Computation.

F

1 INTRODUCTION

Collision detection and distance computation are
important problems in computer graphics, robotics,
CAD, etc. In particular, reliable and fast colli-
sion detection algorithms are required to enforce
non-penetration constraints in motion planning and
physics-based animation. Collision detection has been
extensively studied over the past two decades. Most
early approaches focused on static objects, while re-
cent research has considered moving objects. In some
scenarios, the entire trajectory of an object is known
in advance, but in most applications, we only know
the position of the objects at a few discrete locations
in space. For example, in sampling-based motion
planning, randomized planners generate collision-
free configurations using sampling algorithms, from
which they construct a continuous collision-free path
from the initial configuration to the goal.

At a broad level, dynamic collision detection algo-
rithms can be subdivided into two categories: discrete
and continuous. Discrete algorithms only check for
collisions at sample configurations using static colli-
sion detection algorithms. In consequence, they may
miss a collision that occurs between two successive
configurations. This is sometimes known as the tun-
neling problem, because it commonly occurs when a
rapidly moving object passes undetected through a
thin obstacle. Continuous collision detection (CCD)

• Min Tang and Young J. Kim are with the Department of Computer
Engineering, Ewha Womans University, Seoul, South Korea. Dinesh
Manocha is with the Department of Computer Science at the Uni-
versity of North Carolina at Chapel Hill, U.S.A. Young J. Kim is
the corresponding author. E-mail: {tangmin,kimy}@ewha.ac.kr and
dm@cs.unc.edu

algorithms avoid the tunneling problem by interpo-
lating a continuous motion between successive config-
urations and checking for collisions along the whole
of that motion. If a collision occurs, the first time of
contact (ToC) between the moving objects is reported.

CCD algorithms have been used in virtual environ-
ments [2], as well as for local planning in sampling-
based motion planning [3], [4], [5], [6], where it is used
to find the first time of contact and then apply re-
sponsive forces in dynamics simulation [7]. The main
drawback of CCD algorithms are that they are typ-
ically much slower than their discrete counterparts,
which limits their applicability. Thus many well-
known libraries for sample-based motion planning,
such as MSL (http://msl.cs.uiuc.edu/msl/), mostly
use discrete collision checking for local planning.
Moreover, the fastest CCD algorithms [8], [9] are only
applicable to well-behaved polyhedral models, with
the exception of our previously reported technique [1].
Thus these approaches are not generally suitable for
the ’polygon-soup’ models with arbitrary geometry
and topology that are widely used in computer graph-
ics, robotics, and physically-based modeling. The pre-
liminary version of this paper appeared in [1].

1.1 Main Results
In this paper, we present a simple algorithm that
performs CCD for rigid and articulated models un-
dergoing rigid motions at interactive rates. We make
no assumptions about the geometric representation of
the model, as long as the model is triangulated (i.e. a
polygon-soup). Our new algorithm is an extension of
the conservative advancement (CA) technique, which
was initially proposed for convex polytopes [10], [11],
and is described in Sec. 3. The CA formulation in-
cludes two main components: a distance computation

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 2

and a motion-bound calculation. The former can be
performed by any algorithm that computes the sepa-
ration distance of polygonal models. We use the well-
known algorithm based on swept sphere volumes
(SSV), which is available as part of the PQP library
[12]. We couple the distance computation with a new,
efficient analytic method of calculating the motion
bound of SSVs, which is described in Sec. 4.2. We
also present techniques to improve the performance
of our CCD algorithm using two different techniques:
controlled advancement (C2A), described in Sec. 4.3.2,
and hierarchical CA (HCA) that is described in Sec.
4.3.3. We compare these two techniques in Sec. 4.3.4.

In Sec. 5, we extend our CCD algorithm to artic-
ulated models articulated models, since, unlike other
algorithms [9], our algorithm is not restricted to man-
ifold objects. We have implemented our algorithm
and measured its performance on several benchmark
models of different complexities. Our experiments
show that our algorithms can perform CCD in frac-
tions of a millisecond on either rigid or articulated
models consisting of tens of thousands of triangles.
This is faster than the previous CCD algorithm for
rigid models, which can handle only polyhedral mod-
els [8]; moreover, our algorithm offers very non-trivial
performance improvements over previous work on
polygon-soup, rigid models. Our algorithm maintains
this performance improvement when applied to ob-
jects where the manifold assumption is not satisfied
[9], which previous algorithms were unable to achieve
at all.

2 PREVIOUS WORK

We briefly survey prior work on continuous collision
detection for both rigid, articulated and deformable
models, and for motion-bound computations.

2.1 Continuous Collision Detection
At a broad level, CCD algorithms can be classified
into: algebraic equation solvers [13], [14], [15], [16],
swept-volume formulations [17], adaptive bisection
approaches [7], [3], kinetic data structures (KDS) [18],
[19], [20], Minkowski sum formulations [21] and con-
servative advancement [10], [11], [8], [1], [22].

Most of these approaches are unable to perform
fast CCD queries on general polygonal models, al-
though some can handle polygon-soup models [16],
[3]. Redon et al. [16] use a continuous version of
the separating axis theorem to extend the static OBB-
tree algorithm [23] to CCD, and demonstrate real-time
performance on polygonal models. But the algorithm
becomes overly conservative when there is a large
rotation between two configurations. In practice, there
is a faster algorithm [8] for polyhedral models. [1]
uses controlled advancement to detect collision for
polygon-soup model, our paper extends this work
by using different acceleration techniques and also is

applicable articulated models. FCL [24] is a reimple-
mention of [1], which forms part of a generic collision
detection library. A variant CCD query, known as a
connection collision query, was used for local plan-
ning in sampling-based motion planners [6].

For articulated models, Zhang et al. have extended
their approach [8] to articulated models [9], but each
link in a model must be a polyhedron, which limits its
applicability. Redon et al. [25] describe an extension
of their previous algorithm [16] to articulated models,
but this algorithm is rather slow for complicated
objects. A conservative condition is used in [3] to
guarantee a collision-free motion between two con-
figurations, but such a condition is likely to become
overly conservative when an object slides over an-
other object.

CCD algorithms for deformable objects find all the
times of contact for pairs of overlapping primitive
during the motion, while the CCD algorithms for rigid
model and articulated model only finds the first time
of contact. Most of CCD algorithms for deformable
objects focus on how to reduce self-collision tests [26],
[27] and redundant elementary tests [28]. Since CCD
for rigid models needs not detect self-collision and
elementary tests are unnecessary, the CCD algorithms
designed for deformable bodies may not be effectively
applied to rigid or articulated models.

2.2 Motion Bound Calculation

Schwarzer et al. [3] proposed a method to bound the
trajectory of an object moving with constant velocities
of translation and rotation. An upper bound on the
motion trajectory can be computed by taking the
weighted sum of differences between all the configu-
ration parameters along the trajectory. Although the
bound is used for local planning in the MPK motion
planning library, it is quite conservative and is aimed
mainly at models with combinations of prismatic and
revolute joints.

The trajectory of linear swept spheres (LSS) can
be bounded using interval arithmetic [2], and the
resulting bound has been used to detect collisions
between a moving robot and the virtual environment.
However, this method does not consider how closely
the robot and the obstacles are placed to one another
(i.e. it is an undirected motion bound), and thus
the bound calculation does not utilize the motion
trajectory effectively.

Lin [10] and Mirtich [11] propose a ballistic motion
as a motion trajectory for CCD, and compute a di-
rectional motion bound along the direction of least
distance between two convex polytopes by bounding
the ballistic rotational velocity. Zhang et al. [8] use
an extremal vertex query to find a directional motion
bound for an object moving with a constant velocity
of translation and rotation. Tang et al. [6] propose a
directional motion bound for screw motions. Pan et

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 3

al. [29] find a directional motion bound for a cubic
B-spline motion trajectory.

3 OVERVIEW

We first introduce our notation and the terminology
used throughout this paper. Next, we briefly explain
the basic idea of conservative advancement (CA) and
give an overview of our algorithm.

3.1 Preliminaries

Let A and B be two rigid polygon-soup models in
3D, where A is moving under a rigid transformation
M(t). Without loss of generality, we can assume that
B is fixed. The initial and final configurations of A
are q0 and q1 at times t = 0 and t = 1 respectively.
We also define A(t) = M(t)A(0). The CCD problem
is that of deciding whether there is a feasible solution
to:

{ t ∈ [0, 1] | A(t) ∩ B 6= ∅}. (1)

If this equation has a solution, we also compute the
minimum value of t that satisfies it. This is the first
time of contact, which is called τ .

v

np

d

Fig. 1. Conservative advancement of linear swept
sphere.

CA (conservative advancement) is a simple tech-
nique that computes a lower bound on the value of τ
for two convex objects A and B by repeatedly advanc-
ing A by ∆ti towards B while avoiding collisions [10],
[11]. Successive values of ∆ti are calculated based
on a lower bound on the closest distance d(A(t),B)
between A(t) and B, and an upper bound µ on the
motion of A(t) projected on to d(A(t),B) (as Fig. 1),
as follows:

∆ti ≤
d(A(t),B)

µ
. (2)

The first time of contact τ can be obtained by sum-
ming the time-steps ∆ti until d(A(τ),B) becomes less
than some user-specified threshold. CA only works
for convex objects. We extend it to arbitrary polygon-
soup models using swept sphere volume (SSV) hier-
archies.

3.2 Our Approach

We assume that only the initial and final configu-
rations of A are given as q0,q1. Using these con-
figurations, we compute a continuous motion M(t)
to interpolate q0,q1 with constant translational and
rotational velocities. If we know the actual motion of
A a priori, for instance [20], we can approximate it
in a piecewise linear manner. A similar interpolation
method has been used previously [7], [8]. When the
simulation time-step is small, the differences between
the actual objects’ motions and the interpolated paths
are negligible [7].

We precompute a bounding volume hierarchy
(BVH), here the SSV hierarchy, for the input polygon-
soup model. SSV can have one of the three forms: a
point-swept sphere (PSS), a line-swept sphere (LSS)
or a rectangle-swept sphere (RSS). These bounding
volumes contain sets of polygon primitives. The root-
level SSV node bounds the entire set of primitives,
and the SSV hierarchy is recursively built by parti-
tioning the polygonal primitives and bounding each
partition with an SSV node [12].

At runtime, we apply CA to the nodes in the SSV
hierarchy in a selective manner. As formulated in Eq.
2, CA requires that a closest distance and a motion
bound be calculated. Distance between SSVs can be a
byproduct of the SSV algorithm. In Sec. 4.2 we will
show how to compute a tight upper bound µ on the
motion of an SSV. The efficiency of our CCD algorithm
depends on applying CA to a good choice of nodes in
the hierarchy. We use two strategies to select nodes:
controlled CA (C2A) and hierarchical CA (HCA).

One approach is to select the nodes at which the
BVH traversal terminates during the closest distance
query; there are the front nodes. Experimentally, these
nodes are more likly to realize τ than the others.
However, the front nodes are likely to be deep in the
hierarchy, and thus the number of front nodes can
be rather large. This affects the performance of our
CCD algorithm, since we need to apply CA to these
nodes repeatedly. In Sec. 4.3.2, we propose a scheme,
called controlled CA (C2A), to control the depth of
the front nodes during the CA iterations, thereby
improving the performance of the CCD algorithm
significantly. The main idea is that during the first few
CA iterations, we do not need to compute the closest
distance exactly, but in later CA iterations we perform
exact distance computations. The choice of the level
of distance approximation determines the depth of the
front nodes and the number of nodes which become
involved in our computation.

An alternative strategy is to use the nodes visited
by the BVH traversal while determining the minimum
ToC. The ToC between two objects is the minimum
ToC of all mutual pairs of primitives. We can perform
a ToC query by traversing the BVHs for the two
objects. During the traversal, ToCs between leaf nodes

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 4

(primitive pairs) are calculated and used to reduce
the current minimum ToC τcur for the entire objects.
The ToC between a pair of bounding volumes (BVs)
is a lower bound on the ToC for all their enclosed
primitive pairs, since the BVs will collide before their
bounded triangles. If the ToC between a BV pair is
later than τcur, then the BV pair and all the primitives
that they bound can be culled, since no ToC between
the primitive pairs that they enclose can reduce τcur.
In this scheme, the ToC is obtained by hierarchically
traversing BVHs. We call this method hierarchical
conservative advancement (HCA), and details will be
given in Sec. 4.3.3.

4 CCD FOR RIGID MODELS

4.1 Motion Interpolation

Given initial q0 and final configurations q1 for A,
CCD algorithms require a motion M(t) that inter-
polates q0 and q1. In our case, we use a linearly
interpolating motion in configuration space. Without
loss of generality, we assume that the global frame
o is the same as the local frame attached to A at
q0. In this case, q0 = (I,0) and q1 = (R1,T1)
in SE(3), where R1 is the rotation matrix, and T1

is the translation vector. The interpolating motion
M(t), t ∈ [0, 1] is a linear motion with a constant
translational velocity v = T1, and constant angular
velocity ω = (u, θ) where the quaternion component
of q1 is [cos(1

2θ), sin(1
2θ)u].

4.2 Motion Bound Calculation

We now present our algorithm to compute a motion
bound µ on swept sphere volumes (SSVs) and triangle
primitives undergoing a rigid transformation M(t) as
mentioned above, all of which pass through the origin
of body frame. In this section, we assume that all the
vectors are defined in world frame.

A bounding volume SSV consists of the 3D
Minkowski sums of a sphere with a point, line seg-
ment and rectangle. These are called PSS, LSS and RSS
respectively. Fig. 3 is a 2D illustration of SSV. Let α
and β denote a BV or a triangle primitive of A and
B, respectively. Further, let pi be a point on α, n be
the closest direction between α, β, and ri be a vector
from the origin of the local body frame oA attached
to A, to pi. As mentioned in [8], the maximum length
of the trajectory of α (i.e. the motion bound) projected
on to the direction of n is:

µ = max
i

(
max
t∈[0,1]

.
pi(t) · n

)
≤ v · n + max

i

(
max
t∈[0,1]

|ω × n · (R(t)ri)|
)

= v · n + max
i

(
max
t∈[0,1]

|L(t) · ri|
)

≤ v · n + ‖ω × n‖max
i

(∥∥rLi ∥∥) ,
(3)

where L(t) = R−1(t)(n × ω), and R is the rotational
component of M(t). Thus, R(0) = I and R(1) = R1.
Since ω is the rotation axis of R(t), R−1(t)ω = ω. The
first term in this equation is constant, and our goal is
to obtain the second term. Since

L(t) = R−1(t)(n× ω)
= R−1(t)n×R−1(t)ω
= R−1(t)n× ω,

(4)

the vectors L(t) are coplanar and form a plane L with
a normal ω. The maximum value of the second term
in Eq. 3 can be obtained by determining the maximum
of the projections of ri onto L, which we call rLi . An
example of the projection of a point bounded by a PSS
on L is shown in Fig. 2.

1c
ir rrir

1

L1
Lc

Lr

L

L
ir

1

Fig. 2. Projection rLi of ri bounded by a PSS.

Lemma 4.1 Let α be an SSV. Then the directional motion
bound µ of α is expressed as:

µ ≤ v · n + ‖ω × n‖
(
r + max

i

(∥∥cLi ∥∥)) ,
where ∥∥cLi ∥∥ =

‖ci × ω‖
‖ω‖

,

r is the radius of the sphere used to construct the SSV, and
ci are the vectors from oA to the endpoints of the generator
primitives of SSV. These are a point, line, and rectangle for
the Minkowski sums PSS, LSS and RSS respectively, for
which i = 1, 1 . . . 2, and 1 . . . 4.

Proof: We start by representing ri analytically for
the three kinds of SSV as follows (see also Fig. 3):
• For a PSS (Fig. 2), ri = c1 + r, where c1 is the

vector from oA to the center of the PSS, and r
is some point on a sphere centered at the origin
with a radius of r.

• For an LSS, ri ∈ (sc1+(1−s)c2+r) and s ∈ [0, 1],
where c1 and c2 are the vectors form oA to the
endpoints of the line segment used to construct
LSS. The definition of r follows that of the PSS.

• For an RSS, ri ∈ (sc1 + (1− s)c2 + µ (c3−c1))+r,
s ∈ [0, 1] and µ ∈ [0, 1] where c1, c2 and c3 are
the vectors from oA to the three defining corners
of the rectangle used to construct the RSS. The
definition of r follows that of the PSS.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 5

Furthermore, we can say that ri = r+k for all three
types of the SSV, where k is the vector from the origin
of the body frame of A to a point on the generator of
SSV. Hence:

|L(t) · ri| =
∣∣L(t) · rLi

∣∣
≤ ‖L(t)‖ ·

∥∥rLi ∥∥
≤ ‖L(t)‖ r + ‖L(t)‖

∥∥kL∥∥ , (5)

where kL is the projection of k on to the plane L. The
projection of a point onto a plane is always a point;
the projection of a line segment onto a plane can be a
line or a point; and the projection of a rectangle onto
a plane is a quadrangle or a line segment. Since the
projection of k to L has to be inside the projection of
the generator primitive of the SSV on to L, we obtain
the following relationship:

∥∥kL∥∥ ≤ max(
∥∥cLi ∥∥) ,

∥∥cLi ∥∥ =
‖ci × ω‖
‖ω‖

(6)

By combining Eq.s 3, 5, and 6, we obtain the result
of the lemma.

We can compute a motion bound for a triangle
primitive by projecting its vertices onto L, so as to
bound the range of projection.

Lemma 4.2 Let α be a triangle primitive. Its directional
motion bound can be expressed as follows:

µ ≤ v · n + ‖ω × n‖
(
max

(∥∥cLi ∥∥)) ,
where ∥∥cLi ∥∥ =

‖ci × ω‖
‖ω‖

ci are the vertices of α, and i = 1 . . . 3.

Proof: Similar to Lemma 4.1

r
1c

1c 2c

r
1c 1 2c

ir
irr

r

i

r
3c 4c

2c

Fig. 3. Swept sphere volume in 2D. From left to right:
PSS, LSS and RSS.

4.3 Acceleration Techniques

We first analyze the cost function for performing CCD
on rigid models and then present two techniques to
reduce the cost function.

4.3.1 Cost Analysis
The following formula expresses the cost of running
our CCD algorithm:

T = 2TBVH +NCA × TCA, (7)

where TBVH is the cost of constructing a BVH for
a polygonal model, NCA is the total number of CA
iterations for all bounding volume pairs to which
CA is applied, and TCA is the cost of evaluating the
CA equation (Eq. 2). In our case, TBVH and TCA
are constants, and so we need to reduce NCA. We
propose two schemes to achieve the goal: controlled
conservative advancement (C2A) and hierarchical CA
(HCA).

4.3.2 Controlled Conservative Advancement (C2A)
As explained in Sec. 3.2, we apply CA operations to
the front nodes of the BVH that are computed during
the closet distance query. If NBV,i is the number of
front nodes in the ith iteration, and Nτ is the total
number of CA iterations required to find τ , then NCA
can be expressed as follows:

NCA =

Nτ∑
i=1

NBV,i. (8)

Balancing Nτ and NBV,i: In order to reduce NBV,i,
we control the depth of the front nodes by termi-
nating the BVH traversal early during the closest-
distance query, as shown in Fig. 4. Early termina-
tion only yields an approximate distance, although it
is typically smaller than the actual closest distance.
Therefore, the advancement time-step ∆ti from Eq. 2
is also looser. In our experiments, we have observed
that when i < j, then ∆ti � ∆tj , especially when
i = 1, 2 (i.e. during the first few iterations of CA), and
a small value of d(A(t),B) yields a useful value of ∆ti.
However, decreasing NBV,i for some i’s may result
in more CA iterations, making it hard to reduce the
number of iterations Nτ and also NBV,i. We need to
find the balance between Nτ and NBV,i that minimizes
T . Thus, to prevent an excessive number of iterations,
for each iteration we check whether the approximate
distance is smaller than some threshold value, or Nτ is
larger than another threshold. In either of these cases,
we abandon early termination and traverse all the
way to the leaf nodes to compute the closest distance.

There are various ways of triggering early termina-
tion during the closest-distance query. Our method is
to provide a spurious small distance value (instead of
a large value or a stored distance from the previous
computation) when the recursive function is initially
called. The recursive distance query then terminates
early, because it cannot decrease the spurious dis-
tance. Finally, when the entire recursive traversal is
complete, we collect the front nodes where the recur-
sion stops and use them for the CA computations.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 6

The pseudocodes of our CCD algorithms for rigid
models are given as Algorithms 1 and 2. In our
implementation, we use w = 0.3 ∼ 0.5 to control
advancement during the first few iterations, but it is
reset to 1 toward the end of iterations.

Algorithm 1 C2A: Controlled Conservative Advance-
ment
Input: BVH root nodes BVHA.root, BVHB.root
Output: Time of contact τ
{Initially d =∞, τ = 0.0, and w < 1.0 }

1: while d > ε do
2: if the number of CA iterations > Rmax or d <

Dthreshold then
3: w = 1;
4: end if
5: τ+ =CABVH (BVHA.root, BV HB.root, d, 1.0, w)
6: end while
7: return τ

F i hFront with
Approximate Distance

Front withFront with
Actual Distance

Fig. 4. Controlling the depth of the front nodes.
Front nodes obtained by terminating the recursion early
during the closest-point query with approximate (red) and
exact (green) distance values.

Early Rejection: We use a simple early-rejection
scheme to further improve the performance of CCD.
During the CA iterations, if we find a node n of
bounding volume pairs whose advancement time-
step ∆ti is greater than some upper value Λi, we
prune away the node and its children nodes. We
initially set Λ1 = 1, but at the kth iteration we set

Λk = 1−
k−1∑
i=1

∆ti. When
∑

∆ti > 1, which implies that

the node n does not collide during [0, 1], and thus we
can prune it away.

4.3.3 Hierarchical Conservative Advancement (HCA)
The C2A algorithm requires a weight w, which con-
trols the rate of advancement. It is difficult to deter-
ministically choose w because the optimal value is
likely to depend on the particular scenarios. Therefore
we developed a new advancement algorithm, called
hierarchical conservative advancement (HCA), which
does not require a predefined weight, although its
performance on rigid objects is similar to that of the
C2A algorithm with an optimal weight.

In general, the ToC of two rigid triangle-soup mod-
els can be easily obtained by taking the minimum

Algorithm 2 CABVH : Conservative Advancement for
BVH
Input: BVH nodes nA, nB, current closest distance
dcur, current advancement step ∆tcur, CA controlling
variable w
Output: Updated dcur and ∆tcur

1: if nA and nB are leaf nodes then
2: d = Distance(nA, nB); {Using the PQP library}
3: if(d < dcur) dcur = d;
4: ∆t = CalculateCAStep(d, nA, nB); {Using Eq.

2}
5: if(∆t < ∆tcur) ∆tcur = dt;
6: return dcur,∆tcur
7: end if
8: if nA is not a leaf node then
9: A = nA.leftchild; B = nA.rightchild; C = D =

nB;
10: else
11: A = B = nA; C = nB.leftchild; D =

nB.rightchild;
12: end if
13: d1 = Distance(A,C); d2 = Distance(B,D);
14: ∆t1 = CalculateCAStep(d1, A,C);
15: ∆t2 = CalculateCAStep(d2, B,D);
16: if d2 < d1 then
17: if d2 < wdcur then
18: CABVH (B,D, dcur,∆tcur, w);
19: else
20: if(∆t2 < ∆tcur) ∆tcur = ∆t2;
21: end if
22: if d1 < wdcur then
23: CABVH (A,C, dcur,∆tcur, w);
24: else
25: if(∆t1 < ∆tcur) ∆tcur = ∆t1;
26: end if
27: else
28: if d1 < wdcur then
29: CABVH (A,C, dcur,∆tcur, w);
30: else
31: if(∆t1 < ∆tcur) ∆tcur = ∆t1;
32: end if
33: if d2 < wdcur then
34: CABVH (B,D, dcur,∆tcur, w);
35: else
36: if(∆t2 < ∆tcur) ∆tcur = ∆t2;
37: end if
38: end if

ToC for every possible mutual pair of triangles. But
since the number of such pairs can be huge, culling
is necessary.

We can cull BVH nodes and their descendants when
the minimum ToC of all their enclosed triangle pairs
is greater than the current minimum ToC τcur for the
entire body, because these pairs can not affect the ToC
of the entire models. But since we traverse the BVH

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 7

from top to bottom, the minimum ToC of all the trian-
gle pairs enclosed to nA and nB (τ∗(nA, nB)) cannot
be determined when the node pair are visited, but
only when their leaf nodes are reached. Therefore we
substitute a lower bound τ∗(nA, nB) for τ∗(nA, nB),
and the new culling condition becomes τ∗(nA, nB) ≥
τcur, since τ∗(nA, nB) ≥ τ∗(nA, nB) ≥ τcur. More-
over, the ToC of a node pair nA and nB, τ(nA, nB)
provides the required lower bound on τ∗(nA, nB)
(τ∗(nA, nB) ≥ τ(nA, nB)), since the ToC of leaf nodes
(triangles) must be greater than that of their ancestor.
To get the tighter lower bound, τ∗(nA, nB) is set to
the maximum value of the ToC between the node
pair nA and nB, and between their ancestors. Note
that we need the maximum operator here since our
BVH does not ensure that ancestor BVs bound their
descendent BVs (i.e. wrapped hierarchy) such that the
ToC of ancestor nodes may have a small value than
those of their descendents.

The pseudocode of our HCA algorithm is shown
as Algorithm 3. The function ToC(nA, nB, tmin) cal-
culates the ToC between the nodes nA and nB
(τ(nA, nB)), where tmin is a lower bound on τ(nA, nB).
Since each BVH node is convex, its motion bound can
be calculated as in Eq. 5, and the advancement ∆ti of
CA can be computed using Eq. 2. The ToC of two
nodes can then be calculated by repeating the CA al-
gorithm until the distance between them becomes less
than a pre-defined threshold. Moreover, since tmin is
a lower bound, we can speed up the ToC computation
by stating CA at tmin, so that τ = tmin +

∑
∆ti.

The function ToC(nA, nB, tmin), which is equiva-
lent to τ∗(nA, nB), calculates a lower bound on ToC
for all the triangle pairs enclosed by the BV node pair
nA and nB, as follows:

ToC(nA, nB, tmin) = max (tmin, τ(nA, nB)) , (9)

where tmin is the maximum ToC of all the ancestors
of node pair (nA, nB).

4.3.4 Comparisons between C2A and HCA
For HCA , the term NCA in Eq. 7 can be replaced by:

NCA =

NBV∑
k=1

Nτ,k, (10)

where NBV is the total number of BV pairs to which
CA is applied and Nτ,k is the number of CA iterations
for the kth node pair. We can see from Eqs. 8 and 10
that C2A only needs to perform CA iteration once for
each node pair during BVH traversal, but needs to it-
eratively do BVH traversal; conversely, HCA performs
the BVH traversal once and repeats CA iterations for
each node pair. In C2A, the variable w controls the
number of times NCA that CA must be performed,
although the number of runs of CA is fixed in HCA.
For this reason, with C2A method, one needs to
choose a proper value for the w parameter to get the

Algorithm 3 HCA: Hierarchical Conservative Ad-
vancement
Input: BVH nodes nA, nB, current minimum ToC τcur,
lower bound on ToC for the triangle pairs bounded
by nA and nB tmin
Output: Time of contact τ
{Initial call: HCA(BVHA.root, BVHB.root, 1.0,
0)}

1: if nA and nB are leaf nodes then
2: t = ToC(nA, nB, tmin);
3: if(τcur < t) τcur = t;
4: return τcur
5: end if
6: if nA is not a leaf node then
7: A = nA.leftchild; B = nA.rightchild; C = D =

nB;
8: else
9: A = B = nA; C = nB.leftchild; D =

nB.rightchild;
10: end if
11: t1 = ToC(A,C, tmin);
12: t2 = ToC(B,D, tmin);
13: if t2 < t1 then
14: if t2 < τcur then
15: HCA(B,D, τcur, t2);
16: end if
17: if t1 < τcur then
18: HCA(A,C, τcur, t1);
19: end if
20: else
21: if t1 < τcur then
22: HCA(A,C, τcur, t1);
23: end if
24: if t2 < τcur then
25: HCA(B,D, τcur, t2);
26: end if
27: end if
28: return 1.0

optimal performance, even though the preset value
of 0.3 ∼ 0.5 works nicely in our experiments. The
HCA method does not require tuning any parameter,
but the number of configuration update can be higher
than C2A. Thus, if the cost of configuration update
is costly, for instance, when a screw motion is used
for underlying interpolating motion as opposed to the
linear one, C2A may show better performance than
HCA.

We need to determine the configuration of each BV
node pair before running CA. But C2A can compute
the configuration directly from the configuration of
the object, and CA iteration is only run once for each
node pair during BVH traversal; thus the number
of configuration updates is the same as the number
of iterations (i.e. Nτ in Eq.8). Since HCA runs CA
iterations on each node pair, the number of configu-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 8

ration updates is NCA. Thus C2A performs far fewer
configuration updates than HCA, which can impact
its performance.

5 CCD FOR ARTICULATED MODELS

Our CCD algorithm for articulated models is based
on the CATCH algorithm [9]. However, CATCH can-
not handle articulated models made up of arbitrary
polygonal models, while ours, using the technique
presented in Sec. 4, can handle these models. We will
first look at the motion bound computation, which
is essential for CA-based CCD algorithm, and then
explain how to improve the performance of the CCD
algorithm for articulated models.

5.1 Notations

We will use the following notation to describe artic-
ulated models. An articulated model A is made up
of m links Ai, i = 0, ...,m − 1. We assume that A
does not contain any kinematic loop, and that Ai−1

is the parent of Ai. This convention is used just for
notation. Our algorithm is applicable to any articu-
lated model with no loops. {i} denotes the reference
frame of Ai. {0} is the world reference frame. Both the
superscript and subscript in front of a symbol denote
frame numbers; for instance, j

iR(t) ∈ SO(3) is the
orientation matrix of frame {i} relative to frame {j}
at time t, t ∈ [0, 1]. The subscript of a symbol (e.g. i)
denotes a variable defined for Ai; for instance, jvi and
jωi are respectively the linear and rotational velocities
of Ai with respect to frame {j}.

5.2 Motion Bound

The motion bound µ on Ai at time t is:

µ = max
p∈Ai,t∈[0,1]

ṗ(t) · n, (11)

ṗ(t) can be expressed as follows [9]:

ṗ(t) =

i∑
j=1

0
j−1R (t)

j−1
vi

+0
j−1R (t)

j−1
ωj ×

(
i∑

k=j

0
k−1R (t)

k−1
Lk

) .
(12)

µ can be expressed as Eq. 14. While the motion
bound in CATCH takes no account of the projection
direction except for the root link, our bound (Eq.
14) is obtained by projecting the motion onto the
direction of minimum distance n for every link. Thus
our motion bound is tighter. In Eq. 14, k−1Lk is the
displacement vector from the origin of Ak to the
origin of Ak−1, and ‖k−1Lk‖ can be calculated as
[9]. An upper bound of ‖n × 0

j−1R (t)
j−1

ωj‖ can be
obtained using Taylor models, but their computation

cost can be high. To calculate the upper bound more
rapidly, we discretize the direction vector

n =

 sinϕ cos θ
sinϕ sin θ

cosϕ

 , (13)

and precompute a lookup table for the bound. In
more detail, the Taylor model of 0

j−1R (t)
j−1

ωj can
be evaluated when the dynamic BV is built for Aj .
Then a Taylor model of n can be constructed. A
lookup table is generated for an upper bound of
‖n × 0

j−1R (t)
j−1

ωj‖ for each link over a grid of θ
and ϕ intervals.

5.3 Acceleration Technique

A straightforward method to get the ToC for articu-
lated models is to compute the individual ToCs, τi,
for every potential collision link pair PCLi, and then
determine which is the earliest. However, this method
can be very expensive, since the number of these
pairs can be very high depending on the number of
links in the body. Culling methods can be employed
to decrease the number of these pairs, as well as
the number of CA iterations required for each pair.
We will now summarize the culling methods used
in CATCH [9] and then explain how we improve on
these techniques.

5.3.1 Improved Temporal Culling
There are two main culling methods used in CATCH:
dynamic BVH culling and temporal culling. Dynamic
BVH culling involves the construction of a BVH for
each articulated model using Taylor models and then
the elimination of pairs of link whose dynamic BVs
are not colliding. Our algorithm uses this technique
without modification to improve the performance of
CCD. Temporal culling has two steps:

1) Collision-time sorting: a single iteration of CA
is performed for each PCLi, yielding τ i, which
is a lower bound on the ToC for that pair. The
pairs are then sorted into ascending order of τ i.

2) Temporal culling: For each pair PCLi, the min-
imum ToC for the link pairs upon which CCD
has been performed, τ i = min

j<i
τj is used as an

upper bound for the pair. Further iterations of
CA are then performed for PCLi. If the esti-
mated ToC after kth iteration becomes greater
than τ , no more iterations are performed on
PCLi, since this pair cannot contribute to the
ToC τ of the entire bodies.

Since the bounding volumes we used to perform
CA are not as tight as the convex hulls used by
CATCH [9], the number of BV nodes that need to
be traversed during CA iterations can be high. We
reduce the number of nodes visited by the first step
of temporal culling, i.e. the collision-time sort. We do

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 9

µ = max
p∈Ai,t∈[0,1]

ṗ(t) · n

= max
p∈Ai,t∈[0,1]

i∑
j=1

(
0
j−1R (t)

j−1
vj · n + 0

j−1R (t)
j−1

ωj ×

(
i∑

k=j

0
k−1R (t)

k−1
Lk

)
· n

)

≤ max
p∈Ai,t∈[0,1]

(
i∑

j=1

0
j−1R (t)

j−1
vj · n +

i∑
j=1

(
n× 0

j−1R (t)
j−1

ωj

)
·

(
i∑

k=j

0
k−1R (t)

k−1
Lk

))

≤0 v1 · n + max
p∈Ai,t∈[0,1]

(
i∑

j=2

∥∥j−1vj
∥∥+

i∑
j=1

(
n× 0

j−1R (t)
j−1

ωj

)
·

(
i∑

k=j

0
k−1R (t)

k−1
Lk

))

≤0 v1 · n +
i∑

j=2

∥∥j−1vj
∥∥+ max

p∈Ai,t∈[0,1]

(
i∑

j=1

(∥∥∥n× 0
j−1R (t)

j−1
ωj

∥∥∥(i∑
k=j

∥∥k−1Lk
∥∥)))

(14)

this by applying HCA to only a sub-hierarchy of BVH
of each potential collision link pair. This yields a lower
bound τi on the ToC for each pair, and then all the
PCLs are sorted into ascending order of τi. The detail
of our two-step culling method is as follows:

1) Compute a lower and an upper bound for each
PCLi:

a) Randomly pick a pair of triangles
{TriA, T riB} from PCLi and compute
their ToC, which becomes an upper bound
τi on the ToC for PCLi. Alternatively, if
the underlying simulation environment
(e.g. physics-based animation) allows us to
exploit motion coherence, we may reuse
the triangle pair that realizes the ToC of
PCLi from the previous frame of the
simulation.

b) The HCA method is applied to a sub-
hierarchy of the BVHs of PCLi, namely
those with a depth less than a pre-defined
threshold value, so as to obtain a lower
bound τi on the ToC for PCLi. If τi is
greater than the minimum of all the po-
tential collision link pairs’ upper bound on
ToC, i.e. τ i > min

∀PCLj∈L
τj , then PCLi can

be culled, since in this case τi ≥ τi >
min

∀PCLj∈L
τj ≥ τ (which means that τi, the

ToC for PCLi is later than the ToC τ for
entire articulated models).

2) In the second step, we sort all the remaining
potential collision link pairs into ascending or-
der using τi, since a pair with a smaller τi has
a higher probability to realize the final ToC τ ,
and further CA iterations should be preferen-
tially applied to such PCLi. We compute an
initial upper bound τcur on ToC for the entire
articulated models as τ = min

∀PCLi∈L
τi and then

attempt to reduce τcur until it converges on the
ToC τ for the entire models by executing HCA
for each PCLi. However, if τi is greater than
τcur, we do not need to compute τi and PCLi
can be culled, since τi ≥ τi > τcur ≥ τ .

The pseudocode of our CCD algorithm for articu-
lated models using temporal culling is given as Alg.
4. The function HCAsub is used to get a lower bound
on the ToC by limiting the depth of traversal Tdepth
of BVHs. The computation of HCAsub is a simple
modification of HCA (Alg. 3), effected by changing
the decision condition for a leaf node (line 1 in Alg.
3). In HCAsub, we decide whether a BV node is a
leaf node by comparing its depth with a pre-defined
threshold Tdepth. HCAsub does not visit BV nodes at a
depth greater than Tdepth. In the function HCA (line
26 in Alg. 4), we use τcur as an initial upper bound
on τi. If the lower bound on the ToC for a BV pair
is found to be greater than τcur during the traversal,
then we can cull that pair, as well as all its children,
since their ToCs cannot reduce the ToC of the full
articulated models.

5.3.2 Precomputed Transformations
As we discussed in Sec. 4.3.4, the performance of HCA
may be compromised by a complicated configuration
computation. For articulated models, computing the
configuration of a BV node is complicated (i.e. Eq. 12).
To reduce the number of configuration updates, we
pre-compute the configuration q(t) for each link with
a given time resolution Tt < 1, {q(t)|t = Tt × i, i =
0, ..., b 1

Tt
c − 1}, allowing us to obtain the configura-

tions of each BV at the time intervals. We use these
precomputed configurations to compute the ToC for
non-leaf node pairs approximately. The ToC after the
ith advancement is approximated by τ ′(nA, nB) =

Tt ×
(⌊

tmin

Tt

⌋
+
∑
i

⌊
∆ti
Tt

⌋)
, where tmin is a known

lower bound on τ(nA, nB). Then the configurations
of nA and nB at τ ′ are precomputed. The CA will be
performed iteratively until the distance between nA
and nB becomes less than a threshold, or ∆ti becomes
less than the time resolution Tt. Since we use a floor
operation to compute τ ′, τ ′(nA, nB) is a lower bound
on τ(nA, nB). The availability of τ ′ allows us to omit
ToC computations for non-leaf node pairs (τ(nA, nB)
in Eq. 9), because τ ′ is also a lower bound on the ToC
of all their constituent triangle pairs (i.e. τ∗(nA, nB)).
In HCA, since τ∗(nA, nB) (lines 11, and 12 in Alg. 3)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 10

are used only for culling purposes, the substitution
will not affect the accuracy of the ToC for the entire
model.

Algorithm 4 CCD with Temporal Culling:
Input: a list L including all PCLi
Output: ToC τ for the whole articulated model

1: {First step: upper and lower bounds computa-
tion}

2: τ = τ = 1.0;
3: for (PCLi ∈ L) do
4: {TriA, T riB} ∈ PCLi ;
5: τi = ToC(TriA, T riB, 0.0) ;
6: if τi = 0.0 then
7: return τ = 0.0;
8: end if
9: if τi < τ then

10: τ = τi;
11: end if
12: {A,B} = PCLi;
13: τi =

HCAsub(BVHA.root, BV HB.root, τ , 0.0, Tdepth);
14: end for
15: for (PCLi ∈ L) do
16: if τi > τ then
17: L.remove(PCLi);
18: end if
19: end for
20: {Second step: Sort and cull}
21: Sort L in ascending order of τi;
22: τcur = τ ;
23: for (PCLi ∈ L) do
24: if τi < τcur then
25: {A,B} = PCLi;
26: τi = HCA(BVHA.root, BV HB.root, τcur, τi);
27: if τi < τcur then
28: τcur = τi ;
29: end if
30: end if
31: end for
32: return τcur

6 RESULTS AND DISCUSSIONS

We now describe the implementation of our CCD al-
gorithms and present the results from various bench-
marks, including both rigid and articulated models.

We implemented our CCD algorithms using C++ on
a Windows 7 PC, equipped with an Intel Core Q9450
2.66GHz CPU and 2.75Gb of memory. A modified
version of the public-domain library PQP was used
for to construct SSV hierarchies and distance queries.
We implemented our CCD algorithm for articulated
model based on the public-domain library CATCH
(http://graphics.ewha.ac.kr/CATCH/).

6.1 Rigid Models
We benchmarked our algorithms using the models
shown in Fig. 5. These contain from 1k to 105k tri-
angles. Performance for these benchmarks is shown
in Table 1.

We used the same benchmarking setup as [8] to
measure the performance of our algorithms: one of
the models moves from a random configuration q0

toward another random configuration q1 against an-
other model fixed in space (see Fig. 7). We detect the
first time of contact between the moving and fixed
objects by repeating each test 200 times and averaged
the results. We used three benchmark polygon-soup
models; Club vs. Club, Gear vs. Gear and Hammer
vs. CAD workpiece. For Club vs. Club, all the motion
between q0 and q1 yielded collisions (i.e. τ < 1);
in Gear vs. Gear, two thirds of the trials resulted
in collisions. Hammer vs. CAD workpiece produced
configurations similar to those resulting from the Gear
vs. Gear scenario. As shown in Table 1, controlled
advancement improves the performance of C2A by
a factor of between 1 and 28, and the HCA algo-
rithm shows a similar improvement. Fig. 6 shows
the number of front nodes (NBV) in each trial. The
use of controlled advancement in the C2A algorithm
achieves a particulary good reduction in NCA, by
82.3% on average.

We also compare the performance of our C2A
algorithm with that of FAST [8] using the same
benchmarks: Bunny vs. Bunny, Bunny Dynamics, and
Torusknot vs. Torusknot (as shown in 7). C2A does
not take advantage of the connectivity information in
these models, though FAST exploits it. Despite this,
C2A achieves similar performance to FAST. This also
means that our algorithm is an order of magnitude
faster than competing CCD algorithms for polygon-
soup models such as [7], since FAST shows a similar
speedup when manifold models are used. Finally, our
software implementation is available for download at
http://graphics.ewha.ac.kr/C2A.

6.2 Articulated Models
We compared the performance of our algorithm with
that of CATCH [9] on three benchmarks: an exercising
mannequin, a walking mannequin on a chessboard,
and a grasping hand, as shown in Figs. 8 and 9.
The first two benchmarks were also used in [9]. The
mannequin in the exercising and walking benchmarks
is composed of 15 links and 20k triangles, and the
chessmen in the walking benchmark are made up of
101k triangles. In the above two scenarios, the CCD
algorithm is used to detect the first time of contact
between the mannequin and the chessmen or the
links of the mannequin. In the grasping benchmark,
a hand model moves towards a sphere from different
directions and then closes its fingers with different
velocities to grasp it. The hand model consists of 21

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 11

Fig. 5. Benchmark Models. From left to right (with triangle counts): Gear (25.6k), Club (10.5k), CAD workpiece
(2.6k), Hammer (1.7k), Torusknot (34.6k), Bunny1 (70k), Bunny2 (26k).

Benchmark Number of triangles
C2A without C2A

HCA FASTcontrolled advancement Colliding Collision-free Average
(ms) confgs.(ms) confgs.(ms) (ms) (ms) (ms)

Club vs. Club 104.8k (each) 14.97 3.6 – 3.6 3.4 –
Gear vs. Gear 25.6k (each) 55.49 2.96 0.0048 1.98 1.68 –

Hammer vs. CAD piece 1.7k, 2.6k 7.68 2.82 0.0052 1.89 1.86 –
Bunny vs. Bunny 69.7k (each) 8.64 4.11 0.048 2.77 2.77 4.01
Bunny Dynamics 26.4k (each) 0.41 5.54 0.11 0.22 0.15 0.31

Torusknot vs. Torusknot 34.6k (each) 6.8 2.81 0.41 2.01 2.68 1.96

TABLE 1
Benchmarks for rigid models.

links and 8k triangles, and the sphere model consists
of 2k triangles. Our CCD algorithm is used to find the
first contact between the hand and sphere during the
approaching motion of the hand; it is then used again
to find the ToC between the fingers and the sphere, as
well as between the fingers themselves as they close.

We also plugged our algorithm into the sampling-
based motion planner MPK library [30], where it is
used to check whether a local path between sampled
configurations is collision-free. We tested this combi-
nation on a scenario in which a Puma robot moves
around a Beetle car, using models from the MPK
library (shown in Fig. 10). The Puma is composed of 8
links and 1k triangles, and the Beetle is modeled with
4k triangles.

The performance statistics for these benchmarks are
shown in Table 2. The performance of our algorithm
is better than CATCH for exercising, walking and
grasping benchmarks, despite the fact our algorithm
does not require models to be manifolds, which is the
limitation that CATCH imposes in order to speed up
its performance. Moreover, our algorithm is an order
of magnitude improvement of fastest algorithms for
articulated models composed of polygon-soups such
as [25], since CATCH shows a similar improvement
under the manifold assumption. We cannot compare
our algorithm to CATCH for the Puma/Beetle bench-
mark, since they are polygon-soup models (i.e., non-
manifold).

6.3 Parameter Tuning
In our CCD algorithms, there are different parameters
used for both rigid and articulated models. In the
section, we discuss and provide empirical solutions

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6
x 104

Simulation Step

N
o.

 o
f F

ro
nt

 N
od

es

Fig. 6. Number of front nodes. Red and blue lines show
the number of front nodes, with and without controlled
conservative advancement, respectively, for the Club vs.
Club benchmark.

Benchmark
Our Algorithm (ms)

CATCHColliding Collision-free Average
configs. configs. (ms)

Exercising 1.62 0.77 0.88 0.90
Walking 1.08 0.94 0.99 1.03
Grasping 9.79 - 9.79 10.23

Puma 0.87 0.35 0.38 -

TABLE 2
Benchmarks for articulated models.

how to tune these parameters to get the best CCD
performance.

For rigid models, we use a distance threshold pa-
rameter to stop the CA iterations, when the distance
between the models becomes less than some thresh-
old. This threshold exists for all CA-based methods
such as [1], [6], [8], [9], [11], [22], and it controls the
accuracy of CCD results. In our experiments for both
rigid and articulated models, we set this value to
0.001. In general, the higher the distance threshold is,
the less time the CA iterations take. Thus, depend-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 12

0 50 100 150 200 250 300
0
5

10
15
20
25

0 50 100 150 200 250 300
0

1

2
x 104

0 50 100 150 200 250 300
0

10
20
30
40
50

Simulation Step

Number of Iterations

Number of Front Nodes

Number of Contacts

Fig. 7. Torusknot vs Torusknot. Top: the red, blue,
yellow, and green torusknots represent the initial q0 and
final q1 configurations of A, the configuration of B, and the
configuration of A at τ , respectively. From the second row
to bottom: the number of CA iterations Nτ , the number
of front nodes NBV , and the number of contacts for the
benchmark.

ing on application demands, the distance threshold
should be determined. We also use a maximum iter-
ation number to limit the CA iterations both for rigid
and articulated models. The threshold is used to avoid
the scenario when the number of CA iterations is too
high. For all our benchmarks, the threshold is set to
50.

For articulated models, two more thresholding pa-
rameters, Tdepth and Tt are used. Tdepth is used in
HCAsub (Ln 13 in Algorithm 4) to limit the traversal
depth in bounding volume hierarchy (BVH), and is
used to get a lower bound of time of contact (ToC)
for each potential collision link (PCL). With a higher
value of Tdepth, the lower bound of ToC becomes
closer to the exact ToC and we can compute the
ToC more quickly in the second step in Algorithm
4. However, the higher value of Tdepth can make the
lower bound computation itself slower, since we need
to traverse the BVH more deeply. Thus, there is a
trade-off to set Tdepth. In all of our benchmarks, we set
Tdepth as BVHdepth

3 , where BVHdepth is the maximum
depth for the whole BVH. Another parameter is the
time resolution Tt, explained in Sec. 5.3.2, at which the
link configurations are pre-computed. A small value
of Tt will increase the cost for the transformations,
while a large one will decrease the culling efficiency,
resulting in the CCD performance degradation. In our
benchmarks, we set Tt = 0.01.

7 CONCLUSIONS

We have presented two CCD algorithms, C2A and
HCA, for rigid polygon-soup models. These algo-

(a) Walking mannequin

(b) Exercising mannequin

Fig. 8. Mannequin benchmarks. The mannequin in
both benchmarks consists of 15 links and 20k triangles.
The chessmen are composed of 101k triangles.

Fig. 9. Grasping. The hand model is composed of 21 links
and 8k triangles, and the sphere of 2k triangles.

rithms are based on tight motion-bound calculations
for swept-sphere volumes (SSV) and on the adaptive
use of conservative advancement to control hierar-
chical traversal of the BVH. Different culling tech-
niques are used to improve the performance of each
algorithm. We also extended the CCD algorithm to
articulated models.

One of the limitations of all these algorithms is that
distance calculation based on SSV is still a bottleneck.
Another limitation is that there are no theoretical
guarantees on the bound of the number of CA itera-
tions. We plan to apply our CCD algorithms to a range
of graphical applications, including 6-DoF haptic and
physic dynamics, and extending them to deformable
models.

ACKNOWLEDGEMENTS

This research was supported in part by
NRF in Korea (No.2012R1A2A2A01046246,
No.2012R1A2A2A06047007). Dinesh Manocha was

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 13

Fig. 10. Puma and Beetle. The Puma robot is composed
of 8 links and 1k triangles, and the Beetle model of 4k
triangles.

supported in part by ARO Contract W911NF-12-
1-0430, NSF awards 100057, 1117127, 1305286 and
Intel.

REFERENCES
[1] Min Tang, Young J. Kim, and D. Manocha, “C2A: Controlled

conservative advancement for continuous collision detection
of polygonal models,” in Proc. of Int. Conf. on Robotics and
Automation, 2009.

[2] S. Redon, Young J. Kim, Ming C. Lin, Dinesh Manocha,
and Jim Templeman, “Interactive and continuous collision
detection for avatars in virtual environments,” in Proc. of IEEE
Virtual Reality 2004, Washington, DC, USA, 2004, VR ’04, pp.
117–, IEEE Computer Society.

[3] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact collision
checking of robot paths,” in Workshop on Algorithmic Founda-
tions of Robotics, Dec. 2002.

[4] S. Redon and M. Lin, “Practical local planning in the contact
space,” in Proc. of Int. Conf. on Robotics and Automation, 2005.

[5] L. Zhang and D. Manocha, “Constrained motion interpolation
with distance constraints,” in Wkop. on Algorithmic Foundations
of Robotics, 2008.

[6] Min Tang, Young J. Kim, and D. Manocha, “CCQ: effcient
local planning using connection collision query,” in Workshop
on Algorithmic Foundations of Robotics, 2011, vol. 68, pp. 229–
247.

[7] S. Redon, A. Kheddar, and S. Coquillart, “Fast continuous
collision detection between rigid bodies,” Proc. of Eurographics
(Computer Graphics Forum), 2002.

[8] Xinyu Zhang, Minkyoung Lee, and Young J. Kim, “Interactive
continuous collision detection for non-convex polyhedra,” The
Visual Computer, pp. 749–760, 2006.

[9] Xinyu Zhang, Stephane Redon, Minkyoung Lee, and Young J.
Kim, “Continuous collision detection for articulated models
using taylor models and temporal culling,” ACM Trans. on
Graphics (Proc. of SIGGRAPH 2007), vol. 26, no. 3, pp. 15, 2007.

[10] M. C. Lin, Efficient Collision Detection for Animation and Robotics,
Ph.D. thesis, University of California, Berkeley, CA, Dec. 1993.

[11] B. V. Mirtich, Impulse-based Dynamic Simulation of Rigid Body
Systems, Ph.D. thesis, University of California, Berkeley, 1996.

[12] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast
proximity queries with swept sphere volumes,” Tech. Rep.
TR99-018, Department of Computer Science, University of
North Carolina, 1999.

[13] J. F. Canny, “Collision detection for moving polyhedra,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 8, pp.
200–209, 1986.

[14] Y.-K. Choi, W. Wang, Y. Liu, and M.-S. Kim, “Continuous
collision detection for elliptic disks,” IEEE Trans. on Robotics,
2006.

[15] B. Kim and J. Rossignac, “Collision prediction for polyhedra
under screw motions,” in ACM Conf. on Solid Modeling and
Applications, June 2003.

[16] S. Redon, A. Kheddar, and S.Coquillart, “An algebraic solution
to the problem of collision detection for rigid polyhedral
objects,” 2000.

[17] K. Abdel-Malek, D. Blackmore, and K. Joy, “Swept volumes:
Foundations, perspectives, and applications,” Int. J. of Shape
Modeling, vol. 12, no. 1, pp. 87–127, 2002.

[18] P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and
L. Zhang, “Deformable free space tiling for kinetic collision
detection,” in Wkop. on Algorithmic Foundations of Robotics,
2001, pp. 83–96.

[19] D. Kim, L. Guibas, and S. Shin, “Fast collision detection among
multiple moving spheres.,” IEEE Trans. Vis. Comput. Graph.,
vol. 4, no. 3, pp. 230–242, 1998.

[20] D. Kirkpatrick, J. Snoeyink, and Bettina Speckmann, “Kinetic
collision detection for simple polygons,” in ACM Symposium
on Computational Geometry, 2000, pp. 322–330.

[21] G. van den Bergen, “Ray casting against general convex
objects with application to continuous collision detection,”
Journal of Graphics Tools, 2004.

[22] Min Tang, Young J. Kim, and D. Manocha, “Continuous
collision detection for non-rigid contact computations using
local advancement,” in Proceedings of International Conference
on Robotics and Automation, 2010.

[23] Stefan Gottschalk, Ming Lin, and Dinesh Manocha, “OBB-Tree:
A hierarchical structure for rapid interference detection,” in
Proc. of SIGGRAPH 96, 1996, pp. 171–180.

[24] Jia Pan, Sachin Chitta, and Dinesh Manocha, “FCL: A general
purpose library for collision and proximity queries,” in Proc.
of Int. Conf. on Robotics and Automation, St. Paul, Minnesota,
USA, May 2012.

[25] S. Redon, Young J. Kim, Ming C. Lin, and Dinesh Manocha,
“Fast continuous collision detection for articulated models,”
in Proc. of ACM Symposium on Solid Modeling and Applications,
2004.

[26] Min Tang, Sean Curtis, Sung-Eui Yoon, and Dinesh Manocha,
“Interactive continuous collision detection between de-
formable models using connectivity-based culling,” in SPM
’08: Proceedings of the 2008 ACM symposium on Solid and physical
modeling, New York, NY, USA, 2008, pp. 25–36, ACM.

[27] Changxi Zheng and Doug L. James, “Energy-based self-
collision culling for arbitrary mesh deformations,” ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2012), vol.
31, no. 4, Aug. 2012.

[28] Min Tang, Dinesh Manocha, Sung-Eui Yoon, Peng Du, Jae-Pil
Heo, and Ruofeng Tong, “VolCCD: Fast continuous collision
culling between deforming volume meshes,” vol. 30, pp.
111:1–111:15, May 2011.

[29] Jia Pan, Liangjun Zhang, and Dinesh Manocha, “Collision-
free and curvature-continuous path smoothing in cluttered
environments,” in Proc. of Robotics: Science and Systems, Los
Angeles, CA, USA, June 2011.

[30] F. Schwarzer, M. Saha, and J.-C. Latombe, “Adaptive dynamic
collision checking for single and multiple articulated robots in
complex environments,” IEEE Trans.on Robotics, vol. 21, no. 3,
pp. 338–353, 2005.

Min Tang is a postdoctoral research fellow
in the Department of Computer Science and
Engineering at Ewha Womans University.
She was a full-time lecturer (2006-2008) in
the Department of Computer Science and
Engineering at Hohai Universtiy, China. She
obtained her BS and PhD degrees in Com-
puter Science from Nanjing University of Sci-
ence and Technology in 2001 and 2006,
respectively. Her research interests include
computer graphics, motion planning, and col-

lision detection.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, FEB 2013 14

Dinesh Manocha is currently the Phi Delta
Theta/Mason Distinguished Professor of
Computer Science at the University of North
Carolina at Chapel Hill. He received his Ph.D.
in Computer Science at the University of
California at Berkeley 1992. He has received
Junior Faculty Award, Alfred P. Sloan Fel-
lowship, NSF Career Award, Office of Naval
Research Young Investigator Award, Honda
Research Initiation Award, Hettleman Prize
for Scholarly Achievement. Along with his

students, Manocha has also received 12 best paper awards at the
leading conferences on graphics, geometric modeling, visualization,
multimedia and high-performance computing. He has published
more than 340 papers and some of the software systems related
to collision detection, GPU-based algorithms and geometric com-
puting developed by his group have been downloaded by more
than 100,000 users and are widely used in the industry. He has
supervised 23 Ph.D. dissertations and is a fellow of ACM, AAAS, and
IEEE. He received Distinguished Alumni Award from Indian Institute
of Technology, Delhi.

Young J. Kim is an associate professor of
computer science and engineering at Ewha
Womans University. He received his PhD
in computer science in 2000 from Purdue
University. Before joining Ewha, he was a
postdoctoral research fellow in the Depart-
ment of Computer Science at the University
of North Carolina at Chapel Hill. His research
interests include interactive computer graph-
ics, computer games, robotics, haptics, and
geometric modeling. He has published more

than 70 papers in leading conferences and journals in these fields.
He also received the best paper awards at the ACM Solid Modeling
Conference in 2003 and the International CAD Conference in 2008,
and the best poster award at the Geometric Modeling and Process-
ing conference in 2006. He was selected as best research faculty of
Ewha in 2008, and received the outstanding research cases awards
from Korean research foundation and Korean Minstry of Knowledge
and Economy in 2008 and 2011.

