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Abstract
We introduce a novel proximity query, called connection collision query (CCQ), and use it for efficient and exact

local planning in sampling-based motion planners. Given two collision-free configurations, CCQ checks whether
these configurations can be connected by a given continuous path that either lies completely in the free space or
penetrates any obstacle by at most ε , a given threshold. Our approach is general, robust, and can handle different
continuous path formulations. We have integrated the CCQ algorithm with sampling-based motion planners and can
perform reliable local planning queries with little performance degradation, as compared to prior methods. Moreover,
the CCQ-based exact local planner is about an order of magnitude faster than prior exact local planning algorithms.

1 Introduction
Planning a collision-free motion for a robot amongst obstacles is an important problem in robotics, CAD/CAM,
computer animation and bioinformatics. This problem is well studied and many approaches have been proposed.
Over the last few decades, sampling-based motion planners such as probabilistic roadmaps [1] (PRMs) or rapidly-
exploring random trees [2] (RRTs) have been shown to be successful in terms of solving challenging problems with
high degrees-of-freedom (DoFs) robots. These planners attempt to capture the topology of the free space by generating
random configurations and connect nearby configurations using local planning algorithms.

The main goal of a local planner is to check whether there exists a collision-free path between two free configura-
tions It is important that the local planner should be reliable and does not miss any collisions with the obstacles [3, 4].
Moreover, it is known that a significant fraction of the overall running time of a sampling-based planner is spent in the
local planning routines.

The simplest local planning algorithms compute a continuous interpolating path between the free configurations
and check the path for collisions with the obstacles. These algorithms sample the continuous path at a fixed resolu-
tion and discretely check each of those resulting configurations for collisions. These fixed-resolution local planning
algorithms are simple to implement, but suffer from two kinds of problems:

1. Collision-miss: It is possible that the planner may miss a collision due to insufficient sampling. This can happen
in the narrow passages or when the path lies close to the obstacle boundary. This affects the accuracy of the
planner.

1



Efficient Local Planning using Connection Collision Query Ewha Technical Report CSE-TR-2010-01

2. Collision-resolution: Most planners tend to be conservative and tend to generate a very high number of samples.
This results in a lot of discrete collision queries and affects the running time of the planner.

Overall, it is hard to compute the optimal resolution parameter that can guarantee collision-free motion and is fast.
In order to overcome these problems, some local planners use exact methods such as continuous collision detection
(CCD) [5, 6] or dynamic collision checking [7]. However, there is a widespread belief that these exact local planning
methods are quite expensive and more than an order of magnitude slower than fixed-resolution local planner. Many
well-known implementations of sampling-based planners such as OOPSMP1 and MSL2 only use fixed-resolution local
planning, though MPK3 performs exact collision checking for local planning.

Main Results: We introduce a novel proximity query, namely connection collision query (CCQ), for fast and
exact local planning in sampling-based motion planners. At a high level, our CCQ algorithm can report two types of
proximity results:

• Boolean CCQ query: Given two collision-free configurations of a moving robot in the configuration space,
CCQ checks whether the configurations can be connected by a given path that lies in the free space, namely
Boolean CCQs query. In addition, the CCQ query can also check whether the path lies partially inside obstacle
region (C-obstacle) with at most ε-penetration, namely Boolean CCQp query. In this case, the robot may overlap
with some obstacles and the extent of penetration is bounded above by ε .

• Time of violation (ToV) query: If the Boolean queries report FALSE (i.e. the path does not exist), the CCQ
query reports the first parameter or the configuration along the continuous path that violates these path con-
straints

Moreover, our algorithm can easily check different types of continuous paths including a linear interpolating motion
in the configuration space or a screw motion.

We have integrated our CCQ algorithm into well-known sampling-based motion planners and compared their
performance with prior methods. In practice, we observe that an exact local planning algorithm based on the CCQ
query can be at most two times slower than a fixed-resolution local planning, though the paths computed using CCQ
queries are guaranteed to be collision-free. Finally, we also show that our CCQ algorithm outperforms prior exact
local planners by an order of magnitude.

Paper Organization: The rest of this paper is organized as follows. In Sec. 2, we briefly survey the related
work and formulate the CCQ problem in Sec. 3. Sections 4 and 5 describe the CCQ algorithms for rigid robots
with separation and penetration constraints, respectively. We describe how our CCQ algorithm can be extended to
articulated robots in Sec.6, and highlight the results for different motion planning benchmarks in Sec. 7 and conclude
the paper in Sec. 8.

2 Previous Work
Our CCQ algorithm is related to continuous collision detection. In this section, we give a brief survey on these
proximity queries and local planning.

1http://www.kavrakilab.org/OOPSMP
2http://msl.cs.uiuc.edu/
3http://robotics.stanford.edu/˜mitul/mpk/
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2.1 Continuous Collision Detection
The term, continuous collision detection, was first introduced by Redon et al. [5] in the context of rigid body dynamics,
even though the earlier work on similar problems dates back to the late 1980s [8]. The main focus of CCD algorithms
lies in finding the first time of contact for a fast moving object between two discrete collision-free configurations.

Many CCD algorithms for rigid models have been proposed [9]; these include algebraic equation solvers, swept
volume formulations, adaptive bisection approach, kinetic data structures approach, Minkowski sum-based formula-
tions and conservative advancement (CA).

For articulated models, Redon et al.[10] present a method based on the continuous OBB-tree test, and Zhang et
al. [6] have extended the CA method to articulated models. In the context of motion planning, Schwarzer et al. [7]
present a dynamic collision checking algorithm to guarantee a collision-free motion between two configurations.

These algorithms have been mainly used for rigid body dynamics and their application to sample-based planning
has been limited [7]. In practice, the performance of these exact local planning methods is considered rather slow for
motion planners. Moreover, current CCD algorithms are not versatile enough to handle different types of connection
paths and queries, that have been used by different local planners.

2.2 Local Planning
There are two important issues related to our work in terms of local planning: the type of continuous interpolating path
and the validity of the path in terms of collisions. The former is related to motion interpolation between collision-free
samples, and the latter is related to collision checking.

2.2.1 Motion Interpolation

In the context of local planning, different types of motion interpolation methods have been used such as linear motion
in C-space [7], spherical motion in C-space [11], screw motion [12], etc. These motion trajectories are rather simple
to compute and cost-effective for local planning.

More sophisticated motion interpolation techniques have been introduced to find an effective local path by taking
into account the robot/obstacle contacts [13, 14], variational schemes [15] and distance constraints [16]. Amato et
al. [4] evaluate different distance metrics and local planners, and show that the translational distance becomes more
important than the rotational distance in cluttered scenes.

2.2.2 Collision Checking

Given a path connecting two collision-free configurations, a conventional way of local planning is to sample the path at
discrete intervals and perform static collision detection along the discrete path [17, 18]. Some exact collision checking
method has been proposed for local planning such as [7, 19] using adaptive bisection.

Since collision checking can take more than 90% time in sample based planner, lazy collision evaluation techniques
have been proposed [20, 21] to improve the overall performance of a planner. The main idea is to defer collision
evaluation along the path until it is absolutely necessary. It turns out that these techniques help to greatly improve the
performance of PRM-like algorithms, but they do not improve the reliability of resolution-based collision checker.

When narrow passages are present in the configuration space, it is hard to capture the connectivity of the free space
by using simple collision checking, since it may report a lot of invalid local paths. However, some retraction-based
planners [22, 23, 19, 24] allow slight penetration into the obstacle region based on penetration depth computation,
which makes the local planning more effective.
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3 Problem Formulation
We start this section by introducing our notation that is used throughout the paper. Next, we give a precise formulation
of CCQ.

3.1 Notations and Assumptions
We use bold-faced letters to denote vector quantities (e.g. o). Many other symbols used in the paper are given in Table
1. We assume that both the robot A and obstacle B are rigid and defined in R3 workspace. Moreover, the robot has 6
DoFs and the obstacle is fixed in space; thus, the C-space of A is SE(3). We briefly discuss how to handle high DoF
robots later in Sec. 6.

Notation Meaning
A,B,∂A,∂B robot, obstacle and their boundaries

C C-space of A
q,q(t) a sample in C-space and a 1D curve in C-space

A(q),A(t) placements of the robot A at q and q(t)
F ,O C-free and C-obstacle region in C (i.e. C = F ∪O)
‖·, ·‖ Euclidean distance operator

Table 1: Notations.

3.2 Local Planning in Sampling-based Motion Planner
Given the starting q0 and goal q1 configurations in F , most sampling-based randomized planners compute a search
graph G to explore the C-space, where the vertex corresponds to a sample in F and the edge is a 1D curve in C-space
connecting two collision-free samples. More specifically, the sample based planners works in the following manner :

1. Sample Generation: Sample a collision-free configuration q1 in F .

2. Local Planning: Check whether q1 can be connected to a vertex q0 in G by some collision-free, continuous
path q(t) in C-space. If so, a new edge connecting q0,q1 is created and added into G along with a vertex q1.

3. Graph Search: Use a graph search on G to find a path from q0 to q1. If such a path is found, the algorithm
reports the path and is terminated; otherwise, go back to the step 1 and repeat.

In the local planning step, the choice of a continuous path q(t) interpolating q0,q1 may vary depending on the
geometry and topology of F . Once a specific path formulation is chosen, the algorithm needs to check whether that
path is collision-free or not.

3.3 Connection Collision Query
Now we define the CCQ proximity query, the main problem to solve in this paper.

Let us assume that two collision-free samples q0,q1 ∈F in C and a time-parameterized, continuous 1D curve
q(t) in C connecting q0 and q1 are given for t ∈ [0,1]; i.e. q(0) = q0,q(1) = q1. Then, the CCQ with separation is
formally defined as checking whether the following predicate CCQs is TRUE:

CCQs : ∀t ∈ [0,1]⇒ q(t) ∈F . (1)
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Moreover, if CCQs is FALSE, we want to determine the minimum value of t that satisfies CCQs. We call such t as the
time of violation (ToV) with separation, τs. More formally,

τs ≡min
t
{ s ∈ [0, t] | q(s) ∈F}. (2)

The Boolean CCQs query is useful for local planning in PRM and RRT, and the ToV CCQs query is required by the
local planning or expansion step in RRT.

On the other hand, the notion of CCQ with ε-penetration is a less restrictive version of connection query than CCQ
with separation, as it allows slight penetration (quantified by ε) into the C-obstacle region for the C-space curve q(t).
Formally, we define CCQ with ε-penetration as checking whether the following predicate CCQp is TRUE:

CCQp : ∀t ∈ [0,1]⇒{q(t) ∈F}∨
{q(t) ∈ O ∧ ∀p ∈ A(t)∩B,‖p−∂B‖ ≤ ε}. (3)

Furthermore, if CCQp is FALSE, we also determine the minimum value of t that satisfies CCQp, called the ToV with
ε-penetration, τp. More formally, τp is defined as:

τp ≡min
t
{ s ∈ [0, t] | q(s) ∈F ∨

{q(s) ∈ O ∧ ∀p ∈ A(s)∩B,‖p−∂B‖ ≤ ε}}. (4)

The CCQp query can be used for PRM and RRT when a small amount of penetration is allowed for a robot along
the local path. Moreover, retraction-based planners also may use CCQp to keep the samples with slight penetration
[22, 23, 19].

4 CCQ with Separation Constraint
In this section, we present our algorithm to perform the CCQs query. We start this section by explaining the con-
servative advancement (CA) technique upon which our CCQ algorithm is based. Next, we explain the procedure to
compute the ToV information τs in Eq.2 along with CCQs. Finally, we provide a fast technique to solve the Boolean
version of CCQs (i.e. Eq.1).

4.1 Conservative Advancement
Our CCQ algorithm is based on the conservative advancement (CA) algorithm [25] for convex objects under con-
tinuous motion. In CA, the time of contact (ToC) τ between two convex objects A and B is obtained by iteratively
advancing A by ∆ts toward B without generating collisions. Here, ∆ts can be calculated by:

∆ts ≤ ‖A(t),B‖
µ

(5)

where µ is the bound of motion of A(t) for t ∈ [0,1] projected onto the closest direction from A(t) to B, known as the
directional motion bound. Then, the ToC is obtained as:

τ = ∑
i

∆t i
s (6)

where ∆t i
s denotes the ith CA iteration. The iteration continues until ‖A(τ),B‖ ≈ 0. This idea can be extended to

non-convex models using bounding volume hierarchy [9].
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4.2 Time of Violation Query for CCQs

In case of CCQs, the time of violation (ToV) is equivalent to the time of contact (ToC) in CA. Moreover, if the path
q(t) is a linear motion in C-space, one can employ the C2A algorithm [9] based on CA to compute τs for the robot A.
We also show that we can devise a variant of C2A algorithm that can handle the screw motion for q(t).

The screw motion consists of rotation about an axis ω in space by an angle of θ radians, followed by translation
along the same axis by an amount of d as shown in Fig.1. The screw motion can be represented by using four

A


ω

pbo

p

A

d
a

Figure 1: Screw Motion.

parameters (ω,θ ,a,d), where a is any point on the axis ω . Given two configurations q0 and q1 in SE(3), the screw
parameters can be easily computed [26].

The main challenge in computing τs under screw motion is to compute the directional motion bound µ for Eq.5.
Let us assume that our robot A is convex with the origin ob of the body attached frame. Let p be any point on A with
pb representing the same point but defined with respect to the body frame, n be the closest direction from A to the
obstacle B at t = 0, p⊥ be a vector projected from p to the axis ω . Then, an upper bound µ of the motion of any point
on A under screwing, projected onto n is:

µ = max
p∈A

(
1∫
0

(ṗ(t) ·n)dt
)

= max
p∈A

(
1∫
0

((v+ω×p⊥(t)) ·n)dt
)

≤max(v ·n,0)+max
p∈A

(
1∫
0
|ω×n ·p⊥ (t)|dt

)
≤max(v ·n,0)+‖ω×n‖

(
max
p∈A

(
1∫
0
‖p⊥ (t)‖dt

))
≤max(dω ·n,0)+‖ω×n‖

(∥∥(ob−a
)
×ω

∥∥+max
p∈A

∥∥pb
∥∥) .

(7)

Note that max
p∈A

∥∥pb
∥∥ can be calculated as preprocessing since pb is defined with respect to the body frame. A similar

bound can be obtained for other motion trajectories such as the spherical motion [11].

4.3 Boolean Version of CCQs

From the previous section, the CCQs predicate in Eq.1 can be trivially determined by checking whether τs ≥ 1 (TRUE)
or not (FALSE). However, one can devise a more efficient way to answer the CCQs predicate without explicitly
computing τs.
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Given the starting q0 and goal q1 configurations, the main idea in evaluating CCQs is to perform dual advancements
from the both end-configurations q0,q1 with opposite velocities, and iterate this process until collision is found or the
path turns out to be collision-free. The dual advancement is more effective than the normal advancement using a single
end-configuration since the normal advancement is always conservative such that collision will be never identified until
the final ToV value is obtained.

More specifically, as shown in Fig. 2, we perform a single CA iteration from q0 toward q1 as before and compute
the first advancement time, ∆t+0 . Similarly, we perform another CA iteration but from q1 toward q0 with a negative
velocity (e.g. (−v,−ω)) and compute the first advancement time, ∆t−1 .

A

B

0t
 1t

1
2

t0q 1q

2

Figure 2: A Single Step in the Boolean Query. Dual advancements are performed from q0 toward q1 by ∆t+0 , and
from q1 toward q0 by ∆t−1 . Then, collision is checked at q( 1

2 ).

If (∆t+0 +∆t−1 )≥ 0, then the entire path q(t) is collision-free, thus the predicate is returned as TRUE; otherwise, we
bisect the time interval at t 1

2
= t0+t1

2 and perform collision detection at the configuration q(t 1
2
). If collision is detected

at q(t 1
2
), CCQs is reported as FALSE and the procedure is terminated. Otherwise, the same dual CA procedure is

executed recursively on two sub-paths, {[q(∆t+0 ),q(t 1
2
)], [q(t 1

2
),q(1−∆t−1 )]}. Note that the rest of path segments

{[q(0),q(∆t+0 )], [q(1−∆t−1 ),q(1)]} are collision-free because of conservative advance mechanism. This procedure is
iterated until the separation condition is satisfied or a collision is detected. We provide a pseudo-code for CCQs in
Alg.1.

5 CCQ with Penetration Constraints
The CCQs algorithm presented in Sec.4 strictly imposes that the interpolating path q(t) should lie entirely inside F .
However, this condition is rather restrictive since a slight overlap between the robot and the obstacles may be useful in
practice and used by retraction-based planners [22, 19, 24]. For instance, often the curved surface model of a robot is
tessellated with some surface deviation error ε and thus ε-penetration does not necessarily imply actual interference
[19]. The notion of CCQp is that we allow slight penetration for a robot along the path as long as the penetration
amount is less than some threshold, ε .

5.1 Penetration Depth
To quantify the amount of penetration for a robot A, we need a suitable metric. The penetration depth (PD) is a proper
metric to quantify the amount of overlap between A and B. In the literature, different types of penetration depth are
known and in our case, we adopt the pointwise penetration depth [9] since it is computationally more tractable than
other penetration measures.

7



Efficient Local Planning using Connection Collision Query Ewha Technical Report CSE-TR-2010-01

Algorithm 1 CCQs
Input: initial and goal configurations q0, q1, interpolating motion q(t)
Output: whether Eq. 1 is TRUE or FALSE

1: {Initialize the queue with [q(0),q(1)].}
2: while Queue 6= /0 do
3: Pop an element [q(ta),q(tb)] from the queue;
4: t 1

2
= ta+tb

2 ;
5: if q(t 1

2
) is in-collision then

6: return FALSE;
7: end if
8: Perform CA from q(ta) with a positive velocity and find the step size ∆t+a ;
9: Perform CA from q(tb) with a negative velocity and find the step size ∆t−b ;

10: if
(
∆t+a +∆t−b

)
< (tb− ta) then

11: Push [q(ta +∆t+a ),q(t 1
2
)] and [q(t 1

2
),q(tb−∆t−b )] onto the queue;

12: end if
13: end while
14: return TRUE;

When A and B overlap, the pointwise penetration depth is defined as the point of deepest interpenetration of A
and B. Formally, the pointwise penetration depth (or PD for short) can be defined as:

PD≡H (A∩∂ (A∩B),B∩∂ (A∩B)) (8)

where H (·, ·) denotes the two-sided Hausdorff distance operator between surfaces.

5.2 Boolean Version of CCQp

We first explain how to evaluate the CCQp predicate in Eq.3. The main idea of our evaluation algorithm is to decom-
pose the advancement step size ∆t into two sub-steps ∆ts and ∆tp (i.e. ∆t = ∆ts +∆tp) such that collision-free motion
is generated during ∆ts while ∆tp may induce penetration with the PD value being less than ε . Then, we perform dual
CAs from the end-configurations q0,q1 like CCQs in Sec. 4.3.

Since ∆ts can be calculated just like in Eq. 5, computing ∆t boils down to calculating ∆tp. In general, computing
∆tp can be quite challenging since one needs to search the entire C-space (both C-free and C-obstacle) where the
placement of A at q(t + ∆t) may yield either collision-free or in-collision configuration. Thus, to find a feasible
solution for ∆tp, we propose a conservative method.

The key idea is that, after the advancement of ∆ts +∆tp time step, we imposes that the robot still remains collision-
free at q(t + ∆ts + ∆tp). Taking advantage of this constraint, we first move the robot to A(t + ∆ts), and then calculate
∆tp that can bound the motion of A by less than 2ε so that the possible PD between A and B can be less than ε , as
shown in Fig. 3.

More precisely, an upper bound of the time step size ∆tp can be computed by observing the fact that the robot
should not travel by more than 2ε; otherwise, the penetration depth can be greater than 2ε . Thus, assuming that the
robot and obstacles are both convex, we have:

∆tp ≤
2ε

µu
(9)
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B
A

B

t

t0q

t

st

pt

Figure 3: Decomposition of the Time Step ∆t into ∆ts and ∆tp for CCQp. ∆ts corresponds to the collision-free time
step and ∆tp to the time step that may have ε-penetration.

where µu is the maximum amount of motion that a point on A can make between the time interval of [0,1]. Note
that µu is an undirected motion bound unlike the directed one µ in Eq.5, since no closest direction will be defined
for a robot in collision with obstacles. Essentially, µu depends on the underlying path. We present simple formulas
to compute µu for both linear (Eq.10) and screw (Eq.11) motions as shown below. Here, p,pb,p⊥,ob have the same
meanings as defined in Sec.4.2.

Linear Motion

µu = max
p∈A

(
1∫
0
‖ṗi (t)‖dt

)
= max

p∈A

(
1∫
0

∥∥v+ω×pb (t)
∥∥dt
)

≤ ‖v‖+max
p∈A

(
1∫
0

∥∥ω×pb (t)
∥∥dt
)

≤ ‖v‖+‖ω‖max
p∈A

∥∥pb
∥∥

(10)

Screw Motion

µu = max
p∈A

(
1∫
0
‖ṗi (t)‖dt

)
= max

p∈A

(
1∫
0
‖v+ω×p⊥ (t)‖dt

)
≤ ‖v‖+max

p∈A

(
1∫
0
‖ω×p⊥ (t)‖dt

)
≤ ‖v‖+‖ω‖

(∥∥(ob−a
)
×ω

∥∥+max
p∈A

∥∥pb
∥∥)

(11)

The result of our algorithm is conservative in the sense that our algorithm does not report a false-positive result; i.e. if
the algorithm reports TRUE, it guarantees that CCQp is indeed TRUE.

5.3 Time of Violation Query for CCQp

A simple way to compute the ToV in Eq.4 can be devised similarly to evaluating CCQp by decomposing the ToV into
the one corresponding to collision-free motion τs (Eq.2) and one to ε-penetration ∆t ′p: i.e.

τp1 =

(
∑

i
∆t i

s

)
+∆t ′p

= τs +∆t ′p. (12)

9
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Moreover, in order to guarantee ε-penetration, ∆t ′p is calculated such that the motion of A starting at t = τs should be
bounded above by ε:

∆t ′p ≤
ε

µu
. (13)

Here, the undirected motion bound µu can be calculated similarly as in the previous section. However, there are two
issues related to computing the ToV, as shown in Eq.12:

• τp1 provides a lower bound of the ToV with ε-penetration, but this may be a loose bound since ε is typically
much smaller than µu.

• The placement of the robot at A(τp1) may correspond to an in-collision sample. This can be problematic for
most sampling-based planners where only collision-free samples are permitted to represent the connectivity of
the free C-space.

Note that the second issue is more severe than the first one in practice. We introduce an alternative way to compute τp
to circumvent the above issues.

The main idea is that, instead of accumulating the collision-free time steps first (i.e. τs), we intertwine collision-
free and in-collision motions for every time step, just like the Boolean query in the previous section. Thus, the new
ToV τp2 is:

τp2 = ∑
i

(
∆t i

s +∆t i
p
)
. (14)

Here, ∆t i
s,∆t i

p for the ith iteration are calculated using Eq. 5 and Eq. 9, respectively. The above iteration continues until
the ith iteration yields a collision. Thus, by construction, A(τp2) is collision-free. Moreover, in general, τp1 ≤ τp2;
however this is not always true but less likely to happen in practice since Eq. 14 continues to iterate until collision is
found unlike Eq. 12, as illustrated in Fig.4.

B
A

(0)q 2( )pτq1( )pτqptΔsτ

Figure 4: Comparison between τp1 and τp2. In general, τp2 > τp1 since more iterations will be performed for τp2
until collision is found at q(τp2).

6 Extension to Articulated Robots
Our CCQ algorithms for rigid robots can be extended to articulated robots. The basic equations that support CCQ
algorithms such as Eqs. 6 or 12 can be reused as long as the directed and undirected motion bounds µ,µu can be
calculated. However, this turns out to be relatively straightforward. For instance, in case of linear motion, the directed
motion bound µ for an articulated robot can be obtained using the same motion bound presented by Zhang et al. [6].
Moreover, the spatial and temporal culling techniques proposed in the paper to accelerate the query performance are
also reusable for CCQ query between articulated models.
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7 Results and Discussion
In this section, we describe the implementation results of our CCQ algorithms, and benchmark the performance of the
algorithms by plugging them into well-known, sampling-based planners. Finally, we compare our algorithm against
prior exact local planning techniques.

7.1 Implementation Details
We have implemented our CCQ algorithm using C++ on a PC running Windows Vista, equipped with Intel Dual CPU
2.40GHz and 5GB main memory. We have extended public-domain collision libraries such as PQP [27] and C2A.
Note that these collision libraries are designed only for static proximity computation or ToV computation (similar to
τs) under a linear motion. Throughout the experiments reported in the paper, we set the penetration threshold ε for
CCQp and τp as one tenth of the radius of the smallest enclosing sphere of A.

To measure the performance of our algorithms, we have used the benchmarking models and planning scenarios
as shown in Table 2 and Fig.5 with sampling-based motion planners including PRM and RRT. These benchmarking
models consist of 1K∼ 30K triangles, and the test scenarios have narrow passages for the solution path. Typical query
time for our CCQ algorithms takes a few milli-seconds; for instance, the most complicated benchmark, the car seat,
takes 21.2 msec and 28.3 msec for ToV and Boolean queries, respectively.

(a) Maze (b) Alpha Puzzle (c) Car Seat (d) Pipe

Figure 5: Benchmarking Scenes. For each benchmark scene, the starting and goal configurations of the robot are
colored in red and blue, respectively.

Benchmarks A B # of tri (A) # of tri (B)
Maze CAD piece Maze 2572 922

Alpha Puzzle Alpha Alpha 1008 1008
Car seat Seat Car Body 15197 30790

Pipe Pipe Machinery 10352 38146

Table 2: Benchmarking Model Complexities.

7.2 Probabilistic Roadmap with CCQ
In Sec.3.2, we have explained the basic steps of sampling-based planners. These planners use a different local planning
step (the step 2 in Sec. 3.2). In case of PRM, the local planning step corresponds to checking whether two collision-free
samples can be connected by some collision-free path q(t) or not (i.e. Boolean query) [1].
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In conventional PRM-based planners, this Boolean checking is implemented by performing fixed-resolution col-
lision detection along the path, namely fixed-resolution local planning (DCD). In Table 3, we show the performance
of PRM with DCD with varying resolution parameters and a linear path. Here, the resolution parameter means the
average number of collision checks performed for each local path. We have used the OOPSMP implementation of
PRM, and only the maze and pipe benchmarks was solvable by OOPSMP within a reasonable amount of time. The
optimal performance is obtained when the resolution is 23, and as the resolution parameter becomes less than 23, the
OOPSMP may not be able to compute a collision-free path. In any case, the DCD local planner still does not guarantee
the correctness of the path in terms of collision-free motion.

Avg. Collision Resolution 23 40 47 80 128
PRM with DCD (Boolean) 12.70s 15.88s 18.76s 39.49s 44.75s

Table 3: The performance of PRM in seconds based on fixed-resolution local planning (DCD) with different resolu-
tions for the maze benchmark.

However, exact local planning is made possible by running the Boolean version of our CCQ algorithm on the path.
In Table 4, we highlight the performance of CCQ-based local planning algorithms (CCQs and CCQp) with PRM, and
compare it against that of the DCD local planning method with the optimal resolution parameter. In case of the pipe
benchmark, the PRM performance using our algorithm is similar to that of the DCD. In case of the maze benchmark,
our CCQ-based local planner is about 1.8 times slower than DCD local planner. Even for this benchmark, when the
resolution parameter becomes higher than 80, our CCQ algorithm performs faster than DCD, even though the DCD
local planner still cannot guarantee the correctness of the solution path. Also notice that CCQp takes less time than
CCQs since the former is a less restrictive query than the latter.

Benchmark DCD Boolean Query
CCQs CCQp

Maze 12.70s 36.34s 24.09s
Pipe 8425.09s 9610.13s 8535.60s

Table 4: The performance of PRM using DCD local planner and CCQ-based local planner. The CCQ-based local
planner can guarantee collision-free motion while the other cannot give such guarantees.

7.3 Rapidly-Exploring Random Tree with CCQ
In RRT, the local planning step is, after sampling a new collision-free configuration, used to extend from the closest
node in the search graph to the new node [2]. In this case, both ToV and Boolean CCQ can be employed to implement
exact local planning. Specifically, when the new node is to be extended along some path, if the path is not collision-
free, the path can be entirely abandoned (Boolean query) or the partial collision-free segment of the path before the
ToV can be still kept (ToV query).

In Fig. 6, we show the performance of RRT planner with our CCQ algorithms and DCD local planner with
the optimal resolution parameter. Also, different types of motion paths such as linear and screw motion have been
tested. We also have used the OOPSMP implementation of RRT for this experiment. To find the optimal resolution
parameter for DCD local planner, we test different resolution parameters ranging between [3,15]; for instance, see
Table 5 for the alpha puzzle benchmark using the ToV query based on DCD local planner. Similar to PRM, the
variation in performance depends on the resolution parameter, but it does not show the linear relationship between the
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resolution and performance unlike PRM since computing more accurate ToV using a higher resolution requires a lot
more collision checks. Thus, picking a right value for the resolution parameter is even more difficult in case of RRT.

In our benchmarks, the RRT with CCQ-based local planner is roughly two times slower than the one with DCD
local planner with the optimal resolution. However, in some cases such as the Maze (BS), Alpha puzzle (BL) and pipe
(BL) benchmarks in Fig.6, the RRT with CCQ-based local planner is even faster than the one with DCD local planner
since the number of collision checks can be kept minimal.

Avg. Collision Resolution 4.21 5.96 6.01 6.97
RRT with DCD (ToV) 25.60s 0.25s 2.08s 39.65s

Table 5: The performance of RRT in seconds based on fixed-resolution local planning (DCD) with different resolutions
for the alpha puzzle benchmark. In this case, RRT uses the ToV query. When the resolution is less than 4, RRT cannot
find a path
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Figure 6: The Performance of RRT using DCD and CCQ-based Local Planner. The x-axis represents different
benchmarking scenes with different queries such as BL (Boolean query with a linear motion), BS (Boolean query with
a screw motion), TL (ToV query with a linear motion), and TS (ToV query with a screw motion) for each benchmark.
The y-axis denotes the planning time in seconds for the maze and pipe benchmark, in tens of seconds for the alpha
puzzle, and in hundreds of seconds for the car seat. The blue, red and green bars denote the planning time using DCD,
CCQs-based, and CCQp-based local planners, respectively.

7.4 Comparisons with Prior Approaches
We also compare the performance of our CCQ-based local planning algorithm with the prior exact local planning algo-
rithms such as the dynamic collision checking method (DCC) [7] implemented in MPK. To the best of our knowledge,
the dynamic collision checking algorithm is the only public-domain exact local planner that has been integrated into
sampling-based motion planner.

Since DCC supports only a Boolean query with a linear motion and separation constraints, we compare the per-
formance of the Boolean version of our CCQs against DCC by plugging CCQs into the MPK planner, as shown in
Table 6. For benchmarks, we use the same pipe model in Fig.5-(d), but shrink the robot a bit to enable MPK to find a
solution path. We also use another benchmark model as shown in Fig. 7, the alpha-shape with two holes. In this case,
we plan a path for an alpha-shape tunnelling through two holes, and measure the average performance of DCC and
CCQs-based local planner.
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Benchmarks # of triangles CCQs DCC
Pipe 48K 0.24s 2.28s

Alpha-shape with two Holes 1K 14.90s 91.24s

Table 6: Performance Comparisons between dynamic collision checking (DCC) and CCQs-based local planner. The
timings are the total collision checking time in seconds used for local planning.

Figure 7: Alpha-Shape Through Two Holes. The red and blue alpha shapes represent the starting and goal configu-
rations, respectively.

In our experiment, CCQs-based local planner is about an order of magnitude faster than DCC local planner mainly
because CCQ uses a tighter, directional motion bound than DCC relying on undirectional motion bound. A similar
explanation was also provided in [28] why the directional bound is superior to the undirectional one. Another reason
is because of the dual advancement mechanism in CCQ-based local planner.

The ToV version of our CCQs algorithm has a similar objective as continuous collision detection algorithms. Since
our algorithm is based on the known fastest CCD algorithm C2A [9], it shows a similar performance of that of C2A.
However, C2A is not optimized for a Boolean query and does not support CCQ with penetration constraints. Ferre and
Laumond’s work [19] supports a penetration query, but their work is essentially similar to DCC [7].

8 Conclusion
We have presented a novel proximity query, CCQ, with separation and penetration constraints. It can be used for
efficient and exact local planning in sampling-based planner. In practice, we have shown that the CCQ-based local
planner is only two times slower or sometimes even faster than the fixed-resolution local planner. Moreover, CCQ-
based local planners outperform the state-of-the-art exact local planners by almost an order of magnitude.

There are a few limitations in our CCQ algorithm. Both CCQs and CCQp algorithms are sensitive to threshold
values; e.g. the termination condition threshold for CA or CCQs and penetration threshold ε for CCQp. The motion
bound calculation such as µ or µu depends on the underlying path.

For future work, it may be possible for a planner to try different types of paths and automatically choose the
suitable or optimal one. We would like to extend our CCQ framework to deformable robots. We are also interested
in applying our CCQ technique to other applications such as dynamics simulation where the ToV computation is
required. In particular, the use of CCQp may also provide a direction for contact dynamics where slight penetration is
allowed (e.g. penalty-based method).
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