
Continuous Penetration Depth Computation for Rigid Models
using Dynamic Minkowski SumsI

Youngeun Leea, Evan Beharb, Jyh-Ming Lienb,a, Young J. Kima,∗

aEwha Womans University, Seoul, Korea
bGeorge Mason University, Fairfax, VA, U.S.A.

Abstract

We present a novel, real-time algorithm for computing the continuous penetration depth (CPD) between two interpenetrating rigid
models bounded by triangle meshes. Our algorithm guarantees gradient continuity for the penetration depth (PD) results, unlike
conventional penetration depth (PD) algorithms that may have directional discontinuity due to the Euclidean projection operator
involved with PD computation. Moreover, unlike prior CPD algorithms, our algorithm is able to handle an orientation change in
the underlying model and deal with a topologically-complicated model with holes. Given two intersecting models, we interpolate
tangent planes continuously on the boundary of the Minkowski sums between the models and find the closest point on the boundary
using Phong projection. Given the high complexity of computing the Minkowski sums for polygonal models in 3D, our algorithm
estimates a solution subspace for CPD and dynamically constructs and updates the Minkowski sums only locally in the subspace. We
implemented our algorithm on a standard PC platform and tested its performance in terms of speed and continuity using various
benchmarks of complicated rigid models, and demonstrated that our algorithm can compute CPD for general polygonal models
consisting of tens of thousands of triangles with a hole in a few milli-seconds while guaranteeing the continuity of PD gradient.
Moreover, our algorithm can compute more optimal PD values than a state-of-the-art PD algorithm due to the dynamic Minkowski
sum computation.

Keywords: penetration depth, Minkowski sum, collision detection, convolution

1. Introduction

Measuring the amount of interpenetration between overlap-
ping models is an important problem in geometric modeling,
computer graphics, computational geometry, and algorithmic
robotics. A widely used distance measure for interpenetration
is penetration depth (PD), which is defined as a minimum trans-
lation to separate overlapping models [1, 2]. In simulated en-
vironments such as dynamics simulation, assembly planning,
robot motion planning or six-degree-of-freedom haptic render-
ing, model overlap happens frequently due to numerical/control
errors, interface latency or user-in-the-loop inherent to the envi-
ronments. Such a penetration state is often considered an invalid
state in computer simulation, and PD often plays a major role in
recovering the invalid state to a valid, collision-free state; this
type of approach is broadly classified as a penalty-based system.

It is well-known that the PD can be computed using the
Minkowski sums. The Minkowski sums between A and B

IReaders can find more information at our project webpages:
http://graphics.ewha.ac.kr/CPD.
∗Corresponding author
Email addresses: youngeunlee@ewhain.net (Youngeun Lee),

behare@gmail.com (Evan Behar), jmlien@cs.gmu.edu (Jyh-Ming Lien),
kimy@ewha.ac.kr (Young J. Kim)

are defined as [3, 4].

A⊕ B = {a + b | a ∈ A,b ∈ B} (1)
A⊕ −B = {a − b | a ∈ A,b ∈ B} (2)

IfA and B overlap, their penetration depth PD(A,B) is equiv-
alent to finding the minimum distance between the common
origin ofA and B, o and the boundary surface of the Minkowski
sums, ∂(A⊕ −B) [2]:

PD(A,B) = {min ‖q‖ | q ∈ ∂(A⊕ −B)}. (3)

In other words, we can compute PD betweenA and B by pro-
jecting o onto the surface of Minkowski sums ∂(A⊕ −B).

However, it is known that the definition of PD in Eq. 3 can lead
to a discontinuity in the direction of PD (i.e. the gradient of PD),
when o crosses the medial axis of ∂(A⊕ −B) [5], as illustrated
in Fig. 1(a). This discontinuity problem is a critical issue in
any penalty-based system [6] that relies on PD as a measure
of penalty response, for instance, six-degree-of-freedom haptic
rendering, as it can induce serious simulation instability.

Recently, there has been a limited amount of research efforts
to put into solving the discontinuity problem in PD, a new PD
approach known as continuous penetration depth (CPD). Zhang
el al. [7] first proposed a possible solution for CPD using spher-
ical parameterization of configuration space. Lee and Kim [8]
proposed another CPD approach using Phong projection [8]. Un-

Preprint submitted to Computer-Aided Design May 19, 2016

(a) PD using Euclidean projection

(b) CPD using Phong projection

Figure 1: In both figures, the thick rectangle is the surface of Minkowski
sums and the dashed green lines represent its medial axis. The blue dots show
the origin o as it moves from o1 to o2, and then o3. The red dots qi show
the projections of o on the surface of Minkowski sums, and the red arrows
denote the projection directions. (a) The direction of PD using conventional
Euclidean projection is not continuous when o2 crosses the media axis. For
example, the projection suddenly jumps from q2 to q′2 even though the magnitude
of PD is still continuous. (b) The surface normals (the blue arrows) on the
surface of Minkowski sums are continuously defined using Phong interpolation.
The projection results using Phong projection are continuous even if o2 is on
the medial axis as the projection direction changes continuously along the
corresponding surface normal.

fortunately both approaches are rather preliminary and limited
in terms of practical applicability as they do not work when the
models rotate or contain holes.

Main Results: We present a novel algorithm to compute con-
tinuous penetration depth in real-time between two intersecting
models. Our new CPD is defined using Phong projection on
the subspace of Minkowski sums. This guarantees the continu-
ous change of a PD gradient value with respect to infinitesimal
rigid motion of the underlying model. In order to design an
efficient CPD algorithm, we conservatively predict a solution
space of CPD using a conventional PD algorithm based on Eu-
clidean projection and construct an ε-ball around the predicted
solution space, then compute Minkowski sums dynamically and
locally inside the ε-ball. This dynamic Minkowski-sum method
is achieved by repairing the damage on the Minkowski-sum sur-
face due to infinitesimal rotation via the new concepts of convex
map (defined in Sec. 4) and gap filling (Sec. 5). To the best of
our knowledge, this is the first practical method that handles
general polyhedra for Minkowski-sum computation. Then, we
search for a CPD solution in the local Minkowski sums. If such
a solution does not exist, we incrementally enlarge the ε-ball
until a solution is found. We have implemented our CPD algo-

rithm on a conventional PC platform and tested our algorithm
with various benchmarking scenarios including diverse motion
sequences and models of complicated geometry and topology.
In our experiments, our algorithm can compute CPD for models
consisting of tens of thousands triangles with holes in a few
msecs while guaranteeing the continuity of PD.

Organization: The rest of the paper is organized as follows.
We briefly survey previous work relevant to PD and dynamic
Minkowski sum computation in Sec. 2. We discuss preliminary
information and give an overview of the algorithm in Sec. 3. In
Secs. 4 and 5, we propose our algorithm to construct a local
Minkowski sum, and explain how to perform Phong projection
efficiently in Sec. 6. We show experimental results in Sec. 7.
Finally, we conclude our work and provide a discussion on future
work in Sec. 8.

2. Previous Work

In this section, we briefly survey the work relevant to our
research, namely penetration depth computation and dynamic
Minkowski sum for rigid models.

2.1. Penetration Depth Computation for Rigid Models
Penetration Depth. The penetration depth (PD) can be com-
puted using a Minkowski sum-based formulation [1]. It is well-
known that complexity of Minkowski sum computation is O(n2)
and O(n6) for convex and non-convex models in 3D, respec-
tively, where n is the number of facets in the objects. For convex
models, exact PD can be computed using a Dobkin-Kirkpatrick
hierarchy-based acceleration structure [2] and a randomized
algorithm [9]. There exist various algorithms to compute approx-
imate PD for convex models. Cameron [4] computed PD based
on upper and lower bounds. Bergen [10] and Kim et al. [11]
computed approximated PD in real-time.

For non-convex models, Hachenberger [12] proposed an exact
PD computation algorithm based on Minkowski sums, but it is
relatively slow. Various approximation algorithms have been
developed for non-convex objects, but they are rather slow in
practice [13, 14]. Later, Je et al. [15] proposed a real-time
algorithm based on iterative projection on the Minkowski sum.

Continuous Penetration Depth. To the best of our knowledge,
there are only two works related to CPD. Zhang et al. [7] first
introduced the notion of CPD and defined the CPD using a
spherical parameterization of configuration space. Since this al-
gorithm is based on sampling and machine learning, its runtime
performance is very fast. However, the algorithm requires heavy
preprocessing for configuration space approximation and spheri-
cal parameterization that makes it very challenging when models
rotate, as the algorithm needs to recompute the entire preprocess
from scratch. Moreover, the spherical parametrization does not
work when the configuration space is not homeomorphic to a
sphere. To circumvent these issues, Lee and Kim [8] compute
CPD based on Phong projection to the surface of Minkowski
sums. However, this algorithm also requires a heavy preprocess-
ing step to compute the Minkowski sums and thus is not suited

2

for real-world applications when the models change their orien-
tations. Compared to these prior approaches, our new work does
not require heavy preprocessing work and thus works in real-
time. Moreover, the algorithm is also applicable to complicated
meshes with topological holes.

Other Forms of Penetration Depth. There exist other types of
PD formulation for rigid models. For instance, the generalized
PD (or simply PDg) is defined as a minimal rigid motion to
separate intersected objects [16]. PDg can be computed using
different distance metrics in configuration space such as Dg [16],
S and geodesic [17], and object norm [18]. Pan et al. [19]
computed PDg using active learning. More recently, Tang and
Kim [18] presented a real-time algorithm for PDg for articulated
models. An intersection volume is also a measure of model
inter-penetration [20, 21, 22]. Point-wise PD [23] was also
proposed using the Hausdorff distance of intersection volume.

2.2. Dynamic Minkowski Sum
Dynamic Minkowski sum concerns computation involving

objects under rigid transform, in particular rotation. The concept
of dynamic Minkowski sum is not new. For example, there
exists closely related literature on configuration space mapping
of free-flying 2D and 3D shapes.

Given two free-flying 2D polygons P and Q, Avnaim et al.
[24] proposed to compute their configuration space obstacles
(C-obst) using contact regions. A contact region is computed
between a vertex of P and an edge of Q or vice versa. Their
algorithm has time complexity O(n3m3 log nm) for polygons
with n and m vertices. Similarly, Brost [25] also considered
all possible contacts. Local information between the contact
vertex/edge pair is used to compute the contact regions. The
efficiency of these methods was later improved by focusing
the computation on the discontinuity in temporal and spatial
coherence where the structure of C-obst changes [26].

At present, there are only a few published works considering
rotation of 3D shapes. Donald [27] dealt with motion-planning
problems with a 3D free-flying robot amongst polyhedral obsta-
cles. Both robot and obstacles are composed of a set of convex
shapes; the C-obst are therefore a set of 6D contact surfaces.
The intersections of these contact surfaces are computed to help
the robot move along the intersection or slide from one surface
to another. Mayer et. al. [28] dealt with the rotation of convex
polyhedra through the criticality map. When rotating an input
polyhedron P by some angle θ about a fixed axis, the underlying
structure of the Minkowski sum will change as P rotates. How-
ever, the structure does not change continuously–these structural
changes only occur at a finite set of critical values of θ. Mayer
et. al. took advantage of this to compute a data structure, the
criticality map, which stores these critical θ values, along with a
template of the Minkowski sum structure at the critical value.

It is important to note that all of the aforementioned methods
aimed to compute a complete representation of the contact space.
Regardless of whether critical events are used, there is a poten-
tially large number of values for which the structure changes,
and the contact space can become quite large even for relatively
simple inputs. An alternative approach is to construct the contact

(a) Normal Interpolation (b) Tangent Interpolation

Figure 2: Obtaining continuous surface normals. The thick line is a surface of
Minkowski sums and the surface normals with an opposite direction at both
ends of the surface are annotated with blue arrows. (a) Surface normals are
interpolated for the rest of the surface. However, the normal at the red point
becomes singular. (b) Surface normals are obtained everywhere from tangent
plane (blue) interpolation with no singularity.

space and the Minkowski sum in an on-demand fashion. For
example, Behar and Lien [29] proposed to update the facets
of the Minkowski sum of convex polyhedra by identifying and
correcting errors introduced through rotation. The same authors
also dealt with uniform and non-uniform scaling for polygon
and convex polyhedra [30]. In this paper, we propose the first
known work for both convex and non-convex polyhedra.

3. Preliminaries

In this section, we provide some preliminary information
related to our CPD computation including Phong projection and
dynamic Minkowski sums, and also give an overview of our
approach.

3.1. Phong Projection

To calculate CPD, we perform Phong projection on the bound-
ary of Minkowski sums ∂M where the point q projected from o
to ∂M is collinear with the surface normal nq at q:

(q − o) × nq = 0. (4)

Euclidean projection is a kind of Phong projection. In case of
Euclidean projection, points projected to the same plane have the
same projection direction, which is the plane normal; however,
the projection direction in Phong projection still varies for the
same plane as the surface normals on the plane are continuously
Phong-interpolated [31], as illustrated in Fig.1(b) . It is known
that the results of Phong projection are continuous under some
condition [32]. Since in our case ∂M is triangulated, we rely on
a technique proposed by [8, 32] to perform Phong projection on
a set of triangles in ∂M to find CPD.

The Phong projection proposed by [33] defines the surface
normal nq in Eq. 4 by interpolating vertex normals over the
planar surface. However, this normal interpolation may yield
a singular normal as illustrated in Fig. 2(a). In our case, we
instead interpolate tangent planes by simply rotating their basis
vectors with no singular interpolation like Fig. 2(b).

A triangle t ∈ ∂M consists of three vertices (q1,q2,q3), each
of which has a tangent plane spanned by two basis vectors T ∈
R2×3. A point q on t can be denoted as q = λ1q1 + λ2q2 + λ3q3
using the Barycentric coordinate (λ1, λ2, λ3). Let Ψ(·) ∈ R2×3 be
an interpolated tangent plane spanned by the basis T. Then, the
Phong projection from o to t is defined as follows:

3

(a) Initialization (b) Search region (c) Local Minkowski sums (d) Phong projection

Figure 3: The dotted rectangle represents the entire surface boundary of the Minkowski sums. The blue circle is the origin o. (a) A candidate solution q (the purple
circle) is obtained. (b) We define an ε-ball S (green circle) around q (c) and construct the local Minkowski sums (the yellow line) inside S . (d) We perform Phong
projection within the local Minkowski sums and find the CPD (the red circle).

Definition 1. A point q = (λ1, λ2, λ3) on t(q1,q2,q3) is a Phong
projection of o on t if:

Ψ(λ1, λ2, λ3)(λ1q1 + λ2q2 + λ3q3 − o) = 0 (5)
λ1 + λ2 + λ3 = 1 (6)

λi ≥ 0 (7)

Here, the tangent plane Ψ(·) should be generated continuously
on a polygonal surface. To do this, we compute the per-vertex
normal as an average of the surface normals of the adjacent
triangles and calculate a tangent basis from the vertex normal.
Then, we interpolate the tangent basis along the edges as well as
over the triangle faces.

Performing Phong projection onto a triangle is equivalent
to finding λi’s satisfying Definition 1. We use the Newton’s
root finding method to find λi’s satisfying Eq. 5 by initializing
them to (1

3 ,
1
3 ,

1
3). If there exist no λi’s satisfying Eq. 7, we

conclude that Phong projection does not exist for this triangle.
In general, the existence of Phong projection is guaranteed for a
point sufficiently close to the projected surface if the surface is a
well-tessellated [32].

3.2. Dynamic Minkowski Sum

Dynamic Minkowski-sum methods are usually convolution-
based [34, 35, 36, 37] and use the idea of compatibility between
the primitives (vertex, edge and facet) of the inputs A and B
to construct the surface convolution, denoted as A ⊗ B. We
say that a pair of features (i.e. edge-edge or face-vertex pairs)
of A and B are compatible if their Gauss maps overlap. The
Gauss map of a polyhedronA is a function G(A) which maps
the outward normals of primitives inA to points, arcs and faces
on the unit sphere. Consider a face f ∈ A, and its outward
normal n f . Then G(f) is equal to a point n̂ f on the unit sphere.
A complete definition of Gauss map is provided in Section 4.

If A or B are non-convex, A ⊗ B is a superset of ∂M =

∂(A⊕ B) and must be trimmed. For example, in [14], facets in
A⊗B are subdivided and stitched to form continuous 2-manifold
patches. Each of these patches is either on ∂M or entirely inside
the open set ofM.

AfterA or B is transformed or even deformed, constructing
a new Minkowski sum surface involves identifying and repair-
ing the invalid parts of the underlying combinatorial structures.
These invalid structures are called “errors” and are the results
of compatible features that are no longer compatible. Further,
even if a feature remains valid inA⊗ B, it might not be on ∂M.
Examples of these errors in 2D are shown in Fig. 4.

(a) (b) (c) (d)

Figure 4: The convolutions (b-d) between a concave shape (a) and a triangle
(yellow) rotating in counter clockwise direction. These convolutions are con-
structed using the definition in [36]. The red dot on the triangle is the reference
point. The Minkowski sums are the outer (thicker) boundary of the convolutions.
The green line segment in (b) disappears after the triangle rotates from (b) to
(c). This green line segment represents the error in our algorithms and should
be identified and removed. The red line segments in (c) and (d) are the new
segments that do not exist in (b) and (c), respectively.

3.3. CPD Algorithm Overview
The goal of our CPD algorithm is to project o onto ∂M to

obtain a continuous projection of o as in Fig. 1(b). Formally, we
define our CPD as follows:

CPD(A,B) = {min ‖q‖ | (q−o)×nq = 0,∀q ∈ ∂(A⊕−B)} (8)

Note that it is very time-consuming to compute the surface of
the Minkowski sum ∂(A ⊕ −B) in its entirety due to its high
combinatorial complexity. Thus, we construct Minkowski sums
only locally inside a small ε-ball where a CPD solution may
exist. A high-level description of our algorithm is given below
along with an illustration (also see Fig. 3):

1. Initialization. Initialize a candidate solution q0 for CPD
using a conventional PD algorithm such as [15], as CPD
is close to PD for a highly tessellated surface [32]. Alter-
natively, if motion coherence exists in a simulated environ-
ment, one can re-use the result from the previous simulation
frame as a initialization choice.

4

2. Determine the search region. We create an ε-ball S i

around qi with a proper radius size that is likely to con-
tain the CPD solution (Section 6.1).

3. Construct local Minkowski sums. We compute a sub-
space ∂M(S i) of the Minkowski sums ∂M only inside S i.
If ∂M(S i) has been partially computed earlier due to the
nature of our iterative algorithm or simulation coherence,
we only update a subset of ∂M newly included by S i (Sec-
tion 5).

4. Phong projection. We compute the tangent planes Ψ(·)
continuously over ∂M(S i) and perform Phong projection
for o using the surface normal of Ψ(·) onto ∂M(S i), and
search for qi satisfying Eq. 8 (Section 6.2).

(a) If such qi exists, a CPD solution is found.
(b) Otherwise, we expand the search region S i and re-

locate it. More specifically, we find a triangle t ∈
∂M(S i) and its barycenter ct such that Ψ · ct (i.e. the
left hand side of Eq. 5) is the least for all triangles in
∂M(S i). Then, we set the center of S i+1 to ct and its
radius to α‖ct‖ for some α ∈ R+.

5. Iteration. Steps 2-4 are repeated until we find CPD or the
number of iterations reaches some maximum value.

4. The Convex Map

The convex map is a dual of the arrangement induced by the
Gauss map. The convex map helps us identify and update the
convolution when the underlying meshes rotate.

Definition 2. Let R(A) be the set of regions in some arrangement
A. A subdivision of the arrangement of a Gauss map G is any
arrangement A for which given any region g in R(G), there exists
a set of regions Rg in R(A) such that g =

⋃
r∈Rg

r.

Definition 3. A convex map C(A) of a non-convex polyhedron
A is a convex polyhedron such that the arrangement of its Gauss
map G(C(A)) is a subdivision of the arrangement of the Gauss
map G(A) ofA.

Although the name “convex map” is similar in name to the
concept of “convex partition,” the two concepts have no relation-
ship to one another. A convex partition is a decomposition of a
non-convex shape into constitution convex pieces, which can be
unioned together to recover the original input shape. However,
a convex map is a single convex polyhedron which is a dual of
the Gauss map of the input. In general is impossible to recover
the input shape correctly from the convex map alone. In order to
make effective use of the convex map in correcting convolution
surface errors, the convex map is annotated with references to
the input polyhedron’s primitives.

We will first briefly introduce the Gauss map A for those
that are not familiar with the idea and then formally define the
convex map.

4.1. Gauss Map

The Gauss map of a polyhedronA is a function G(A) which
maps the outward normals of faces in A to points on the unit

n f1 n f2

n f3 n f4

n f5

(a) A. The model is symmetric.
On the reverse side, f6, f7, and
f8 correspond to f3, f4, and f5 on
the visible side respectively.

G(f1)
G(f2)

G(f3)

G(f4)

G(f5)

G(f6)

G(f7)
G(f8)

(b) The Gauss map of A, G(A).
The labels denote the vertices
which are Gauss maps of the re-
spective faces from figure (a).

Figure 5: A non-convex polyhedronA and its Gauss map, G(A).

sphere. Consider a face f ∈ A, and its outward normal n f . Then
G(f) is equal to the unit normal of f , n̂ f , which will be a point
on the unit sphere. As shown in Figure 5, edges inA are mapped
to geodesics on the unit sphere. In particular, if e ∈ A is incident
to faces f1, f2 ∈ A, then G(e) = (G(f1),G(f2)) in the Gauss
map. However geodesics are not unique. On the sphere, there
are exactly two geodesics connecting every two non-antipodal
points. By convention, if e is a convex edge, that is, its internal
angle is less than π, then G(e) is the smaller geodesic between
G(f1) and G(f2). Conversely, if e is a reflex edge, having internal
angle greater than π, we choose the greater geodesic (e.g. the red
arc in Fig. 5(b)). It is clear that due to the nature of polyhedra
that the internal angle of e cannot be exactly π, so we need not
worry about the case of antipodal points, for which there are
infinitely many geodesics from which to choose. Note that, these
arcs do not encode directional information and therefore do not
represent tracings [35], which always have length less than π.
Convex Polyhedron. Consider the case of a manifold convex
triangle meshA. For a given triangle t ∈ A, the angles between
the arcs of G(t) have constraints on them.

Observation 1. Let ∠(a, b) denote the smallest angle between
aand b. Given e1, e2 incident to the same face f , it is the
case that ∠(G(e1),G(e2)) = π − ∠(e1, e2), and consequently
∠(G(e1),G(e2)) ∈ (0, π).

This follows naturally from the fact that ∠(G(e1),G(e2)) is
identically the angle between the normals of e1 and e2 when
G(e1) and G(e2) have non-zero length. The following theorem
falls out from these observations:

Theorem 1. SupposeA is a manifold convex triangle mesh, s.t.
no two adjacent faces inA are coplanar. Then every region in
G(A) is convex.

Proof. Non-convex regions must contain at least one reflex ver-
tex, and a reflex vertex by definition has an internal angle greater
than π. By Observation 1, this is impossible, thus all regions in
G(t) must be convex.

We can generalize this to more complicated convex meshes:
suppose instead we have a manifold convex polyhedronA with
arbitrary polygonal faces such that no two faces are coplanar. In

5

this case, each face ofA must be some convex polygon (since
if any face ofA is non-convex, its reflex vertices must also be
incident to reflex edges, renderingA non-convex). Because of
this, Observation 1 still holds, and so must Theorem 1. Such
general convex polyhedra have Gauss maps identical to convex
triangle meshes with coplanar faces.
Non-convex Polyhedron. In all of the examples we have run
across so far, the arrangement of the Gauss maps of non-convex
polyhedra have always been identical to the arrangement of the
Gauss map of some convex polyhedron, which is to say that all
of the regions of the Gauss map have always been themselves
convex. While we do not believe that there exist non-convex
polyhedraA for which this does not hold, we have thus far been
unable to either prove this hypothesis or construct a counter-
example. Because of this, the case of non-convex regions is
addressed below.

There is potentially another problem. By definition, for any
convex edge e, the arclength of G(e) < π. However, a reflex
edge has arclength of G(e) > π by definition. In such a case, the
arrangement would also not be identical to the Gauss map of any
convex polyhedron. We call convex regions on the unit sphere
for which all boundary arcs have length < π absolutely convex
regions.

In the case where two reflex edges in A, r1 and r2, are both
incident to the same face f , then G(r1) and G(r2) must intersect
each other at another point aside from G(f) since every pair of
distinct great circles on the sphere has precisely two intersection
points, separated by arcs of length π. Consequently, when two
reflex edges are adjacent to each other, they can create no sub-
arcs in the arrangement of G(A) which have arc length greater
than π. In this case, if any edge further intersects the sub-arc of
length π, then the length of these arcs in the arrangement is not
a concern.

However, we may have arbitrarily many faces in A which
have precisely one reflex edge, and it is possible to fit arbitrarily
many great circle arcs with length π on the surface of a sphere
without intersection.

We believe that a polyhedron exists such that there is a sub-
arc of length ≥ π, but have not yet found one. As a result, it
remains an open problem whether there exists a non-convex
polyhedronA such that when the arrangement of G(A) is taken,
there remains one or more arcs with arclength ≥ π.

4.2. Constructing the Convex Map

As we will demonstrate now, we can construct a convex map-
ping by taking the intersection of half-spaces defined by the
planes tangent to the vertices of the Gauss map. We have already
proven that there exist cases for which taking the intersection
of these half-spaces does not produce an identical Gauss map,
but we have not yet adequately explored what changes occur
when we perform this operation. We will define the convex
polyhedron created by this intersection of half-spaces to be I.

Obviously, the Gauss map of I, G(I) is identical to the arrange-
ment in any absolutely convex region–the face corresponding to
each tangent plane produces precisely the vertex at which it lays
tangent to the sphere, and the corresponding edges all have arc

p

Figure 6: Demonstration of long arc subdivision in the Gauss map (left figure).
By subdividing at the midpoint, we guarantee that each sub-arc has arclength < π
(middle figure), and so taking the intersections of tangent planes only introduces
phantom arcs (right figure).

length < π. However, because I must be convex in its entirety,
the Gauss map must differ in two important ways:

1. any arcs with length ≥ π will be removed, to be replaced
with an arc of length < π if adjacency is still possible in the
convex map, and

2. (phantom arc property) for every non-convex region R
remaining in the arrangement of G(A) after these long arcs
are altered, G(I) will induce arcs on the Gauss map which
will cause R to become convex. We call these induced arcs
phantom arcs.

The phantom arc property prevents any hypothetical non-
convex regions from interfering with our computations. However
the first property is more problematic because it can change the
underlying structure of the Gauss map dramatically, in a way
that would not allow us to recover the arrangement of G(A)
from it using only the union operator.

In order to preserve this structure, we subdivide these long
arcs at their midpoint. Because all reflex arcs in the Gauss map
have arc length ∈ (π, 2π) by definition, the resulting sub-arcs
must have arc length ∈ (π2 , π). If a region adjacent to a long
arc a is convex prior to subdivision, this subdivision renders the
region absolutely convex, and thus it will be unchanged when the
intersection of the tangent planes is taken. If a region adjacent
to a is not convex, then it is subject to the phantom arc property,
and will be subdivided appropriately.

Accordingly, we can now construct the convex map C(A) for
any non-convex polyhedronA described in Alg. 1.

Algorithm 1 Convex map algorithm
1: function CONVEXMAP(PolyhedronA)
2: Let A be the arrangement of G(A)
3: for all long arc a ∈ G(A) do
4: Insert a vertex v at the midpoint of a.
5: Vc := an array of convex map vertices
6: H := an empty array of half-spaces
7: for all vertex vi ∈ Vc do
8: ti := the plane tangent to a at vi ∈ Vc

9: hi := the half-space defined by ti and vi

10: Append(H, hi) //This creates a set H of half-spaces
defined by tangent planes to the vertices of the arrangement.

11: return Intersection(hi ∈ H) //The intersection is guar-
anteed to form a convex polyhedron around the sphere.

6

5. Constructing Local Minkowski Sum

Given an ε-ball, S i and two polyhedra, A and B, we are in-
terested in finding the local Minkowski sum boundary ∂M =

∂(A⊕ −B) ∩ S i at interactive rates: a task that no traditional
approaches is able to accomplish. In this section, we first present
a robust but slower method that determines ∂M without con-
sidering temporal coherence and then the idea of gap filling is
presented to exploit temporal coherence. In our implementa-
tion, the first method is used as a bootstrap step to populate S i

and also as the last step in filling the missing facets. This new
approach can also be viewed as a hybrid method that takes the ad-
vantages from the decomposition-based and convolution-based
approaches.

5.1. Bootstrapping using Bounding Sphere Hierarchy

Constructing the entire Minkowski-sum surface of two poly-
hedra is prohibitively slow for real time applications. Here we
show that the computational efficiency can be significantly im-
proved if the computation domain is confined within a small
sphere S i. The key idea is to cull the computation that generates
the facets far from S i . Let S(X) be the bounding sphere hier-
archy of an object X and S X be a node in S(X). The following
theorem provides the main mechanism in the culling procedure.

Theorem 2. LetA′ = A∪ SA be a nonempty subset enclosed
by sphere SA. Similarly, B′ = B ∪ SB is a nonempty subset
in sphere SB. If (SA ⊕ SB) ∪ S i = ∅, then it is guaranteed
that the Minkowski sum (A′ ⊕ B′) ∪ S i = ∅. Alternatively, if
(SA ⊕ SB) ⊂ S i, then it is guaranteed that the Minkowski sum
(A′ ⊕ B′) ⊂ S i.

Note that SA ⊕ SB is simply a sphere with radius rA + rB
centered at cA + cB, where rX and cX are the radius and the
center of the sphere X. Theorem 2 implies a culling procedure
that starts from the a pair of root nodes of S(A) and S(B).
If (SA ⊕ SB) is neither entirely inside nor outside S i then all
children pairs of SA and SB are further tested.

The culling procedure can be further optimized near the bot-
tom of the hierarchies. If SA encloses a single triangle tA of
A, and SB encloses only tB, then it is not difficult to see that
the smallest bounding sphere of tA ⊕ tB can be much smaller
than SA ⊕ SB, for example, when tA and tB are long sliver tri-
angles perpendicular to each other. Therefore, when the culling
process reaches the bottoms of S(A) and S(B), a sphere tightly
enclosing tA ⊕ tB is constructed and compared to S i.

Given a pair of internal nodes SA and SB, their enclosed sub-
sets A′ and B′ contain multiple facets and can be convoluted
using their convex maps C(A) and C(B). We then gather the lo-
cal convolution faceets inside S i, and these facets are subdivided
and stitched into 2-manifold patches in a way such that each
patch can be classified as either on the Minkowski-sum surface
or in its interior using the method proposed in [14].

5.2. Gap filling and Error repair

Let ∂Mi−1 denote the local Minkowski sum constructed in
iteration i−1. As we pointed out in Section 3.2, the combinatorial

structures of ∂Mi−1 may become invalid after B rotates and
result in convolution errors and Minkowski-sum errors. In this
section, we will present a method that constructs ∂Mi for the
iteration i by repairing these errors. Note that we do not make
any assumptions regarding the amount of rotation applied to
B. In some sense, the computation time of our approach is
sensitive to the amount to rotation. Larger amount of rotation
between consecutive frames leads to bigger errors, and thus
longer computation.

f

v

v'

Figure 7: Convex maps are used to identify and repair convolution errors. The
(blue) face f on the left convex map was compatible with the vertex v on the
right before rotation. After rotation, our method finds f ’s new associated vertex
v′ using gradient decent on the convolution of the convex maps (see details in
Appendix).

Repairing Convolution Errors. The convolution errors can be
identified using convex map. Removing convolution errors (i.e.
incompatible features) results in gaps in the convolution sur-
face. These gaps need to be filled with new compatible features.
Finding these features using convex map is similar to that of
constructing the dynamic Minkowski sum of convex polyhedra,
therefore we leave the details to the Appendix. Fig. 7 illustrates
an example of how convex maps are used.

The repaired convolution is guaranteed to form 2-manifold
patches inside S i. However, because the repairs start from the
remaining valid convolution facets, it is possible that the recov-
ered facets are incomplete. Fig. 8 illustrates such an example.
As we will discuss next, these missing facets may be discovered
when we repair the Minkowski-sum errors.

Figure 8: A red edge of the convolution (left) is identified as an error and repaired
(middle). The ε-ball may contain facets that are not continuously connected to
the existing facets. For example the region illustrated in blue (right).

Repairing Minkowski-sum Errors. Given the repaired convo-
lution surface, the surface again can be subdivided into 2-
manifold patches and each patch can be classified as either on
the Minkowski-sum surface or in the interior.

7

Observation 2. A convolution patch classified as Minkowski-
sum surface must form a 2-manifold whose boundaries must be
on the surface of S i. An example is shown in Fig. 9.

If this property is violated, that means some convolution facets
are missing and are not continuously connected to the existing
convolution facets inside the ball (i.e. the example shown in
Fig. 8). To identify these missing convolution facets, we let X be
a 2-manifold convolution patch. Assume that there exists at least
one point x ∈ ∂X \ ∂S i. We construct a query ball S (x) centered
at x that is furthest away from ∂S i and has radius equal to the
distance between x and ∂S i. Finally, the procedure described in
Sec. 5.1 is invoked to construct the surfaces in S (x).

Figure 9: Minkowski sum of two U shapes. The boundaries of the Minkowski
sum (colored in green) must be on the surface of S i.

6. Phong Projection on Minkowski Sums

In the previous section, we explained how to dynamically con-
struct Minkowski sums, and now we explain how we efficiently
perform Phong projection on the surface of the Minkowski sums.

6.1. Setting up the Search Region

As described in the algorithmic overview in Sec. 3.3, we
compute Minkowski sumsM(S) only within a small ε-ball S , as
computing the entire Minkowski sum is very costly. S is defined
by its center c ∈ R3 and radius r ∈ R+. Ideally, we need c close
to the solution of CPD that would make r smallest, and require
minimal construction of the Minkowski sums.

Our algorithm starts with an initial solution q0 and repeatedly
iterates over solution candidates qi’s. We can safely assume that
the actual CPD solution is close to these solution candidates,
since the projection directions (i.e. the surface normals) continu-
ously vary over ∂M with respect to an infinitesimal change of o.
Therefore, we set c to qi for every iteration.

Now we explain how to determine the radius r of S . We
choose r to be proportional the magnitude of qi:

r = α‖qi‖, (9)

where α is a small constant in R+. The reasoning behind this
choice is that deep penetration requires a wider search region on
∂M, as illustrated in Fig. 10.

If a CPD solution is not found within S and qi is not improv-
ing, we resize the radius of S by some constant factor of β(> 1)
and continue the search. The actual search process using Phong
projection will be explained next.

Figure 10: The purple and orange lines represent two moving origins o1 and
o2, respectively. Even though o2 moves only slightly compared to o1, their
Phong-projected results on the surface of the Minkowski sum occupies the same
region (the green line). Thus, it is necessary to have an expanded search region
for a deeply-penetrating configuration

6.2. CPD Computation using Phong Projection
Given an ε-ball S , we dynamically compute the surface of

Minkowski sums ∂M(S) using the techniques explained in Secs.
4 and 5. Then, we test whether there is any triangle T ∈ ∂M(S)
satisfying Eq. 4. If we find q satisfying Eq. 8, we stop the search
and return q as CPD. Otherwise, we expand the search region S
as explained in Sec. 6.1 and continue the search for a solution.

More specifically, if we cannot find a solution in ∂M(S i),
after we expand the search region from S i to S i+1, we find the
nearest triangle in ∂M(S i) from qi, extract the contact features
(vertices, edges, facets) associated with qi, and reconstruct a
Minkowski triangle. Then, we reconstruct a Minkowski surface
connected by the triangle in breadth-first manner and perform
Phong projection onto the surface.

Furthermore, when we initialize q0, we can either use the
result of a conventional PD algorithm or simply reuse the result
from the previous simulation frame. In the latter case, care
should be taken as q0 from the previous simulation frame may
not be collision-free any more at the current frame. In this case,
the Minkowski triangle corresponding to q0 may not be on ∂M,
and thus we have no choice but to search all triangles in ∂M(S 0)
to find a valid Phong projection.

Note that it is possible that no q may exist to satisfy Eq. 8
even if we construct the entire ∂M, as a certain condition needs
to be met for the existence of Phong projection; more details
will be provided in the next section. In this case, we return qi

that best approximates Eq. 8 during the iterative search as CPD.
The pseudocode of our CPD algorithm is summarized in Alg. 2.

8

Algorithm 2 CPD Computation Algorithm
1: function CPD(A, B) . Two input models
2: if motion coherence exists then
3: q0 := CPD from the previous simulation frame
4: else
5: q0 := PolyDepth(A,B)
6: r := α‖q0‖

7: for i := 0 to max iterations do
8: ∂M(S i) := DynamicMinkowskiSum(S (qi, r))
9: Compute Ψ for ∂M(S i)

10: t := a triangle in ∂M(S i) nearest from qi

11: if t ∈ contact surface then
12: q := PhongPrjUsingBFS(o, t)
13: else
14: q := PhongPrj(o, ∂M(S))
15: if q satisfies Def. 1 then return q
16: else
17: cmin = argmin

∀t∈∂M(S i)
{Ψ · (barycenter of t)}

18: if qi = cmin then
19: r := βr
20: else
21: qi+1 := cmin

22: r := α‖qi+1‖

23: return qi

Computational Complexity. The worst-case computational com-
plexity of our CPD algorithm is dominated by that of Minkowski-
sum computation, multiplied by the number of iterations, as the
Phong projection is a constant operation for each triangle.

6.3. Continuity of Phong Projection

In general, if normals are defined continuously over a surface,
Phong projections are continuous under the following assump-
tion of dense tessellation.

Theorem 3. Given a piecewise continuous surface S, if for
every triangle in S and the tangent planes T1, T2, and T3 of
vertices on the triangle, d(Ti,T j) < 1

√
33

, where d(·) is a distance
function using the Frobenius norm, then a Phong projection of a
point close to S exists and is continuous [32].

Our CPD solution is continuous when the underlying model
A does not rotate, as its Minkowski sums is fixed and the nor-
mal vectors can be interpolated continuously over the surface
of the Minkowski sum. When A rotates, the corresponding
Minkowski sum also changes. The Minkowski sums under ori-
entation change Mg (i.e. configuration space for S E(3)) can
be considered as a stack of Minkowski sums with varying ori-
entations ofM. Intuitively speaking, Phong projection should
be continuous onMg as the surface normals inMg vary con-
tinuously. We prove this continuity property in the following
theorem.

Theorem 4. The Phong projection from the origin to ∂M is
continuous when the orientation ofA changes continuously.

Proof: Let M(ϕ, θ, ψ) be the Minkowski sums between A
and B when A is rotated by (ϕ, θ, ψ) ∈ S O(3). Assume that
the Phong projection of the origin o ∈ R3 onto ∂M(ϕ, θ, ψ) is
a point q = (x, y, z) ∈ R3 and its corresponding normal n =

(n1, n2, n3) ∈ R3 such that:

(q − o) × n = 0, (10)

and q is continuous as it is a Phong projection of o to ∂M(ϕ, θ, ψ)
in R3.

Now we pick a point qg = (x, y, z, ϕ, θ, ψ) ∈ R3 × S O(3) from
∂Mg, and set its corresponding normal to ng = (n1, n2, n3, 0, 0, 0)
since qg ·ng = 0. Then, the Phong projection of the continuously
moving origin og = (0, 0, 0, ϕ, θ, ψ) inMg is qg = (x, y, z, ϕ, θ, ψ)
because

(qg − og) × ng = (q − o) × n = 0, (11)

and qg is continuous since q is continuous. �

7. Results And Discussions

Now, we describe our experimental results of CPD compu-
tation and discuss them in comparison with other known algo-
rithm.

7.1. Implementation and Benchmarks
We have implemented our algorithm using C++ on a Windows

8, 64 bit operating system equipped with an Intel i7 3.60GHz
CPU and 16GB memory. We use the PolyDepth library [15] to
compute the conventional PD that was used to initialize our CPD
algorithm, and the results of PolyDepth were also compared
to our CPD results. We also use [32] as part of our Phong
projection implementation. We set α and β in Alg. 2 to 0.3 and 2,
respectively, which gives the best results in our implementation.

We evaluated our CPD algorithm using the following bench-
marks with different types of objects whose complexity ranges
from 36 to 2K triangles, as shown in Figs. 11. In these bench-
marks, we have a movable red objectA and a fixed yellow object
B in R3. AsA moves along the blue arrow while colliding with
B, we compute their CPD and track the direction (x, y, z) as well
as the magnitude of the CPD results. In particular, we display
the CPD direction on a unit sphere (i.e. S 2).

We used the following benchmarking scenarios to analyze our
CPD algorithm. We measure the computational performance of
our CPD algorithm and show it in Table 1 by breaking down the
timing into Minkowski sum computation and Phong projection.

• Cone and Axes: The combinatorial complexities of the
cone and axes model are 1K and 36, respectively. The cone
translates to the left while rotating anti-clockwise. Our
CPD results are clearly more continuous than PolyDepth,
in particularly along the x direction. This corresponds to
a large jump both in the direction and magnitude of PD
results by PolyDepth.

• Spoon and Cup: The spoon and cup models consist of
1.3K and 1K triangles, respectively. The spoon models ro-
tates anti-clockwise around its local axis. Our CPD results

9

Type Mink. Sum Phong Prj. Total
Cone/Axes 0.35 0 1.39
Spoon/Cup 1.35 0.03 4.23
Fish/Torus 1.16 0 3.33

Torus/Torus 3.18 0 4.42

Table 1: Average CPD timing performance in ms. The first column represents
the benchmarking type in Fig.11. The second to fourth columns represent the
average timing for Minkowski sum computation, Phong projection and the total
timing, respectively.

are continuous while the PolyDepth results suddenly jump
from inside to outside the cup or vice versa.

• Fish and Torus: The fish and torus models consist of 950
and 1.6K triangles, respectively. The fish model rotates
around its local axis. As the fish model rotates, the CPD
results also rotate as expected while the PolyDepth shows
a rather random behavior.

• Torus and Torus: Each torus model has 2K triangles with
a hole. One torus rotates around the other torus while be-
ing interlocked with each other. In this case, both CPD
and PolyDepth show similar continuous results, but Poly-
Depth is still discontinuous near the beginning and end of
simulation.

In all of these benchmarks, it is clear that our CPD algorithm
generates continuous penetration depths while the conventional
PD algorithm such as PolyDepth often shows discontinuous
behaviors.

Dynamic Minkowski Sum. We further compare the proposed
dynamic Minkowski sum methods using bounding sphere hi-
erarchies and gap filling to the method that computes the full
Minkowski sum and a brute force method that computes all
the convolution facets without using the convex map and uses
only the ε-ball to filter the facets outside the ball. Results are
reported in Table 2. The radius of the local ε-ball used in these
experiment is 50. The smallest bounding spheres of the full
Minkowski sums of all examples have radii either equal to or
less than 250 in all examples. Example outputs of the full and
local dynamic Minkowski sums are shown in Fig. 12.

Table 2 clearly shows that the computation times all reduce
when the computation is confined to the ε-ball even when a brute-
force approach is used. However, the difference is smaller when
the inputs are more complex, e.g. torus/torus. Bounding sphere
hierarchy and gap filling approaches provide further performance
improvements. The improvement is particularly noticeable for
larger models. In spoon/cup, fish/torus, and torus/torus cases,
the gap filling approach is more than an order of magnitude
faster than the brute-force methods and is always faster than the
method using solely the bounding sphere hierarchy.

7.2. Discussions
Overall, our CPD algorithm not only generates a continuous

PD, but also a smoother PD than a known PD method based
on Euclidean projection. It also works for objects with a hole,

Type Full Brute F. BSH Gap Fill.
Cone/Axes 58.91 16.10 24.23 10.33
Spoon/Cup 1393.61 453.29 69.38 13.91
Fish/Torus 1719.12 584.39 185.82 28.80

Torus/Torus 2842.93 1158.74 390.65 36.06

Table 2: Average Minkowski computation time in ms. The second to fourth
columns represent the average running time of computing the full Minkowski
sum, local Minkowski sums using brute force, bounding sphere hierarchy and
the gap filling approaches. The radius of the ε-ball is 50. See Fig. 12.

as demonstrated in the fish/torus and torus/torus benchmarks.
More interestingly, the magnitude of our CPD is often more
optimal than that of PolyDepth in the cone/axes and spoon/cup
benchmarks, as PolyDepth relies on a local projection technique
without actually computing the surface of the Minkowski sum,
whereas ours reconstructs the surface of the Minkowski sums.
In other words, the projection technique used by PolyDepth may
miss local details on the Minkowski sums surface.

In our experiments, the PD result computed by Euclidean
projection (i.e. PolyDepth) is similar to that based on Phong
projection. Thus, the Euclidean projection provides a good
initializer for CPD computation. However, in theory, the PD
result based on Euclidean projection can be different from that
of CPD, when the surface of configuration space exhibits higher
curvature with wild normal variation.

We would also like to emphasize that the proposed method
works with other definitions of convolution, such as the idea of
tracking [35, 38], the only change that we need to make will be
some details of convex map (i.e., phantom arcs) but the concept
of convex map and the rest of the algorithms remain the same.

Limitations. Our CPD algorithm has a few limitations. Theo-
retically, it can guarantee gradient-continuity only if Thm. 3 is
satisfied. However, this condition is overly conservative in prac-
tice and, in our experiments, the results tend to be continuous.
For a deep penetration case, the CPD solution may not be con-
tinuous either, as the solution space becomes narrow, bounded
by normal variations near the origin. Finally, our algorithm
may take more computational time when motion coherence is
unavailable to exploit.

8. Conclusion

In this paper, we have presented a new algorithm to com-
pute continuous PD at interactive rates. We estimate a solution
subspace for CPD, and rapidly build local Minkowski sums in
the subspace. Then, we interpolate tangent planes continuously
over the boundary on the Minkowski sums and perform Phong
projection onto it. Our algorithm is applicable to an arbitrary
polygonal models with holes. For future work, we would like
to further explore a CPD method that can handle both deep and
shallow penetrations. We are also interested in finding a less
conservative continuity condition than Thm. 3. Extending our
algorithm to generalized PD is an interesting research direction
and quite possible. Finally, we would like to apply our algorithm

10

0

5

10

15

20

25

30

35

40

1 101 201 301 401

M
ag

ni
tu

de
 o

f P
D

Number of Frame

CPD
PolyDepth

0

100

200

300

400

500

600

1 101 201 301 401

M
ag

ni
tu

de
 o

f P
D

Number of Frame

CPD
PolyDepth

0

10

20

30

40

50

60

70

80

90

100

1 101 201 301 401

M
ag

ni
tu

de
 o

f P
D

Number of Frame

CPD
PolyDepth

(a) Benchmarking Models

0

5

10

15

20

25

1 51 101 151 201

M
ag

ni
tu

de
 o

f P
D

Number of Frame
(b) PD magnitude (c) PD direction

Figure 11: Various CPD benchmarks. (a) From top to bottom: cone/axes, spoon/cup, fish/torus, torus/torus. In each figure, the red model moves along the blue arrow
while penetrating into the yellow model (b) PD magnitudes of our CPD and PD by PolyDepth. (c) PD directions of our CPD and PD by PolyDepth.

11

(a) Cone/Axes (b) Spoon/Cup (c) Fish/Torus (d) Torus/Torus

Figure 12: Top: full Minkowski sum. Bottom: local Minkowski sum. The radius of the local ε-ball is 50. The smallest bounding spheres of the full Minkowski sums
have radii equal to or smaller than 250 in all four examples.

to applications such as penalty-based contact dynamics or haptic
rendering to stabilize the simulation results.

Acknowledgement

This work was supported in part by NRF in Korea
(2014K1A3A1A17073365, 2015R1A2A1A15055470). E. Be-
har and J.-M. Lien were supported by the Korean Federation of
Science and Technology Societies (KOFST) grant funded by the
Korean government, and by US NSF IIS-096053, CNS-1205260,
EFRI-1240459, AFOSR FA9550-12-1-0238.

References

[1] S. Cameron, R. Culley, Determining the minimum translational distance
between two convex polyhedra, in: Proceedings of International Confer-
ence on Robotics and Automation, Vol. 3, 1986, pp. 591–596.

[2] D. Dobkin, J. Hershberger, D. Kirkpatrick, S. Suri, Computing the
intersection-depth of polyhedra, Algorithmica 9 (1993) 518–533.

[3] R. V. Benson, Euclidean Geometry and Convexity, McGraw-Hill, New
York, NY, 1966.

[4] S. Cameron, Enhancing GJK: Computing minimum and penetration dis-
tance between convex polyhedra, Proceedings of International Conference
on Robotics and Automation (1997) 3112–3117.

[5] D. Attali, J.-D. Boissonnat, H. Edelsbrunner, Stability and computation of
medial axes - a state-of-the-art report, in: Mathematical Foundations of Sci-
entific Visualization, Computer Graphics, and Massive Data Exploration,
Springer, 2009, pp. 109–125.

[6] M. Tang, D. Manocha, M. A. Otaduy, R. Tong, Continuous penalty forces,
ACM Transactions on Graphics 31 (2012) 107:1–107:9.

[7] X. Zhang, Y. J. Kim, D. Manocha, Continuous penetration depth,
Computer-Aided Design 46 (2014) 3–13.

[8] Y. Lee, Y. Kim, Phongpd: Gradient-continuous penetration metric for
polygonal models using phong projection, in: Proceedings of International
Conference on Robotics and Automation, 2015, pp. 57–62.

[9] P. K. Agarwal, L. J. Guibas, S. Har-peled, A. Rabinovitch, M. Sharir,
Penetration depth of two convex polytopes in 3d, Nordic J. Computing 7
(2000) 227–240.

[10] G. Van Den Bergen, Proximity queries and penetration depth computation
on 3d game objects, in: Game developers conference, Vol. 170, 2001.

[11] Y. J. Kim, M. C. Lin, D. Manocha, Incremental penetration depth es-
timation between convex polytopes using dual-space expansion, IEEE
Transactions on Visualization and Computer Graphics 10 (2) (2004) 152–
163.

[12] P. Hachenberger, Exact minkowksi sums of polyhedra and exact and effi-
cient decomposition of polyhedra into convex pieces, Algorithmica 55 (2)
(2009) 329–345.

[13] Y. J. Kim, M. A. Otaduy, M. C. Lin, D. Manocha, Fast penetra-
tion depth computation for physically-based animation, in: ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2002, pp.
23–31.

[14] J.-M. Lien, A simple method for computing minkowski sum boundary in
3d using collision detection, in: Algorithmic Foundation of Robotics VIII,
Vol. 57 of Springer Tracts in Advanced Robotics, 2009, pp. 401–415.

[15] C. Je, M. Tang, Y. Lee, M. Lee, Y. J. Kim, Polydepth: Real-time pene-
tration depth computation using iterative contact-space projection, ACM
Transaction on Graphics 31 (1) (2012) 5:1–5:14.

[16] L. Zhang, Y. J. Kim, D. Manocha, A fast and practical algorithm for
generalized penetration depth computation, in: In Proceedings of Robotics:
Science and Systems Conference, 2007.

[17] G. Nawratil, H. Pottmann, B. Ravani, Generalized penetration depth com-
putation based on kinematical geometry, Computer Aided Geometric De-
sign 26 (4) (2009) 425–443.

[18] M. Tang, Y. J. Kim, Interactive generalized penetration depth computation
for rigid and articulated models using object norm, ACM Transactions on
Graphics 33 (1) (2014) 1:1–1:15.

[19] J. Pan, X. Zhang, D. Manocha, Efficient penetration depth approximation
using active learning, ACM Transactions on Graphics 32 (6) (2013) 191:1–
191:12.

12

[20] S. Keerthi, K. Sridharan, Measures of intensity of collision between convex
objects and their efficient computation, in: The International Society for
Optical Engineering, 1991, pp. 266–275.

[21] R. Weller, G. Zachmann, Inner sphere trees for proximity and penetration
queries., in: Robotics: Science and Systems, Vol. 2, 2009.

[22] J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, P. G. Kry,
Volume contact constraints at arbitrary resolution, ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2010) 29 (4) (2010) 82:1–82:10.

[23] M. Tang, M. Lee, Y. J. Kim, Interactive hausdorff distance computation for
general polygonal models, ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2009) 28 (3) (2009) 74:1–74:9.

[24] F. Avnaim, J. Boissonnat, Polygon placement under translation and rota-
tion, STACS 88 (1988) 322–333.

[25] R. Brost, Computing metric and topological properties of configuration-
space obstacles, in: 1989 IEEE International Conference on Robotics and
Automation, 1989. Proceedings., 1989, pp. 170–176.

[26] E. Behar, J.-M. Lien, Mapping the configuration space of polygons using
reduced convolution, in: IROS, IEEE, 2013, pp. 1242–1248.

[27] B. R. Donald, A search algorithm for motion planning with six degrees of
freedom, Artif. Intell. 31 (3) (1987) 295–353.

[28] N. Mayer, E. Fogel, D. Halperin, Fast and robust retrieval of minkowski
sums of rotating convex polyhedra in 3-space, Comput. Aided Des. 43 (10)
(2011) 1258–1269.

[29] E. Behar, J.-M. Lien, Dynamic Minkowski sum of convex shapes, in: Proc.
of IEEE Int. Conf. on Robotics and Automation, Shanghai, China, 2011.

[30] E. Behar, J.-M. Lien, Dynamic minkowski sums under scaling, Computer-
Aided Design 45 (2) (2013) 331 – 341.

[31] B. T. Phong, Illumination for computer generated pictures, Communica-
tions of the ACM 18 (6) (1975) 311–317.

[32] D. Panozzo, I. Baran, O. Diamanti, O. Sorkine-Hornung, Weighted aver-
ages on surfaces, ACM Transactions on Graphics (proceedings of ACM
SIGGRAPH) 32 (4) (2013) 60:1–60:12.

[33] L. Kobbelt, J. Vorsatz, H.-P. Seidel, Multiresolution hierarchies on unstruc-
tured triangle meshes, Computational Geometry: Theory and Applications
(Special issue on multi-resolution modelling and 3D geometry compres-
sion) 14 (1-3) (1999) 5–24.

[34] P. K. Ghosh, A unified computational framework for Minkowski opera-
tions, Computers and Graphics 17 (4) (1993) 357–378.

[35] J. Basch, L. J. Guibas, G. Ramkumar, L. Ramshaw, Polyhedral tracings
and their convolution (1996) 171–184.

[36] R. Wein, Exact and efficient construction of planar Minkowski sums using
the convolution method, in: Proc. 14th Annual European Symposium on
Algorithms, 2006, pp. 829–840.

[37] E. Behar, J.-M. Lien, Fast and robust 2d Minkowski sum using reduced
convolution, in: Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), San
Francisco, CA, 2011.

[38] G. D. Ramkumar, Tracings and their convolution: theory and applications,
Ph.D. thesis, stanford university (1998).

Appendix

Details in Dynamic Convolution

Now that we know that we can construct, efficiently, the
convex map of a non-convex polyhedron P, we can use it to
dynamically construct the convolution P ⊗ Q of two arbitrary
polyhedra. First we observe that each face f ∈ C(P) represents a
(possibly empty) set S which is a subset of the faces in P which
have the same outward normal direction as f , we call this set F
the correspondence set of f . Similarly, each edge e and vertex v
represents a possibly empty set which is a subset of the edges
or vertices, respectively, of P. We denote these correspondence
sets E and V respectively. By the duality of the C(P) and G(P),
the following things are true:

1. Given any vertex v ∈ C(P), for every v ∈ V , G(v) is wholly
contained within G(v), that is, ∀v ∈ C(P), ∀v ∈ V : G(v) ⊆
G(v).

2. Given any edge e ∈ C(P), for every e ∈ E, G(e) is wholly
contained within G(e) (G(e) ⊆ G(e)).

3. Given any face f ∈ C(P), for every f ∈ F, G(f) = G(f).

As a consequence, given C(P) and C(Q), we have that if
f ∈ C(P) and v ∈ C(Q) are compatible, then ∀ f ∈ F, v ∈ V ,
f is compatible with v. Similarly, for eP ∈ C(P), eQ ∈ C(Q),
∀eP ∈ EP, eQ ∈ EQ, we have that eP is compatible with eQ.

This correspondence between the labels of C(P) ⊗ C(Q) and
P ⊗ Q enables us to use the techniques from [29] to update
the convolution dynamically as Q rotates. First, we note that
as Q rotates, so does C(Q)–this is a trivial observation since
the outward normals of f ∈ FQ rotate the same as the outward
normals of f ∈ FQ. Let P after some arbitrary rotation be
denoted R(P).

8.1. Correcting v f -errors

We recall from [29] that a v f -error is an error arising in a face
of the convolution which is contributed by a vertex from P and
a face from Q, or vice-versa.

We can compute the v f -errors in compatibility between
R(C(P)) and C(Q) using the algorithm described in [29] with
minor modifications. First, we compute C(P) ⊗ C(Q). Then,
whenever we rotate P to some R(P), we correct C(P) ⊗ C(Q).
To correct P ⊗ Q, assume that f P and vQ1 are compatible in
C(P) ⊗ C(Q). When f P becomes incompatible with vQ1, it must
then become compatible instead with some vQ2

1, whose corre-
spondence sets are VQ1 and VQ2, respectively.

After this happens, the faces in FP are no longer compatible
with the vertices in VQ1 − VQ2, and are newly compatible with
the faces in VQ2 − VQ1. If VQ1 = VQ2 then there is no error.
This holds even when one or more of the correspondence sets
are empty. Thus we can correct the convolution by removing
the compatibilities in VQ1 − VQ2, convolving every f ∈ FP

with every v ∈ (VQ2 − VQ1), and updating the remaining faces
VQ1 ∩ VQ2 for every f ∈ C(P). The same argument applies in
to faces from C(Q) and vertices from C(P)–we may correct all
v f -errors in P ⊗ Q using this method.

8.2. Correct ee-errors

We again recall from [29] that ee-errors arise in faces con-
tributed to the convolution from compatibility between and
edge of P and an edge of Q. To correct ee-errors, we dis-
cover ee-errors in C(P) ⊗ C(Q) using DYMSUM, and then cor-
rect them using the label information similar to the v f -error
case in Section 8.1. Let eP be compatible with a set of edges
E = eQ1, eQ2,

After rotation, it instead is compatible with E′ = e′Q1, e
′
Q2,

Let Eold = ∪e∈EE and Enew = ∪e′∈E′E
′
. Then for every eP ∈ EP,

it is no longer compatible with any eQ ∈ (Eold − Enew), and it is
newly compatible with every eQ ∈ (Enew − Eold).

Once this is done, we have corrected the convolution.

1As a reminder, convex polyhedra have the property that every region in the
Gauss map arrangement is associated with precisely one vertex.

13

