The Visual Computer manuscript No.
(will be inserted by the editor)

Xinyu Zhang - Minkyoung Lee - Young J. Kim*

Interactive Continuous Collision Detection
for Non-Convex Polyhedra
http://graphics.ewha.ac.kr/FAST

Abstract We present a highly interactive, continuous colliKeywords Continuous Collision Detection, Convex
sion detection algorithm for rigid, general polyhedra. GiveDecomposition, Conservative Advancement, Dynamics
initial and final configurations of a moving polyhedral modeg§imulation

our algorithm creates a continuous motion with constant trans-

lational and angular velocities, thereby interpolating the ini-
tial and final configurations of the model. Then, our algor |ntroduction
rithm reports whether the model under the interpolated mo-

tion collides with other rigid polyhedral models in environc|jision detection (CD) is a problem of testing possible in-
ments, and if it d_oes, the al_gorlthm reports its flr_st time Qérference between geometric models in space. Many graph-
contact (TOC) with the environment as well as its assoggs applications require fast and reliable CD to simulate the
ated contact features at TOC. physical presence of objects in virtual space. These cover
Our algorithm is a generalization of conservative advangewide range of applications such as physically based ani-
ment [20] to general polyhedra. In this approach, we calcmation, virtual environments, virtual characters, geometric
late the motion bound of a moving polyhedral model and esiodelling, etc. As a result, CD has been extensively stud-
timate the TOC based on this bound, and advance the madel in the literature and many efficient CD algorithms are
by the current TOC estimate. We iterate this process uriilown.
the inter-distance between the moving model and the other At a broad level, depending on how CD algorithms han-
objects in the environments becomes below a user-defiritd the motion of objects, they can be categorized into two
distance threshold. types,discrete CD and continuous Ciscrete CD algo-
We pose the problem of calculating the motion boundthms check for interferences between static objects. When
as a linear programming problem and provide an efficierthjects are moving, discrete CD algorithms are often called
novel solution based on the simplex method. Moreover, vat fixed time intervals to deal with the motion of objects.
also provide a hierarchical advancement technique basedtowever, it is well known that when objects are moving at
bounding volume traversal tree to generalize the consereahigh speed or objects are thin, discrete CD algorithm can
tive advancement for non-convex models. easily miss a collision between sampled time instances [24].

Our algorithm is relatively simple to implement and hakleanwhile, continuous CD (CCD) algorithms take the ob-

very small computational overhead of merely performir%Ct’S continuous motion into account and accurately report
§

discrete collision detection multiple times. We extensiveRpe first time of contact (TOC) between moving objects if
benchmarked our algorithm in different scenarios, and §Rere occurs a collision. Recently, CCD has drawn much
comparison to other known continuous collision detectigitention from different communities because of the need
algorithm, the performance improvement ranges by a facff correctly dealing with dynamic nature in applications.
of 1.4 ~ 455 depending on benchmarking scenarios. Mordhe major strength of using CCD in dynamic applications
over, our algorithm can perform CCD at 12015460 frames lies in a fact that the result of CCD always guarantees non-

per second on a 3.6 GHz Pentium 4 PC for complex modégnetration between moving objects. For example, in rigid
consisting of 1& ~ 70K triangles. body dynamics, finding an accurate TOC between simulated

bodies is crucial to enforce non-penetration constraints in
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tion planning such as probabilistic roadmap method (PRMhe preliminary concepts to understand our algorithm and
it is crucial to find a continuous, collision free path betweeprovide an overview of our algorithm. In Sec. 4, we explain
two configurations of a moving robot, and CCD plays anow we efficiently calculate the bound of motion and gener-
important role in finding one [28]. However, the major limialize conservative advancement to general polyhedra in Sec.
tation in existing CCD algorithms is that they are, in generd, In Sec. 6, we show the performance results of our algo-
much slower than discrete CD algorithms. This often limitsthm in different benchmarking scenarios and conclude the
the applicability of CCD algorithms to many potential applipaper in Sec. 7.

cations.

2 Previous Work

1.1 Main Results
In this section, we give a brief survey of the earlier work

In this paper, we present a fast method to perform Cdglated to continuous collision detection and distance calcu-
between moving, general polyhedra. Our algorithm outpé@fion.

forms known CCD methods by utilizing the connectivity in-
formation residing in polyhedra and exploiting the coher;
ence in the continuous motion. Given initial and final corf-
figurations of a moving polyhedral model, our algorithm Crij{

.1 Discrete Collision Detection and Distance Calculation

ost of the prior work on collision detection has focused on

ates a continuous motion with constant translational and )= rete CD algorithms. We refer the readers to see [18] for

gular velocities, there interpolating the initial and final con= excellent survey on the field. These include specialized
figurations of the model. Then, our algorithm reports wheth I?orithms for con\yex olvio es. that exploit motiopn coher-
the model under the interpolated motion collides with oth 9 polytop P

rigid polyhedral models in environments, and if it does, the ' °€ between successive time steps, general algorithms for

algorithm reports its first time of contact (TOC) with the enpolygonal or spline models that pre-compute a spatial parti-

vironment as well as its associated contact features at Tdangzgkgjlggrlen%agli\(/j?alggqgi:tlzrrw?::ecgl(aesv(eBe\;H)él onal mod-
The main ingredient of our algorithm is a generalization 9 POYg

of conservative advancement [20] to general polyhedra. '?(Igsx haosl, ?(?egse):r?r:‘fl;lc?(l.g.yniﬁgfgtlir;;|hg| I'gﬁ{tit#]r?é]':ﬁ;ggp'
this approach, we calculate the motion bound of a moviﬁég polytopes, 9 ’

polyhedral model and estimate the possible TOC based Jggramming-based apprﬁa(l:fi [29], M_mkowilg-sumla_nd con-
this bound and the inter-distance between the model and optimization approac [ ]{oronm marchingexploit-
motion coherence [19] and multi-resolution approach [9,

other objects in the environment, and advance the mo%% have been proposed. For non-convex models, typically
by the current TOC estimate. We iterate this process u H has been employed to deal with the non-convexity in

the inter-distance becomes less than a user-defined dist %emodels A convex hull tree-based scheme combined with
threshold. We pose the problem of calculating the motiQn '

bound as alinear programming problem and provide a nov, ?rﬁlnq march_mg has bfeen mtrolducec: ahnddshlowndtolworlé at
efficient solution based on the simplex method. Moreov ,g y interactive rates for complex polyhedral models [10]

we also provide a novel, hierarchical advancementtechniqy hybrid BVH scheme using different types of swept sphere

. . Ylumes has been presented to calculate distance between
based on bounding volume traversal tree to generalize cgn- P

servative advancement for non-convex models. generic polygonal models [17].
Our algorithm is relatively simple to implement in the

sense that one needs to make only minor modifications4® continuous Collision Detection

existing discrete CD library to implement our algorithm. As

a result, our algorithm has very small computational ovek few algorithms have been proposed for CCD. More specif-
head of iterating discrete CD multiple times. We extensivelya|ly, there are five different approaches presented in the
benchmarked our algorithm in different scenarios, and jigerature: algebraic equation solving approach [6,7,14,23],
comparison to other known continuous collision detectiofyyept volume approach [1], adaptive bisection approach [24,
algorithm, the performance improvement ranges by a facts) inetic data structures (KDS) approach [2,15,16], and
of 1.4 ~ 455 depending on benchmarking scenarios. Morgrinkowski sum-based approach [5]. However, most of these
over, our algorithm can perform CCD at 1205460 frames approaches do not work in real-time or work for only simple
per second on a 3.6 GHz Pentium 4 PC for complex modelsconvex models. Only the adaptive bisection approach has
consisting of 16 ~ 70K triangles. shown interactive performance for relatively complex polyg-
onal models; however, it is designed to handle models in
polygon soupsind does not take advantage of connectivity
1.2 Organization information residing in polyhedral models and motion co-
herence in CCD computations.
The rest of this paper is organized as follows. In Sec. 2, we Recently, CCD for articulated models have been pro-
briefly survey work relevant to ours. In Sec. 3, we explaiposed [26,27]. [26] is applicable to simple, capsule-shaped
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avatar models in VR environments and shows interactioa .«# per second. Theny can advance from timeto time
performance, whereas [27] works for articulated models bt At without collision:
shows only near real-time performance. LAt < d(/ (1), B)

| At < 4(A0).B) @)
3 Overview u

The proof is simple, and we refer the readers to see [21] for
We start this section by introducing the notations and dgfatail.

initions used throughout this paper. Then, we will briefly |, Eq.2, the smaller value gi or the larger value of

explain the basic idea of conservative advancement (C )ﬂ«( t), %), the larger CA step sizat we can have. Thus,
and distance calculation methods that our CCD algorithm\js, need a tight upper bound of motignand tight lower

based on. Based on these concepts, we provide an overviiing of distancel(.«# (t), %).

of our algorithm later. Notice, however, that the technique presented in [21] works
only for convex objects. Later in Sec. 5, we will provide
novel techniques to generalize CA to non-convex objects
and also provide a tighter upper boundioby considering

. . . both the linear and rotational motions in Sec. 4.
We use a bold symbol to differentiate a vector quantity from

a scalar value (e.g., the origin). Let .« and.% be two poly-
hedron. Without loss of generality, we assume thais a
moving object under rigid transformatidn and % is fixed
in space since we can find relative rigid transformation wnilfu
respect to each other. Further, we assume that the initial 3y
final configurations ofeZ are given agjp andq; at its cor-
responding timet = 0 andt = 1, respectively. We use/(t)
as a placement of/ under rigid transformatioM at time
t; i.e., &Z(t) = M(t)«/. Then, the problem of CCD can b
formulated as checking whether Eq. 1 is non-empty:

3.1 Notations and Definitions

3.3 Distance Calculation using Convex Decomposition

easier to calculate the distance between convex poly-
es than computing it for general, non-convex polyhedra.
In particular, Voronoi Marching [9, 19] exploits motion co-
herence involved in distance calculation and is a good choice
for CA as CA requires repeated calculations of distance and
€hus the motion coherence is high between successive com-
putations.
For distance calculation between general polyhedra, a
{tel0]]«t)nz # 0} @) BVH-based technique usingonvex hull trees known to
Furthermore, if Eq. 1 is non-empty, we want to compute ttveork well [10]. As preprocess, the algorithm decomposes
minimum value ot that satisfies this equation, known as tha given, general polyhedro®’ into convex pieces” and
time of contactiroc. recursively builds a convex hull tree where each node in the
tree corresponds to a convex hull of its children nodes. Note
that the convex decomposition scheme employed in [10] is
3.2 Conservative Advancement for Convex Polytopes  merely surface decomposition in which the uniomgfcov-
ers only the boundary af/, and this is sufficient for distance
. calculation.
Po--"""""~<_ At run-time, starting from the root nodes of two con-
vex hull trees, the algorithm simultaneously traverses the
n two trees while performing Voronoi marching on the tree
"""""""""""""""""""""""" nodes and calculating their distance as well as their associ-
ated closest features. The recursive traversal continues un-
til the closest distance cannot be further reduced. This tree
traversal process can be also thought of as implicitly build-
Fig. 1 Conservative Advancement. ing a bounding volume traversal tree (BVTT) betweer_l two
convex hull trees. The concept of BVTT will be explained
in more detail in Sec. 5.1.
The CA is a simple technique that computes an upper
bound oftyoc by repeatedly advancing’ by At toward
2% while avoiding collision [20,21]. HereAt is calculated 3.4 Our Approach
based on the closest distart{er (t), #) betweenes (t) and
2, and the upper bound of the motion alongl(<7(t), %) In our algorithm, we assume that two non-convex polyhedra
traced by« (t) per unit second. More specifically, in Fig.«z and % are given and only the initial and final configu-
1, letp be a point oneZ, and letn be the closest direction rations of</ are known agjg,q1. As in many applications,
vector that realized(«/ (t), #). Moreover, letu be an upper since the actual governing motion.oef is unknown [24], we
bound of the distance alordf.«(t), %) travelled by anyp use an arbitrary in-between motion that interpolatgs; .
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As a result, we can express a continuous motib(t) in Algorithm 2 CCD using Hierarchical Advancement
terms of time that governs the motion.of. Input: <7, % andqo,ds1

In order to findtroc between non-convex polyhedra Output: Calculatétroc.
and 4, a naive approach based on convex decompositian As preprocess, decomposé and % into convex pieces and con-

and CA can be devised as in Alg. 1. struct their convex hull tree§HT,,,CHTg.

2: Compute an interpolating motiadvl (t) from qo, q1.

3: repeat

_ _ _ _ 4: Calculate d(#(t),%) between </(t) and % using

Algorithm 1 Naive CCD using Convex Decomposition CHT,/,CHTy and remember the pairs of front nodg$, h??
Input: A moving polyhedronz and its initial and final con- in the trees that were traversed to calcutite’ (t), %). During
figurationsqp, q1, a fixed polyhedron?. the traversald(h”,h) and closest direction vecta(i, j) are
Output: Calculatettoc. stored{Alg. 3 in Sec. §.

1: As preprocess, decomposé and Z into convex pieces;”, ¢/, 51 for each pair ofh”,h?) do

asin [10]. 6: Retrieve already calculatet{h”, hf‘?) andn(i, j).

2: Compute an interpolating motidvi (t) from do, dj1. 7: Calculate the motion bound(i, j) by projecting both the
3: repeat . , L translational and rotation motion bf’ onton(i, j).

4:  for each pair of convex piecés”,c/’) do d(h 1)

5 Calculate their distance(c”,¢/’) using [9] and find their 8: Calculatet; j = ==

closest direction vectar. 9:  end for )
6: Calculate the motion boung of ¢ usingn. 10:  Find At :=min(At; j).
d(c” %) 11:  Advanced/(t) by At. )

7 CalculateAtj j; = —~— based on Eq. 2. 12: until d(#7(t), %) becomes less than a user-provided threshold
8: end for 13: return tyoc

9:  Find At :=min(At; ;).
10:  Advanceg/(t) by At.
11: until d(</(t), %) becomes less than a user-provided threshold
12: return troc 4.1 Motion Interpolation

In many applications involving motion such as physically

There are two severe problems in Alg. 1, however. FirBgsed animation, rapid prototyping, virtual environments and
of all, if the numbers of convex pieces.i, 2 aren.,, N4, robot motion planning, its governing motion is often elther.
each CA step (step 4) requir€¥n.,14) time. Addition- pnknown or cannot be represent_ed as a clos_ed _forrr_1. This
ally, the motion boundt (step 6) can become overly con!S becquse the_ motion employed in these application is con-
servative and many CA steps (step 11) would be requirdtplled interactively by a user [24], or purely random [28],
These two problems can result in poor performance of tR Should be calculated numerically [4]. Therefore, in our
naive algorithm. To address the first issue, instead of c&CD algorithm, we only assume that the initial and final
culating the distance between decomposed convex piece§@ifigurations ofe/ are known (o, d1), and need to find a
o/, %, we calculate the distance betweef % themselves continuous, rigid motio that interpolatesjo, ;. We fur-
using the technique presented in Sec. 3.3 and rememberti assume thay is collision-free; otherwise, we trivially
nodes in convex hull trees that realize this distance, calle@Port thatroc is zero by performing discrete CD @.
front nodes. The union of these nodes is a super set of the Different types of interpolation motions have been used
union of convex pieces thanks to the convex hull property &t other CCD algorithms: screwing motion [14,24], ballis-
convex hull tree. Notice that the distance between the frdit motion [21] and linear motion in configuration space [28,
nodes has been already calculated during the BVH traver8hlIn our case, we choose the linear motion with constant
scheme in Sec. 3.3. We perform CA only to these front nodéanslational and angular velocities because of its simplic-
(Sec. 5). Moreover, to efficiently calculatebetween these ity. In fact, some application such as robot motion planning
front nodes, we take the closest vector directiobetween requires linear motion in configuration space [28].
the nodes and project its translational and rotational motion Let us represent the configuratiams g, as their transla-
onton (Sec. 4). Overall, our algorithm works as in Alg. 2. tional (T) and rotational component®): qo = (Ro, To),01 =

(R1,T1). We want to represent the interpolating mothdi(t)
at timet as:

4 Motion Bound Calculation
(&™) @)

M®) =1 0,0,0 1
Since our algorithm does not assume a closed form of the o
continuous motion of a moving object, we first explain how
we model the continuous motion when only its initial andhen,
final configurations are given, and also show how we can
efficiently calculate the motion boundof a moving object T(t) =To+tv
under such a motion. R(t) = cos(wt).A+sin(wt).B+C



Interactive Continuous Collision Detection for Non-Convex Polyhdtiitp://graphics.ewha.ac.kr/FAST 5

Here,v = T1 — Ty is the constant translational velocity ofandr; exists only on the surface of a convex polytope, max-

the center of mass (COM) a¥. Furthermore, imizing |c-ri| becomes a linear programming problem. As a
T result, we have:

A =Rgp—uu' .Rg

B=u"Ro p = maxcy - ri +c2 (5)

C =uu'.Rg subject tor; -ng < di,k=1... ||

Here,(u, ») is the constant angular velocity of , extracted Wherec; =nx , ¢z = |v-n|, and|</| is the number of faces
from RiR;* andu® is the skew symmetric matrix; i.e., if iN @ convex polytope, andx-ni = d is the plane equation
u=(,w, )7, then for thekth face in<r. N

. ' There are many known methods to efficiently solve the

0 % W linear programming iq Eq. 5[29]. In particu!ar, t_he ;implex
= @ o —u method or thdnill climbing methodwvorks well in this simple
w0 case. The mainideais, given a query directiprwe want to

find a vector; on the surface of a convex polytopé whose
direction is closest to the direction of. This type of query

is also known as support mappinga@f[30] or extremal ver-
tex query along; [9]. A simple method that works well in
practice is the use of a lookup table as presented in [9]. In
this approach, we sample the possible directions; pand
precalculate its extremal vertex, and store their associa-
&jons in a lookup table. At run-time, given, we look up the
losest vectot to c; in the table and use its associated ex-
remal vertex as a starting point in the hill climbing to further
amaximize Eq. 5.

4.2 Motion Projection

Given the interpolating motiom (t), now we explain a novel
technique of how we can calculate the tight upper bound
of motion. For now, we assume that both the mouirigand
fixed objects# are convex, and the motion bound calcul
tion technique explained here will be applied to non-conv
objects in Sec. 5 by decomposing, % into convex objects,
calculating the motion bound for each convex pair, and t
ing its minimum.

Let pi be a point oneZ, and aseZ undergoed, p; will
trace out a trajectorp;(t) in 3D Euclidean space. Conside
its velocity pi(t) = v+ o x ri(t), wherev, ® are the linear
velocity of the center of mass (COM) and angular veloci
of &7, respectively, and; = p; — Rcom WhereRcowm is the
position of the COM. Notice that, ® are constant between
the time interval of{0,1] in our case. Then, thendirected
motion boundy, of &7 can be expressed as:

I5 Hierarchical Advancement

y plugging 1 in Eq.5 into the step (6) in the naive CCD
Igorithm, Alg. 1, we can devise a CCD algorithm for non-
convex polyhedra and accelerate its performance consider-

ably. However, due to the quadratic complexityOtfy ., 1.4)
in Alg. 1, the algorithm does not scale well to complicated
non-convex models.

1. In this section, we present a novel, efficient scheme based
Hu = miax/o [Ipi(t)]]dt 4) on the concept of bounding volume traversal tree (BVTT)

that can handle the quadratic complexity in Alg. 1. Now

Ky can be an upper bound of motion that Eg. 2 uses, t%/lvJ relax the convexity restrictions of , 2 and assume that
we get a tighter upper boyr;d by projectingp;(t) onton, they are non-convex polyhedra
which is the closest direction vector betweehand %: '

1 5.1 Bounding Volume Traversal Tree
m,ax/ |pi(t) - n|dt
to As preprocess, our algorithm decomposes each of the given

< m,ax/ V-n+ o xri-n|dt non-convex polyhedra into convex pieces, and recursively
: builds a bounding volume hierarchy (BVH) where each BV

<|v-n| +m_ax/|a) x ri-n|dt node corresponds to the convex hull of its children nodes

: (i.e., convex hull tree), as explained in Sec. 3.3.
< |v-n|+/m,ax(\w>< ri-n|)dt Given two BVHs CHT,,CHTy) of &/, %, when we

[ calculate the distance between, & at given timet, start-

< |v-n|+max|w xr;-n|) ing from the root nodes &@HT,,,CH Tz, pairwise distance

1t calculation between the nodég’,hi? in CHT,,,CHT is
=H recursively performed based on Voronoi marching. Each re-

Sincev, n, w are constants during the time intervaltf, CUrsion step requires distance calculatigh” ;) between
calculatingu boils down to maximizinge x r; -n|. Further, some pair of nodels” , hi” in CHT,,,CHT, andd(h”, h??)
it is equivalent to maximizing(n x o) - r;| since(® x r;)- is compared to the global minimuchof previously calcu-

n= (nx ®)-ri. Moreover, becausex o = c; is a constant latedd(hZ,h”)’s during the recursion. Iﬂ(hff,h?) <d,
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the recursive traversal fdl;”,h]-%’ continues; otherwise, it 5.2 Conservative Advancement for General Polyhedra
stops.

.h.(fl hf‘f
)/.’\‘ )/‘:{ Front

Rt hy'  RE BB

Based on the BVTT, we can devise an efficient hierarchi-
cal algorithm to perform CA between non-convex polyhedra
o/, 9. The main idea of this method is based on the follow-
ing observations:

1. The union of the front nodéxi, j) in BVTT is a superset
of the union of all the pairwise combinations of convex
CHTA CHT® BVTT pieces(c”,c/) in o7, .

_ _ _ 2. The frontnode$(i, j)’s are the nodes that are discovered
Fig. 2 Bounding Volume Traversal Tree. Two BVHs and their BVTT  q4,ring closest distance query, so that these nodes have a
during distance query. Only solid-colored nodes are actually generated . - ! .
in BVTT. higher probability than other convex nodes in BVTT to
be collided attoc or to be reused for successive distance
query at next CA step.

The bounding volume traversal tree (BVTT) is a special The observation (1) guarantees that our algorithm based
recursion tree generated during the distance query, as illus-performing CA on the front is conservative. Thanks to
trated in Fig. 2. BVTT was originally introduced by [17] tothe observation (2), our algorithm is not overly conservative
measure the cost of a BVH traversal scheme. In our caaed as experimentally shown in Sec. 6, it is quite efficient in
each nodéda(i, j) in a BVTT corresponds to a pair of convexpractice (i.e., few CA iterations). In fact, the observation (2)
hull nodesh? h«l.%, Furthermored(h? h].%) and the clos- has been similarly used in discrete distance query when high
est direction vecton(i, j) that realizesd(h®,h?) are also Motion coherence exists. In other words, Wigess convex

pieceghat realize closest distance at time dtégnd to be a

stored ath(i, j). The front in a BVTT refers to a collec-| . : :
tion of the leaf nodes in the tree, generated during the dvg!_tnesses again for the next time stepAt when the under

» ; : . ing motion has high coherence [10]. In our case, since our
tance query at run-time. In practice, the size of frontis mu%:gorithm requires successive invocation of CA steps, it has
smaller than th? size of all possible comblnatloqs betweg similar effect of having high motion coherence and thus
convex pieces in#, %. We take advantage of this fact tthe observation (2) is sound
reduce the quadratic complexity in Alg. 1. Algorithms fo - . .
distance calculation between non-convex polyhedra as well Based on the aforementioned observations, our algorithm

as building its corresponding BVTT are explained in Alg. PPlies an atomic, convex CA operation to each riufd)
9 P 9 P 9 3?1 the front, estimates its individual time of contadt oc(i, j ),

and takes its minimum astroc. Then, we advances by
Attocand iterate another CA step uril«/ (t), %) becomes

Algorithm 3 BVTT smaller than a user-provided distance threshold. Finally, at
Input: BVH nodesh;, hj, Current distanceyrrent troc, we perform one-time discrete distance query to find all
Output: Return the closest distandéh;, h;) the relevant contact features such as face/vertex and edge/edge.
1 {Initially, BVTT(CHT,, .ro0t,CHT,.root, o) is called } Th[s algorithm has been sum_marized earli_er in Alg. 2. The
> (A BVTT nodeh(i j)‘ﬁ'crea’ted} S ' major strength of our hierarchical CA algorithm can be also
3: Perform Voronoi marching ofy, h; to findd(hi, h;) and its closest Summarized as follows:
vectorn(i, j).

4: if d(hi,hj) < dcurrent then — The main bottleneck in Alg. 2 is the computatiordgh?” , h??)
5. if hjis not a leaf node iICH T then o J
6- di — BVTT(h;, h;.LeftChildTree). andn(i, j). However, these are already calculated as part
7: d> = BVTT(h;, h;.RightChiIdTree). of distance calculation betweesf and %, as presented

8 return min(dy, dz). in Alg. 3. As a result, the hierarchical CA has very little

i . g y
1%. e'sg ifhy i ’%‘%t(ﬁ li?:‘tr(l:oh?ﬁi#ei%)then overhead over discrete distance calculati¢n/ (t), %)
. 1= j . 0j). .

11 d, = BVTT(h RightChildTreeh;). attimet. _ ,

12: return min(dy, dp). — Typically, since the size of the front nodes is small, the
13:  else step (5) in Alg. 2 has a much lower number of iterations
14: {Markh(i, j) as front andh(i, j) is stored at it} compared t@(n,.,nz).
15: return d(h;,h;) -
16: endif
17: else
18:  {Markh(i, ) as front andh(i, j) is also stored at i}.
19:  return d

20 end if 6 Results and Discussions

Now we present our implementation results and discuss its
performance.
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Fig. 3 Benchmarking Models. From left to right, bunny (70K tri.), Santa (37K tri.), torus-knots (2.8K, 11K, 34K tris.), a ring (10K tri.).

6.1 Implementation Results 4. Rigid Body Dynamics for Bunnies(Fig. 8-Left): Using

HAVOK ™2 e perform rigid body dynamics to simu-
We have implemented our CCD algorithm using C++ on late the falling of a red bunny against a blue one, each
Windows XP, equipped with Intel P4 3.6GHz CPU and 2GB consisting of 26K triangles, due to gravity. Each simula-
main memory. We have used a public-domain proximity li- tion step provides|g, q; of the blue moving bunny, plug
brary, SWIFT++ for distance calculation and convex de- these into our CCD algorithm, and measure the perfor-
composition for non-convex polyhedra, and have modified mance. Moreover, in order to create artificial interpene-
it to serve our purpose. We also take advantage of the ex- tration atq; from this simulation (the simulation itself
tremal vertex query function provided in SWIFT++ to im- is collision-free all the time), we slightly modify thag
plement Eg. 5. Thus, in some sense, our implementation canbefore impact, and thus we can ask our CCD algorithm
be considered as a continuous version of SWIFT++, to findtroc.

5. Rigid Body Dynamics for Rings(Fig. 8-Right): We con-

duct similar dynamics experiments for a ring consisting

6.2 Benchmarking of 10K triangles.

In order to measure the performance of our algorithm, we The resulting performance of our algorithm, named as
employ different benchmarking models in various compleXAST®, for the above benchmarks is shown in Fig.s 4, 5, 7
ities (ranging from 10K to 70K triangles) as shown in Figghd 8: it includes timings (in milli-seconds) and the num-
3. These models are highly non-convex, and we use thenPgf of CA iterations of our algorithm (FAST). We also mea-
different benchmarking scenarios as below. The user-contilé¢the performance of a known CCD method, CONTACT

threshold of distance to fingtoc is 0.001 throughout all the [24], for each benchmarking scenario and compare it with
experiments. ours. CONTACT can be thought of as a continuous version

of the OBB algorithm [12] and uses a screwing formula-
1. Santa vs Thin Board(Fig. 4): Given two configurations tion for motion interpolation. As a result, our algorithm and
of go, g1 of a highly non-convex Santa model with 3788& ONTACT do not perform the exactly same CCD opera-
triangles, separated by approximately 5 times the bourtibn but both of the algorithms are able to calculaigc as
ing box size of Santa, a board (12 triangles) is initiallwell as contact features. In our benchmarking scenarios, our
located belowgg. By varying the position of the boardapproach outperforms CONTACT by a factor oft & 455
towardqs, we calculatdroc of the Santa model when it depending on benchmarking scenarios.
tries to reach frongg to g;. In the figure, the red, blue,
and green Santas denote the Santa model at configura-
tions,qo, d1,q(troc), respectively. 6.3 Analysis
2. Bunny vs Bunny (Fig. 5): Each bunny consists of 69664
triangles. As shown in the figure, 5, one of the bunny i§q\ we briefly analyze the computational complexities of

shot from a random configuratiap (red) toward a ran- 4 ;¢ aigorithm (Ala. 2). For each CA step (4-12
dom configuratiorg; (blue) against a fixed bunny (yel- ¢ (Alg- 2). b (4-12),

low) with constant translational and angular velocities— The complexity of step (4) is contact-dependent, and in
We perform this test for more than 250 trials, and be- the worst case, it can take(|.<7||4|) where|</|,| S|

tween [0,100] steps of the test trigl; has only trans- are the number of faces i, 2, respectively. However,
lation relative togg. Afterwards, plus the translational in practice, its computational cost is much lower than the
motion,q; has% rotation aroundX axis plus% rotation guadratic complexity, since our implementation based on
aroundy axis relative tajo. SWIFT++ utilizing BVH and high motion coherence be-

3. Torusknot vs Torusknot (Fig. 7): It is similar to the tween successive CA iterations. The use of motion co-
bunny vs bunny benchmarking scenario . However, in- herence is made possible thanks to the technique known
stead, we use torus-knots in different complexities, 2880, asfront tracking[10].

11520 and 34560 triangles.

2 http://www.havok.com/
1 http:/iwww.cs.unc.edu/ geom/SWIFT++ 3 Itis available to download frorhttp:/graphics.ewha.ac.kr/FAST
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— The number of loops in step (5) is also contact-dependent,

and in the worst case, it ®(n“n%). Inside the loop,

the step (7) of performing motion bound is dominated dy9- 8 < 1S hovering abovez.
the linear programming required by Eg. 5. In the worst
case, linear programming can take a linear time in terms

of the number of faces in a convex hull not,. How-

ever, since we are using a table lookup-based methodpislygon soups unlike ours. However, it has two problems:
practice, this operation takes an almost constant time.1) the continuous OBB test can be overly conservative when
Bounding the number of CA steps is in general quitt@e underlying mo_tion hasle_\rge rotations_, 2) CONTACT does
difficult since there are many parameters involved with thftot perform adaptive bisection such that it may suffer from a

computation such as the relative configurations/gf%, the

large number of bisection steps especially when objects are

initial and final configurations, g1 of <7, the distance and far apart. In our CCD algorithm, even though the motion has

contact features. However, based on our experiments,
typical number of iterations is 4 on average.

6.4 Comparison

{@kge rotation, our motion projection technique can handle
such a case. Moreover, by taking advantage of the closest
direction vector, our algorithm performs fewer advancement
iterations.

Dynamic Collision Checker [28]: The dynamic colli-
sion checker performs similarly to our CCD algorithm in

We qualitatively compare the cons and pros of our CCD ahat it relies on motion bound calculation and distance calcu-
gorithm with other methods, in particular bisection-basddtion. Compared to ours, however, the algorithm has a less
algorithms such as [24,28], because these techniques taylet upper bound of (undirected) motion bound without us-
known to be faster than other known methods explainedimg the information of closest direction vector (essentiglly

Sec. 2.

in Eq. 4) and less tight lower bound of distance calculation

CONTACT [24]: As mentioned earlier, CONTACT is based on PQP [17]. As a result, it will have worse perfor-
a continuous version of OBB so that it can handle generitance than ours. In particular, as illustrated in Fig. 6, when



Interactive Continuous Collision Detection for Non-Convex Polyhdti#p:

/lgraphics.ewha.ac.kr/FAST

&/ hovers aboveZs, since the undirected motion boupg 8.
calculated by the dynamic collision checker does not con-
sider the closest direction vector many iterations will be
required to satisfy Eq. 2 to realize that(t) is collision-free.
However, this algorithm is able to handle polygon soups.

9.

10.

7 Conclusion

In this paper, we have presented a highly interactive CCD alk
gorithm for complex, non-convex polyhedra. The algorithm
is based on efficient calculation of motion bound and hi-
erarchical advancement. There are a few limitations in o
algorithm. First of all, our algorithm is applicable to only
2-manifold, polyhedral models, not to polygon soups. Sec-
ondly, the major bottleneck of our algorithm is distance cal-
culation between two non-convex polyhedra, and this algh*

rithm heavily depends on a convex decomposition scheme.

As a result, a high number of convex pieces in the convex.
decomposition can degrade the CCD performance. For fu-
ture work, there are many avenues that we will like to pur-
sue. First of all, we would like to apply our fast CCD algo-
rithm to constraint-based rigid dynamics, 6DOF haptic ren-
dering, and robot motion planning to significantly improves.
their performance. In particular, we expect high performance
improvement from a PRM-based motion planning meth
that requires finding a collision-free path. Finally, we will

like to extend our CCD algorithm to articulated bodies sucts.
as [27]. 10
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