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Abstract We present a highly interactive, continuous colli-
sion detection algorithm for rigid, general polyhedra. Given
initial and final configurations of a moving polyhedral model,
our algorithm creates a continuous motion with constant trans-
lational and angular velocities, thereby interpolating the ini-
tial and final configurations of the model. Then, our algo-
rithm reports whether the model under the interpolated mo-
tion collides with other rigid polyhedral models in environ-
ments, and if it does, the algorithm reports its first time of
contact (TOC) with the environment as well as its associ-
ated contact features at TOC.

Our algorithm is a generalization of conservative advance-
ment [20] to general polyhedra. In this approach, we calcu-
late the motion bound of a moving polyhedral model and es-
timate the TOC based on this bound, and advance the model
by the current TOC estimate. We iterate this process until
the inter-distance between the moving model and the other
objects in the environments becomes below a user-defined
distance threshold.

We pose the problem of calculating the motion bound
as a linear programming problem and provide an efficient,
novel solution based on the simplex method. Moreover, we
also provide a hierarchical advancement technique based on
bounding volume traversal tree to generalize the conserva-
tive advancement for non-convex models.

Our algorithm is relatively simple to implement and has
very small computational overhead of merely performing
discrete collision detection multiple times. We extensively
benchmarked our algorithm in different scenarios, and in
comparison to other known continuous collision detection
algorithm, the performance improvement ranges by a factor
of 1.4∼ 45.5 depending on benchmarking scenarios. More-
over, our algorithm can perform CCD at 120∼ 15460 frames
per second on a 3.6 GHz Pentium 4 PC for complex models
consisting of 10K ∼ 70K triangles.
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1 Introduction

Collision detection (CD) is a problem of testing possible in-
terference between geometric models in space. Many graph-
ics applications require fast and reliable CD to simulate the
physical presence of objects in virtual space. These cover
a wide range of applications such as physically based ani-
mation, virtual environments, virtual characters, geometric
modelling, etc. As a result, CD has been extensively stud-
ied in the literature and many efficient CD algorithms are
known.

At a broad level, depending on how CD algorithms han-
dle the motion of objects, they can be categorized into two
types,discrete CD and continuous CD. Discrete CD algo-
rithms check for interferences between static objects. When
objects are moving, discrete CD algorithms are often called
at fixed time intervals to deal with the motion of objects.
However, it is well known that when objects are moving at
a high speed or objects are thin, discrete CD algorithm can
easily miss a collision between sampled time instances [24].
Meanwhile, continuous CD (CCD) algorithms take the ob-
ject’s continuous motion into account and accurately report
the first time of contact (TOC) between moving objects if
there occurs a collision. Recently, CCD has drawn much
attention from different communities because of the need
for correctly dealing with dynamic nature in applications.
The major strength of using CCD in dynamic applications
lies in a fact that the result of CCD always guarantees non-
penetration between moving objects. For example, in rigid
body dynamics, finding an accurate TOC between simulated
bodies is crucial to enforce non-penetration constraints in
the simulation [3,25], and CCD is directly applicable to find-
ing a TOC. In 6DOF haptic rendering, a recent technique
based on CCD enables God-object type haptic rendering for
object/object interactions thanks to the non-penetration con-
dition imposed by CCD [22]. In sampling-based robot mo-
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tion planning such as probabilistic roadmap method (PRM),
it is crucial to find a continuous, collision free path between
two configurations of a moving robot, and CCD plays an
important role in finding one [28]. However, the major limi-
tation in existing CCD algorithms is that they are, in general,
much slower than discrete CD algorithms. This often limits
the applicability of CCD algorithms to many potential appli-
cations.

1.1 Main Results

In this paper, we present a fast method to perform CCD
between moving, general polyhedra. Our algorithm outper-
forms known CCD methods by utilizing the connectivity in-
formation residing in polyhedra and exploiting the coher-
ence in the continuous motion. Given initial and final con-
figurations of a moving polyhedral model, our algorithm cre-
ates a continuous motion with constant translational and an-
gular velocities, there interpolating the initial and final con-
figurations of the model. Then, our algorithm reports whether
the model under the interpolated motion collides with other
rigid polyhedral models in environments, and if it does, the
algorithm reports its first time of contact (TOC) with the en-
vironment as well as its associated contact features at TOC.

The main ingredient of our algorithm is a generalization
of conservative advancement [20] to general polyhedra. In
this approach, we calculate the motion bound of a moving
polyhedral model and estimate the possible TOC based on
this bound and the inter-distance between the model and
other objects in the environment, and advance the model
by the current TOC estimate. We iterate this process until
the inter-distance becomes less than a user-defined distance
threshold. We pose the problem of calculating the motion
bound as a linear programming problem and provide a novel,
efficient solution based on the simplex method. Moreover,
we also provide a novel, hierarchical advancement technique
based on bounding volume traversal tree to generalize con-
servative advancement for non-convex models.

Our algorithm is relatively simple to implement in the
sense that one needs to make only minor modifications to
existing discrete CD library to implement our algorithm. As
a result, our algorithm has very small computational over-
head of iterating discrete CD multiple times. We extensively
benchmarked our algorithm in different scenarios, and in
comparison to other known continuous collision detection
algorithm, the performance improvement ranges by a factor
of 1.4∼ 45.5 depending on benchmarking scenarios. More-
over, our algorithm can perform CCD at 120∼ 15460 frames
per second on a 3.6 GHz Pentium 4 PC for complex models
consisting of 10K ∼ 70K triangles.

1.2 Organization

The rest of this paper is organized as follows. In Sec. 2, we
briefly survey work relevant to ours. In Sec. 3, we explain

the preliminary concepts to understand our algorithm and
provide an overview of our algorithm. In Sec. 4, we explain
how we efficiently calculate the bound of motion and gener-
alize conservative advancement to general polyhedra in Sec.
5. In Sec. 6, we show the performance results of our algo-
rithm in different benchmarking scenarios and conclude the
paper in Sec. 7.

2 Previous Work

In this section, we give a brief survey of the earlier work
related to continuous collision detection and distance calcu-
lation.

2.1 Discrete Collision Detection and Distance Calculation

Most of the prior work on collision detection has focused on
discrete CD algorithms. We refer the readers to see [18] for
an excellent survey on the field. These include specialized
algorithms for convex polytopes that exploit motion coher-
ence between successive time steps, general algorithms for
polygonal or spline models that pre-compute a spatial parti-
tioning or bounding volume hierarchies (BVH).

Calculating Euclidean distance between polygonal mod-
els has been extensively studied in the literature. For con-
vex polytopes, an efficient theoretical algorithm [8], linear
programming-based approach [29], Minkowski-sum and con-
vex optimization approach [11],Voronoi marchingexploit-
ing motion coherence [19] and multi-resolution approach [9,
13] have been proposed. For non-convex models, typically
BVH has been employed to deal with the non-convexity in
the models. A convex hull tree-based scheme combined with
Voronoi marching has been introduced and shown to work at
highly interactive rates for complex polyhedral models [10].
A hybrid BVH scheme using different types of swept sphere
volumes has been presented to calculate distance between
generic polygonal models [17].

2.2 Continuous Collision Detection

A few algorithms have been proposed for CCD. More specif-
ically, there are five different approaches presented in the
literature: algebraic equation solving approach [6,7,14,23],
swept volume approach [1], adaptive bisection approach [24,
28], kinetic data structures (KDS) approach [2,15,16], and
Minkowski sum-based approach [5]. However, most of these
approaches do not work in real-time or work for only simple
or convex models. Only the adaptive bisection approach has
shown interactive performance for relatively complex polyg-
onal models; however, it is designed to handle models in
polygon soupsand does not take advantage of connectivity
information residing in polyhedral models and motion co-
herence in CCD computations.

Recently, CCD for articulated models have been pro-
posed [26,27]. [26] is applicable to simple, capsule-shaped
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avatar models in VR environments and shows interactive
performance, whereas [27] works for articulated models but
shows only near real-time performance.

3 Overview

We start this section by introducing the notations and def-
initions used throughout this paper. Then, we will briefly
explain the basic idea of conservative advancement (CA)
and distance calculation methods that our CCD algorithm is
based on. Based on these concepts, we provide an overview
of our algorithm later.

3.1 Notations and Definitions

We use a bold symbol to differentiate a vector quantity from
a scalar value (e.g., the origin,o). LetA andB be two poly-
hedron. Without loss of generality, we assume thatA is a
moving object under rigid transformationM andB is fixed
in space since we can find relative rigid transformation with
respect to each other. Further, we assume that the initial and
final configurations ofA are given asq0 andq1 at its cor-
responding time,t = 0 andt = 1, respectively. We useA (t)
as a placement ofA under rigid transformationM at time
t; i.e., A (t) = M(t)A . Then, the problem of CCD can be
formulated as checking whether Eq. 1 is non-empty:

{ t ∈ [0,1] |A (t)∩B 6= /0}. (1)

Furthermore, if Eq. 1 is non-empty, we want to compute the
minimum value oft that satisfies this equation, known as the
time of contact,tTOC.

3.2 Conservative Advancement for Convex Polytopes
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Fig. 1 Conservative Advancement.

The CA is a simple technique that computes an upper
bound of tTOC by repeatedly advancingA by ∆ t toward
B while avoiding collision [20,21]. Here,∆ t is calculated
based on the closest distanced(A (t),B) betweenA (t) and
B, and the upper boundµ of the motion alongd(A (t),B)
traced byA (t) per unit second. More specifically, in Fig.
1, let p be a point onA , and letn be the closest direction
vector that realizesd(A (t),B). Moreover, letµ be an upper
bound of the distance alongd(A (t),B) travelled by anyp

onA per second. Then,A can advance from timet to time
t +∆ t without collision:

µ∆ t ≤ d(A (t),B)

∆ t ≤ d(A(t),B)
µ

(2)

The proof is simple, and we refer the readers to see [21] for
detail.

In Eq.2, the smaller value ofµ or the larger value of
d(A (t),B), the larger CA step size∆ t we can have. Thus,
we need a tight upper bound of motionµ and tight lower
bound of distanced(A (t),B).

Notice, however, that the technique presented in [21] works
only for convex objects. Later in Sec. 5, we will provide
novel techniques to generalize CA to non-convex objects
and also provide a tighter upper bound ofµ by considering
both the linear and rotational motions in Sec. 4.

3.3 Distance Calculation using Convex Decomposition

It is easier to calculate the distance between convex poly-
topes than computing it for general, non-convex polyhedra.
In particular, Voronoi Marching [9,19] exploits motion co-
herence involved in distance calculation and is a good choice
for CA as CA requires repeated calculations of distance and
thus the motion coherence is high between successive com-
putations.

For distance calculation between general polyhedra, a
BVH-based technique usingconvex hull treeis known to
work well [10]. As preprocess, the algorithm decomposes
a given, general polyhedronA into convex piecescA

i and
recursively builds a convex hull tree where each node in the
tree corresponds to a convex hull of its children nodes. Note
that the convex decomposition scheme employed in [10] is
merely surface decomposition in which the union ofcA

i cov-
ers only the boundary ofA , and this is sufficient for distance
calculation.

At run-time, starting from the root nodes of two con-
vex hull trees, the algorithm simultaneously traverses the
two trees while performing Voronoi marching on the tree
nodes and calculating their distance as well as their associ-
ated closest features. The recursive traversal continues un-
til the closest distance cannot be further reduced. This tree
traversal process can be also thought of as implicitly build-
ing a bounding volume traversal tree (BVTT) between two
convex hull trees. The concept of BVTT will be explained
in more detail in Sec. 5.1.

3.4 Our Approach

In our algorithm, we assume that two non-convex polyhedra
A andB are given and only the initial and final configu-
rations ofA are known asq0,q1. As in many applications,
since the actual governing motion ofA is unknown [24], we
use an arbitrary in-between motion that interpolatesq0,q1.
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As a result, we can express a continuous motionM(t) in
terms of time that governs the motion ofA .

In order to findtTOC between non-convex polyhedraA
and B, a naive approach based on convex decomposition
and CA can be devised as in Alg. 1.

Algorithm 1 Naive CCD using Convex Decomposition
Input: A moving polyhedronA and its initial and final con-
figurationsq0,q1, a fixed polyhedronB.
Output: CalculatetTOC.
1: As preprocess, decomposeA andB into convex pieces,cA

i ,cB
j ,

as in [10].
2: Compute an interpolating motionM(t) from q0,q1.
3: repeat
4: for each pair of convex pieces(cA

i ,cB
j ) do

5: Calculate their distanced(cA
i ,cB

j ) using [9] and find their
closest direction vectorn.

6: Calculate the motion boundµ of cA
i usingn.

7: Calculate∆ ti, j =
d(cA

i ,cB
j )

µ
based on Eq. 2.

8: end for
9: Find ∆ t := min(∆ ti, j ).

10: AdvanceA (t) by ∆ t.
11: until d(A (t),B) becomes less than a user-provided threshold
12: return tTOC

There are two severe problems in Alg. 1, however. First
of all, if the numbers of convex pieces inA ,B areηA ,ηB,
each CA step (step 4) requiresO(ηA ηB) time. Addition-
ally, the motion boundµ (step 6) can become overly con-
servative and many CA steps (step 11) would be required.
These two problems can result in poor performance of the
naive algorithm. To address the first issue, instead of cal-
culating the distance between decomposed convex pieces of
A ,B, we calculate the distance betweenA ,B themselves
using the technique presented in Sec. 3.3 and remember the
nodes in convex hull trees that realize this distance, called
front nodes. The union of these nodes is a super set of the
union of convex pieces thanks to the convex hull property of
convex hull tree. Notice that the distance between the front
nodes has been already calculated during the BVH traversal
scheme in Sec. 3.3. We perform CA only to these front nodes
(Sec. 5). Moreover, to efficiently calculateµ between these
front nodes, we take the closest vector directionn between
the nodes and project its translational and rotational motion
onton (Sec. 4). Overall, our algorithm works as in Alg. 2.

4 Motion Bound Calculation

Since our algorithm does not assume a closed form of the
continuous motion of a moving object, we first explain how
we model the continuous motion when only its initial and
final configurations are given, and also show how we can
efficiently calculate the motion boundµ of a moving object
under such a motion.

Algorithm 2 CCD using Hierarchical Advancement
Input: A ,B andq0,q1
Output: CalculatetTOC.
1: As preprocess, decomposeA andB into convex pieces and con-

struct their convex hull trees,CHTA ,CHTB .
2: Compute an interpolating motionM(t) from q0,q1.
3: repeat
4: Calculate d(A (t),B) between A (t) and B using

CHTA ,CHTB and remember the pairs of front nodeshA
i ,hB

j

in the trees that were traversed to calculated(A (t),B). During
the traversal,d(hA

i ,hB
j ) and closest direction vectorn(i, j) are

stored{Alg. 3 in Sec. 5}.
5: for each pair of(hA

i ,hB
j ) do

6: Retrieve already calculatedd(hA
i ,hB

j ) andn(i, j).
7: Calculate the motion boundµ(i, j) by projecting both the

translational and rotation motion ofhA
i onton(i, j).

8: Calculate∆ ti, j =
d(hA

i ,hB
j )

µ(i, j) .
9: end for

10: Find ∆ t := min(∆ ti, j ).
11: AdvanceA (t) by ∆ t.
12: until d(A (t),B) becomes less than a user-provided threshold
13: return tTOC

4.1 Motion Interpolation

In many applications involving motion such as physically
based animation, rapid prototyping, virtual environments and
robot motion planning, its governing motion is often either
unknown or cannot be represented as a closed form. This
is because the motion employed in these application is con-
trolled interactively by a user [24], or purely random [28],
or should be calculated numerically [4]. Therefore, in our
CCD algorithm, we only assume that the initial and final
configurations ofA are known (q0,q1), and need to find a
continuous, rigid motionM that interpolatesq0,q1. We fur-
ther assume thatq0 is collision-free; otherwise, we trivially
report thattTOC is zero by performing discrete CD atq0.

Different types of interpolation motions have been used
in other CCD algorithms: screwing motion [14,24], ballis-
tic motion [21] and linear motion in configuration space [28,
5]. In our case, we choose the linear motion with constant
translational and angular velocities because of its simplic-
ity. In fact, some application such as robot motion planning
requires linear motion in configuration space [28].

Let us represent the configurationsq0,q1 as their transla-
tional (T) and rotational components (R): q0 =(R0,T0),q1 =
(R1,T1). We want to represent the interpolating motionM(t)
at timet as:

M(t) =
(

R(t) T(t)
(0,0,0) 1

)
(3)

Then,

T(t) = T0 + tv
R(t) = cos(ωt).A +sin(ωt).B+C
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Here,v = T1−T0 is the constant translational velocity of
the center of mass (COM) ofA . Furthermore,

A = R0−uuT .R0

B = u∗.R0

C = uuT .R0

Here,(u,ω) is the constant angular velocity ofA , extracted
from R1R−1

0 andu∗ is the skew symmetric matrix; i.e., if
u = (ux,uy,uz)T , then

u∗ =

 0 −uz uy

uz 0 −ux

−uy ux 0



4.2 Motion Projection

Given the interpolating motion,M(t), now we explain a novel
technique of how we can calculate the tight upper boundµ

of motion. For now, we assume that both the movingA and
fixed objectsB are convex, and the motion bound calcula-
tion technique explained here will be applied to non-convex
objects in Sec. 5 by decomposingA ,B into convex objects,
calculating the motion bound for each convex pair, and tak-
ing its minimum.

Let pi be a point onA , and asA undergoesM , pi will
trace out a trajectorypi(t) in 3D Euclidean space. Consider
its velocity ṗi(t) = v + ω × r i(t), wherev,ω are the linear
velocity of the center of mass (COM) and angular velocity
of A , respectively, andr i = pi −RCOM whereRCOM is the
position of the COM. Notice thatv,ω are constant between
the time interval of[0,1] in our case. Then, theundirected
motion boundµu of A can be expressed as:

µu = max
i

∫ 1

0
||ṗi(t)||dt (4)

µu can be an upper bound of motion that Eq. 2 uses, but
we get a tighter upper boundµ by projectingpi(t) onto n,
which is the closest direction vector betweenA andB:

max
i

∫ 1

0
|ṗi(t) ·n|dt

≤ max
i

∫
|v ·n+ω × r i ·n|dt

≤ |v ·n|+max
i

∫
|ω × r i ·n|dt

≤ |v ·n|+
∫

max
i

(|ω × r i ·n|)dt

≤ |v ·n|+max
i,t

(|ω × r i ·n|)

= µ

Sincev,n,ω are constants during the time interval of∆ t,
calculatingµ boils down to maximizing|ω× r i ·n|. Further,
it is equivalent to maximizing|(n×ω) · r i | since(ω × r i) ·
n = (n×ω) · r i . Moreover, becausen×ω = c1 is a constant

andr i exists only on the surface of a convex polytope, max-
imizing |c· r i | becomes a linear programming problem. As a
result, we have:

µ = max
i
|c1 · r i |+c2 (5)

subject tor i ·nk ≤ dk,k = 1. . . |A |
wherec1 = n×ω, c2 = |v ·n|, and|A | is the number of faces
in a convex polytopeA , andx ·nk = dk is the plane equation
for thekth face inA .

There are many known methods to efficiently solve the
linear programming in Eq. 5 [29]. In particular, the simplex
method or thehill climbing methodworks well in this simple
case. The main idea is, given a query directionc1, we want to
find a vectorr i on the surface of a convex polytopeA whose
direction is closest to the direction ofc1. This type of query
is also known as support mapping ofc1 [30] or extremal ver-
tex query alongc1 [9]. A simple method that works well in
practice is the use of a lookup table as presented in [9]. In
this approach, we sample the possible directions ofc1, and
precalculate its extremal vertexr i , and store their associa-
tions in a lookup table. At run-time, givenc1, we look up the
closest vector̂c to c1 in the table and use its associated ex-
tremal vertex as a starting point in the hill climbing to further
maximize Eq. 5.

5 Hierarchical Advancement

By plugging µ in Eq.5 into the step (6) in the naive CCD
algorithm, Alg. 1, we can devise a CCD algorithm for non-
convex polyhedra and accelerate its performance consider-
ably. However, due to the quadratic complexity ofO(ηA ηB)
in Alg. 1, the algorithm does not scale well to complicated
non-convex models.

In this section, we present a novel, efficient scheme based
on the concept of bounding volume traversal tree (BVTT)
that can handle the quadratic complexity in Alg. 1. Now
we relax the convexity restrictions ofA ,B and assume that
they are non-convex polyhedra.

5.1 Bounding Volume Traversal Tree

As preprocess, our algorithm decomposes each of the given
non-convex polyhedra into convex pieces, and recursively
builds a bounding volume hierarchy (BVH) where each BV
node corresponds to the convex hull of its children nodes
(i.e., convex hull tree), as explained in Sec. 3.3.

Given two BVHs (CHTA ,CHTB) of A ,B, when we
calculate the distance betweenA ,B at given timet, start-
ing from the root nodes ofCHTA ,CHTB, pairwise distance
calculation between the nodeshA

i ,hB
j in CHTA ,CHTB is

recursively performed based on Voronoi marching. Each re-
cursion step requires distance calculationd(hA

i ,hB
j ) between

some pair of nodeshA
i ,hB

j in CHTA ,CHTB, andd(hA
i ,hB

j )
is compared to the global minimumd of previously calcu-
latedd(hA

k ,hB
l )’s during the recursion. Ifd(hA

i ,hB
j ) < d,
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the recursive traversal forhA
i ,hB

j continues; otherwise, it
stops.

Front

BVTTCHTA CHTB

Fig. 2 Bounding Volume Traversal Tree. Two BVHs and their BVTT
during distance query. Only solid-colored nodes are actually generated
in BVTT.

The bounding volume traversal tree (BVTT) is a special
recursion tree generated during the distance query, as illus-
trated in Fig. 2. BVTT was originally introduced by [17] to
measure the cost of a BVH traversal scheme. In our case,
each nodeh(i, j) in a BVTT corresponds to a pair of convex
hull nodeshA

i ,hB
j . Furthermore,d(hA

i ,hB
j ) and the clos-

est direction vectorn(i, j) that realizesd(hA
i ,hB

j ) are also
stored ath(i, j). The front in a BVTT refers to a collec-
tion of the leaf nodes in the tree, generated during the dis-
tance query at run-time. In practice, the size of front is much
smaller than the size of all possible combinations between
convex pieces inA ,B. We take advantage of this fact to
reduce the quadratic complexity in Alg. 1. Algorithms for
distance calculation between non-convex polyhedra as well
as building its corresponding BVTT are explained in Alg. 3.

Algorithm 3 BVTT
Input: BVH nodeshi ,h j , Current distancedCurrent
Output: Return the closest distanced(hi ,h j)
1: {Initially, BVTT(CHTA .root,CHTB .root,∞) is called.}
2: {A BVTT nodeh(i, j) is created.}
3: Perform Voronoi marching onhi ,h j to findd(hi ,h j ) and its closest

vectorn(i, j).
4: if d(hi ,h j ) < dCurrent then
5: if h j is not a leaf node inCHTB then
6: d1 = BVTT(hi , h j .LeftChildTree).
7: d2 = BVTT(hi , h j .RightChildTree).
8: return min(d1,d2).
9: else ifhi is not a leaf node inCHTA then

10: d1 = BVTT(hi .LeftChildTree,h j ).
11: d2 = BVTT(hi .RightChildTree,h j ).
12: return min(d1,d2).
13: else
14: {Mark h(i, j) as front andn(i, j) is stored at it.}
15: return d(hi ,h j )
16: end if
17: else
18: {Mark h(i, j) as front andn(i, j) is also stored at it.}
19: return d
20: end if

5.2 Conservative Advancement for General Polyhedra

Based on the BVTT, we can devise an efficient hierarchi-
cal algorithm to perform CA between non-convex polyhedra
A ,B. The main idea of this method is based on the follow-
ing observations:

1. The union of the front nodesh(i, j) in BVTT is a superset
of the union of all the pairwise combinations of convex
pieces(cA

i ,cB
j ) in A ,B.

2. The front nodesh(i, j)’s are the nodes that are discovered
during closest distance query, so that these nodes have a
higher probability than other convex nodes in BVTT to
be collided attTOC or to be reused for successive distance
query at next CA step.

The observation (1) guarantees that our algorithm based
on performing CA on the front is conservative. Thanks to
the observation (2), our algorithm is not overly conservative
and as experimentally shown in Sec. 6, it is quite efficient in
practice (i.e., few CA iterations). In fact, the observation (2)
has been similarly used in discrete distance query when high
motion coherence exists. In other words, thewitness convex
piecesthat realize closest distance at time stept tend to be a
witnesses again for the next time stept +∆ t when the under-
lying motion has high coherence [10]. In our case, since our
algorithm requires successive invocation of CA steps, it has
a similar effect of having high motion coherence and thus
the observation (2) is sound.

Based on the aforementioned observations, our algorithm
applies an atomic, convex CA operation to each nodeh(i, j)
in the front, estimates its individual time of contact∆ tTOC(i, j),
and takes its minimum as∆ tTOC. Then, we advanceA by
∆ tTOC and iterate another CA step untild(A (t),B) becomes
smaller than a user-provided distance threshold. Finally, at
tTOC, we perform one-time discrete distance query to find all
the relevant contact features such as face/vertex and edge/edge.
This algorithm has been summarized earlier in Alg. 2. The
major strength of our hierarchical CA algorithm can be also
summarized as follows:

– The main bottleneck in Alg. 2 is the computation ofd(hA
i ,hB

j )
andn(i, j). However, these are already calculated as part
of distance calculation betweenA andB, as presented
in Alg. 3. As a result, the hierarchical CA has very little
overhead over discrete distance calculationd(A (t),B)
at timet.

– Typically, since the size of the front nodes is small, the
step (5) in Alg. 2 has a much lower number of iterations
compared toO(ηA ηB).

6 Results and Discussions

Now we present our implementation results and discuss its
performance.
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Fig. 3 Benchmarking Models. From left to right, bunny (70K tri.), Santa (37K tri.), torus-knots (2.8K, 11K, 34K tris.), a ring (10K tri.).

6.1 Implementation Results

We have implemented our CCD algorithm using C++ on
Windows XP, equipped with Intel P4 3.6GHz CPU and 2GB
main memory. We have used a public-domain proximity li-
brary, SWIFT++1 for distance calculation and convex de-
composition for non-convex polyhedra, and have modified
it to serve our purpose. We also take advantage of the ex-
tremal vertex query function provided in SWIFT++ to im-
plement Eq. 5. Thus, in some sense, our implementation can
be considered as a continuous version of SWIFT++.

6.2 Benchmarking

In order to measure the performance of our algorithm, we
employ different benchmarking models in various complex-
ities (ranging from 10K to 70K triangles) as shown in Fig.
3. These models are highly non-convex, and we use them in
different benchmarking scenarios as below. The user-controlled
threshold of distance to findtTOC is 0.001 throughout all the
experiments.

1. Santa vs Thin Board(Fig. 4): Given two configurations
of q0,q1 of a highly non-convex Santa model with 37888
triangles, separated by approximately 5 times the bound-
ing box size of Santa, a board (12 triangles) is initially
located belowq0. By varying the position of the board
towardq1, we calculatetTOC of the Santa model when it
tries to reach fromq0 to q1. In the figure, the red, blue,
and green Santas denote the Santa model at configura-
tions,q0,q1,q(tTOC), respectively.

2. Bunny vs Bunny (Fig. 5): Each bunny consists of 69664
triangles. As shown in the figure, 5, one of the bunny is
shot from a random configurationq0 (red) toward a ran-
dom configurationq1 (blue) against a fixed bunny (yel-
low) with constant translational and angular velocities.
We perform this test for more than 250 trials, and be-
tween [0,100] steps of the test trial,q1 has only trans-
lation relative toq0. Afterwards, plus the translational
motion,q1 hasπ

3 rotation aroundX axis plusπ

3 rotation
aroundY axis relative toq0.

3. Torusknot vs Torusknot (Fig. 7): It is similar to the
bunny vs bunny benchmarking scenario . However, in-
stead, we use torus-knots in different complexities, 2880,
11520 and 34560 triangles.

1 http://www.cs.unc.edu/ geom/SWIFT++

4. Rigid Body Dynamics for Bunnies(Fig. 8-Left): Using
HAVOKTM2, we perform rigid body dynamics to simu-
late the falling of a red bunny against a blue one, each
consisting of 26K triangles, due to gravity. Each simula-
tion step providesq0,q1 of the blue moving bunny, plug
these into our CCD algorithm, and measure the perfor-
mance. Moreover, in order to create artificial interpene-
tration atq1 from this simulation (the simulation itself
is collision-free all the time), we slightly modify theq1
before impact, and thus we can ask our CCD algorithm
to find tTOC.

5. Rigid Body Dynamics for Rings(Fig. 8-Right): We con-
duct similar dynamics experiments for a ring consisting
of 10K triangles.

The resulting performance of our algorithm, named as
FAST3, for the above benchmarks is shown in Fig.’s 4, 5, 7
and 8: it includes timings (in milli-seconds) and the num-
ber of CA iterations of our algorithm (FAST). We also mea-
sure the performance of a known CCD method, CONTACT
[24], for each benchmarking scenario and compare it with
ours. CONTACT can be thought of as a continuous version
of the OBB algorithm [12] and uses a screwing formula-
tion for motion interpolation. As a result, our algorithm and
CONTACT do not perform the exactly same CCD opera-
tion but both of the algorithms are able to calculatetTOC as
well as contact features. In our benchmarking scenarios, our
approach outperforms CONTACT by a factor of 1.4∼ 45.5
depending on benchmarking scenarios.

6.3 Analysis

Now we briefly analyze the computational complexities of
our algorithm (Alg. 2). For each CA step (4-12),

– The complexity of step (4) is contact-dependent, and in
the worst case, it can takeO(|A ||B|) where |A |, |B|
are the number of faces inA ,B, respectively. However,
in practice, its computational cost is much lower than the
quadratic complexity, since our implementation based on
SWIFT++ utilizing BVH and high motion coherence be-
tween successive CA iterations. The use of motion co-
herence is made possible thanks to the technique known
asfront tracking[10].

2 http://www.havok.com/
3 It is available to download fromhttp://graphics.ewha.ac.kr/FAST
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Fig. 4 Benchmarking 1: Santa vs Thin Board. The average CCD query
performance is 15460 FPS.

– The number of loops in step (5) is also contact-dependent,
and in the worst case, it isO(ηA ηB). Inside the loop,
the step (7) of performing motion bound is dominated by
the linear programming required by Eq. 5. In the worst
case, linear programming can take a linear time in terms
of the number of faces in a convex hull node,hA

i . How-
ever, since we are using a table lookup-based method, in
practice, this operation takes an almost constant time.

Bounding the number of CA steps is in general quite
difficult since there are many parameters involved with this
computation such as the relative configurations ofA ,B, the
initial and final configurationsq0,q1 of A , the distance and
contact features. However, based on our experiments, the
typical number of iterations is 4 on average.

6.4 Comparison

We qualitatively compare the cons and pros of our CCD al-
gorithm with other methods, in particular bisection-based
algorithms such as [24,28], because these techniques are
known to be faster than other known methods explained in
Sec. 2.

CONTACT [24]: As mentioned earlier, CONTACT is
a continuous version of OBB so that it can handle generic

0 50 100 150 200
0
2
4
6
8
0

20

40

60

0
20
40
60
80

100
120

0
20
40
60
80

100
120
140
160

FAST: Number of Iterations

Simulation Step

FAST: Number of Contacts

FAST: Time (milliseconds)

CONTACT: Time (milliseconds)

Fig. 5 Benchmarking 2: Bunny vs Bunny. The average CCD perfor-
mance is 125 FPS.
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n

Fig. 6 A is hovering aboveB.

polygon soups unlike ours. However, it has two problems:
1) the continuous OBB test can be overly conservative when
the underlying motion has large rotations, 2) CONTACT does
not perform adaptive bisection such that it may suffer from a
large number of bisection steps especially when objects are
far apart. In our CCD algorithm, even though the motion has
large rotation, our motion projection technique can handle
such a case. Moreover, by taking advantage of the closest
direction vector, our algorithm performs fewer advancement
iterations.

Dynamic Collision Checker [28]: The dynamic colli-
sion checker performs similarly to our CCD algorithm in
that it relies on motion bound calculation and distance calcu-
lation. Compared to ours, however, the algorithm has a less
tight upper bound of (undirected) motion bound without us-
ing the information of closest direction vector (essentiallyµu
in Eq. 4) and less tight lower bound of distance calculation
based on PQP [17]. As a result, it will have worse perfor-
mance than ours. In particular, as illustrated in Fig. 6, when
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A hovers aboveB, since the undirected motion boundµu
calculated by the dynamic collision checker does not con-
sider the closest direction vectorn, many iterations will be
required to satisfy Eq. 2 to realize thatA (t) is collision-free.
However, this algorithm is able to handle polygon soups.

7 Conclusion

In this paper, we have presented a highly interactive CCD al-
gorithm for complex, non-convex polyhedra. The algorithm
is based on efficient calculation of motion bound and hi-
erarchical advancement. There are a few limitations in our
algorithm. First of all, our algorithm is applicable to only
2-manifold, polyhedral models, not to polygon soups. Sec-
ondly, the major bottleneck of our algorithm is distance cal-
culation between two non-convex polyhedra, and this algo-
rithm heavily depends on a convex decomposition scheme.
As a result, a high number of convex pieces in the convex
decomposition can degrade the CCD performance. For fu-
ture work, there are many avenues that we will like to pur-
sue. First of all, we would like to apply our fast CCD algo-
rithm to constraint-based rigid dynamics, 6DOF haptic ren-
dering, and robot motion planning to significantly improve
their performance. In particular, we expect high performance
improvement from a PRM-based motion planning method
that requires finding a collision-free path. Finally, we will
like to extend our CCD algorithm to articulated bodies such
as [27].
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Fig. 7 Benchmarking 3: Torusknots vs Torusknots in different Complexities. 2.8K, 11K, 34K triangles from left to right. The average CCD
query performance is 1055, 449, 188 FPS, respectively.
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