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Abstract Although general purpose computation on

graphics processing unit (GPGPU) technologies are avail-

able even on GPUs, its performance has been seriously

affected by the underlying dynamic voltage and fre-

quency scaling (DVFS) mechanism of GPU. In order

to save the energy, eventually prolonging the battery

life, the DVFS adjusts the GPU’s frequency accord-

ing to the past utilization. When the GPU processes

graphic tasks only, it is enough to process them within

a fixed time (typically 30∼60 frames per second), so

the DVFS parameters can be conservatively set. How-

ever, in GPGPU case, the GPU should process them

at much higher rates depending on applications. Al-

though a modification to DVFS parameters may im-

prove the GPGPU performance, the energy efficiency is

sacrificed, and the performance of graphic tasks is af-

fected, as these parameters are shared by both graphic
and GPGPU tasks. In order to improve the GPGPU

performance without influencing the graphic performance,

we devise the new GPGPU-Perf algorithm that adjusts

the DVFS parameters such as thresholds and an in-

terval. The new algorithm controls the frequency more

intelligently for mobile GPGPU applications, and thus

the performance over energy increases by 1.44 times

with no influences to graphic tasks and any modifica-

tions of GPGPU algorithms. To the best of our knowl-

edge, this paper is the first work that proposes a GPU

DVFS algorithm for GPGPU applications.
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1 Introduction

For the last five years, mobile devices such as smart-

phones and tablets have been ubiquitous, and the re-

lated hardware including GPUs has been significantly

improved. On the display side, the resolution of Nexus

One was WVGA (800×480) in 2010, but those of Nexus

4 and Nexus 10 became WXGA (1280×768) and WQXGA

(2560×1600) in 2012. This implies that the amount of

graphically processed data has increased by approxi-

mately 2.56 times and 10.67 times in each case. In order

to quickly process the huge amount of graphic data, a
mobile GPU has been considered very more important

and its hardware has improved accordingly as a result.

With these hardware improvements, the programmable

kernel of OpenCL [8] enables the use of GPU for gen-

eral computation besides conventional graphic process-

ing. In order to utilize the GPU for more general pur-

poses, many researches have been conducted in numer-

ous areas but most of these efforts are made on desktop,

discrete GPUs, not on mobile GPUs, which has quite

different characteristics from desktop counterparts; an

obvious and notable example includes an issue of energy

consumption on mobile GPUs.

There are a large number of successful GPGPU works

on the desktop side. For instance, GPGPU is used for

creating a visual model from multiple images [4], and

quickly solving the image matting problem [7]. The con-

struction of distance fields is accelerated by 35-64 times

over a serial CPU implementation [11]. A collision-detection

algorithm is accelerated by a factor of 71 times over the

CPU Bullet Library [10]. In computer vision, the per-
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formance of SIFT algorithm is accelerated by 4-7 times

over an optimized CPU version, and by 6.4 times over

a published GPU implementation with 87 percent re-

duced energy consumption [16]. GPGPU can be also

used for accelerating feature extraction [1].

Although many researches have been conducted to

successfully improve the GPGPU performance in the

above fields, the energy saving in these applications

an important factor in mobile applications. This en-

ergy saving factor is very significant for mobile devices

because the energy of a mobile device is supplied by

a battery with a limited capacity, but, unfortunately,

the battery technologies grow relatively slowly. As a re-

sult, various researches have been proposed for energy

savings on mobile devices, and the DVFS technologies

have been adopted to the GPU. The dynamic voltage

and frequency scaling (DVFS) adjusts the GPU’s fu-

ture voltage and frequency based on the past utilization

or some signatures of processing tasks, and maintains

them during the next time period to process the tasks

more efficiently. As an example, if the GPU processed

a lot of works during the last time interval, the DVFS

increases the frequency and the voltage under the as-

sumption that there will be also a lot of works generated

in the future. This DVFS technology reduced GPU’s

energy consumption by 14.4% [9] in the GPGPU-Sim

simulator [2], and reduced 19.28% energies with a little

cost of no more than 4% performance loss [18].

There are many parameters to adjust with DVFS.

The ratio between energy saving and performance in-

crease, and the thresholds for increasing/ decreasing

a frequency are among these configurable parameters.

Compared to the number of graphic applications, GPGPU

applications, not to mention of the killer applications,

are relatively scare in the current market. Thus, the

above DVFS parameters are usually determined in a

graphic-centric way. Since 30 ∼ 60 FPS is enough for

typical graphic applications, these existing graphics-

centric DVFS parameters do not work well for GPGPU

applications, as GPGPU applications require higher per-

formance rates, hindered by a low frequency.

Our paper offers the following major contributions

to GPGPU DVFS research. First, we provide the rea-

sons and make a case of why the GPGPU DVFS should

be different from the conventional DVFS for graphic ap-

plications. Second, we propose four novel strategies for

efficient GPGPU- based DVFS targeted toward mobile

applications, and measure their performance improve-

ment and energy consumption. Third, we show that ap-

plications’ performance/energy improvements by each

strategy are affected by their characteristics. Finally,

we propose a new GPGPU-Perf algorithm that inte-

grates the four strategies and can improve the low per-

formance problem of mobile GPGPU applications due

to the graphic-oriented setting, and verify its effective-

ness for different GPGPU applications by measuring

the performance increase over the energy consumption

increase, which can lead up to 1.44.

This paper is organized as follows: Section 2 de-

scribes DVFS; Section 3 mathematically models an interval-

based DVFS algorithm and describes its problem; Sec-

tion 4 describes our GPGPU-based DVFS strategies

without sacrificing the performance of graphic applica-

tions; Section 5 implements and discusses them; Section

6 draws a conclusion.

2 Dynamic Voltage and Frequency Scaling

In order to utilize a battery for a long period of time, a

mobile device should reduce energy consumption while

maximizing performance. There are various technolo-

gies for such a purpose, and the dynamic voltage and

frequency scaling (DVFS) is one of them. Its basic idea

can be captured well by the following Eq. 1 [14]:

E = Pt = cV 2Ft, (1)

where E is the consumed energy, P is the consumed

power, c is a constant specific for the target device, F

is the operating frequency, V is the required voltage

for the frequency and t is the time period during which

both the frequency F and the voltage V are maintained.

The voltage, V , is not directly proportional to the fre-

quency, F . However, as the frequency becomes higher,

the required voltage also becomes higher for the de-

vice’s stable operation. Thus, as the frequency becomes

higher, the consumed power and energy also increase

significantly higher. Thus, it is very important to find

only the required frequency and voltage that an appli-

cation requires, so that the consumed energy can be

minimized, according to Eq. 1.

Using this simple idea, the DVFS dynamically scales

up and down the voltage and frequency according to ap-

plication’s predicted workloads. A predicted-high work-

load requires high frequency to satisfy the application’s

performance requirements which in turn increases en-

ergy consumption.

Many DVFS algorithms to properly predict applica-

tions’ workloads have been proposed originally on the

CPU side. These can be largely classified into three cat-

egories: interval-based, inter-tasks, and intra-tasks algo-

rithms [3]. Interval-based algorithms periodically mea-

sure how much busy a device is during the given time

(i.e. utilization), and set the next voltage and frequency

based on the current measurement of utilization. The
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utilization, Ui, can be formulated by Eq. 2 when Ti is

a time interval at time frame i, and the GPU spends

time, wi, for working.

Ui =
wi

Ti
(2)

When n is the window size, the next utilization Ui+1

at time i+ 1 is predicted using Eq. 3.

Ui+1 =
1

n

n−1∑
j=0

Ui−j when i ≥ n− 1 (3)

The current frequency will be adjusted after the

averaged utilization Ui+1 in Eq. 3 is compared to a

pre-determined threshold. As choices for a DVFS al-

gorithm of the CPU, the current Linux implementation

includes many governors such as Performance, Power-

save, Userspace, On-demand, Conservative and Inter-

active. On-demand, conservative and interactive gover-

nors are interval-based algorithms, typically with n = 1

[15].

The DVFS algorithm is executed at every periodic

DVFS event according to the sequences shown in Fig.

1. The DVFS event is periodically triggered by a ker-

nel timer. The algorithm in Fig. 1 investigates the past

utilization, and predicts the next utilization. If the pre-

dicted utilization is higher than the pre-determined thresh-

old, then the kernel increases both the frequency and

the voltage; otherwise the kernel decreases them. The

pre-determined thresholds include up/down-thresholds

that serve as a basis for increasing/decreasing the fre-

quency. For utilization locating between the up-threshold
and down-threshold, the kernel maintains the past fre-

quency.

Inter-task algorithms investigate source codes, dy-

namically profiled the data or the hardware performance

counter, and determine the frequency based on these

values. The signature-based algorithm is an inter-task

algorithm that maintains a global table to include sig-

natures and an anticipated workload. A signature is

mapped to a workload. As signature information for

the GPU, an average triangle area, a triangle count, an

average triangle height and a vertex count are used in

[13]. By relying on these information, the correspond-

ing workloads are looked up, and the voltage and the

frequency are set accordingly.

The intra-task algorithms monitor a single task or

a process, and determines the frequency based on it.

In [6], a program’s execution time is decomposed into

two parts: on-chip computation and off-chip access la-

tencies. The frequencies of a GPU and a memory are

determined based on the ratio between them.

Fig. 1 Processing sequences within a single DVFS event

These DVFS technologies have been actively researched

for more than 10 years mostly on the CPU side, and

have been already applied to many existing CPU sys-

tems. But, there are very few DVFS researches on the

GPU. Furthermore, most of proposed DVFS algorithms

for GPUs use a graphics-specific information in order

to adjust the GPU’s frequency and voltage. We only

find that the works in [3] and [12] might be possibly

applied to GPGPU applications. However, both [3] and

[12] focus only on saving energy, whereas our work focus

on the performance increases of GPGPU applications

while minimizing the energy increases. In this paper,

we will use interval-based algorithms because it is most

popular and included in most GPU kernel drivers.

3 Problem Formulation

This section describes a mathematical model of an interval-

based DVFS algorithm for mobile GPGPU applications

with n = 1 in Eq. 2. We propose the case of n = 1

because it is the simplest form of interval-based algo-

rithms and has been most widely used in the fields. We

also discuss the tracking results of GPU utilizations and

frequencies with an existing interval-based DVFS algo-

rithm.

3.1 Ideal DVFS Algorithm

In this section, we assume that the voltages and the

frequencies are reversely sorted in their own sets; F k
i

represents the kth member in the sorted set of available

frequencies is used at time i, and V k
i , which is the kth

member in the sorted set of available voltages.
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And, the next frequency Fi+1 is determined based

on the current utilization Ui in Eq. 4 with a conser-

vative governor that increases/ decreases the frequency

by a single step. The next voltage Vi+1 is determined

by the frequency Fi+1. In Eq. 4, HD and HU are the

down and up thresholds for decreasing and increasing

the frequency. In other words,

Fi+1 =

{
F k+1
i , if Ui < HD

F k−1
i , if Ui > HU

(4)

In Eq. 4, the one-step higher frequency, F k−1
i than

the one at time i, is used at time i+1, and the one-step

lower frequency, F k+1
i is used. The final goal of DVFS

is to find the best Fi that is proportional to Ui.

Fi ∝ Ui (5)

In this ideal case as in Eq. 5, a higher GPU uti-

lization at time i guarantees a higher frequency at the

time. If so, the energy is not unnecessarily consumed by

the application. However, an interval-based algorithm

guarantees only Eq. 6, instead.

Fi ∝ Ui−1 (6)

In the above Eq. 6, a higher utilization at time i

does not guarantee a higher GPU frequency Fi at time

i, but Ui−1 at time i− 1 does. Thus, the interval-based

algorithm greedily approximates the ideal case of Eq. 6,

which can cause some problems. We will demonstrate

this problem in the next section.

3.2 Interval-based DVFS Algorithm

In order to describe a problem of the current interval-

based DVFS algorithm with n = 1, we use an applica-

tion called SmallptGPU on Odroid XU3 that embeds

an interval-based DVFS mechanism in it. This applica-

tion is an open source ray tracing application that uses

a Monte Carlo technique, and calculates every pixel

through OpenCL and draws the calculated pixels into

a screen as shown in Fig. 2. The Odroid XU3 will be

described more in Section 5.

We plot the history of utilizations and frequencies

for 30 DVFS events in Fig. 3 while running the Small-

ptGPU. By default, HD is 60, and HU is 85 in this

experiment. For a fair comparison with normalized uti-

lization, the current frequency is normalized to 100%,

divided it by the maximum frequency.

In Fig. 3, the blue line is the utilization, and the red

line is the frequency. In this experiment, the tracking

result of the red line is not matched well with that of

the blue line. The frequency changes follow the utiliza-

tion changes one step behind. The Fig. 3 means that

a high frequency is not used even when the applica-

tion needs a high performance. The high performance

with low energy consumption can be expected if we can

match both lines. The next section will describe our

new strategies and a new algorithm to address these

utilization changes.

4 DVFS Strategies for Mobile GPGPU

Applications

Graphics applications should display their contents at

an interactive rate to users (i.e. 30 FPS ∼ 60 FPS).

This means that the GPU should finish drawing at least

within 16.67 milli-seconds ∼ 33.33 milli-seconds. This

again means that there are no big differences to users if

the GPU finishes its drawing within 1 milli-seconds or

33.33 milli-seconds. But, GPGPU applications do not

have such loose time limitations. It is always good that

GPGPU applications finish their calculations as early

as possible, which is the main purpose of using GPU

for GPGPU applications in the first place.

To maximize the performance of GPU, we may sim-

ply set the maximum frequency while running GPGPU

applications. However, some applications are memory-

intensive inside their OpenCL kernels. Therefore, the

GPU’s maximum frequency may act less effectively to

increase the performance. In this case, the memory fre-

quency should be also adjusted for maximum perfor-

mance. In addition, most graphic applications have both

graphic and computing tasks interwined and each core

can process a different type of tasks. Setting the max-

imum frequency for GPGPU-processing cores causes

unnecessary energy consumption for graphic-processing

cores because per-core DVFS is not widely available for

a mobile GPU, yet.

This section describes our four novel DVFS strate-

gies and a new integrated algorithm to increase mobile

GPGPU performance. Each strategy is proposed based

on the following problems of the earlier graphics-centric

DVFS techniques. First, the frequency is set very low

in the beginning of DVFS time interval when applica-

tions start executing OpenCL kernels, so the GPU pro-

cesses tasks poorly. Second, the thresholds for GPGPU

tasks are determined by graphic applications, which

may have totally different characteristics from GPGPU.

Third, slow frequency changes can not catch up with

abrupt utilization changes.
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Fig. 2 SmallptGPU application
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Fig. 3 The changes of utilizations and frequencies of SmallptGPU over 30 DVFS events

4.1 New DVFS Programming Interfaces

When an application tries to execute an OpenCL ker-

nel, the GPU frequency is very low in many cases be-

cause it might be in an idle state or has only light-

weight graphic tasks. So, we divide the applications’

phase into a normal phase and a GPGPU phase. The

normal phase represents a status that the GPU has no

computing tasks assigned but graphic tasks still may be

present, and the GPGPU phase represents the opposite.

During the normal phase, the conventional interval-

based DVFS proceeds. In case of GPGPU phase, the

maximum frequency is set, called by our new DVFS

application programming interfaces (APIs). After the

GPGPU phase ends, the conventional DVFS resumes

back.

In this strategy, we assume that applications know

when the GPGPU phase is initiated because they should

explicitly call clEnqueue- functions in OpenCL. In or-

der to set the maximum frequency by calling these func-

tions, we define a new C-like data type as follows.

typedef struct {
int voltage;

int frequency;

} type frequency;

The above data structure is used for delivering avail-

able frequencies and voltages to user-side applications.

We now define two new APIs for user-side host ap-

plications: GetFrequencyList and SetFrequency. The for-

mer function gets a list of available frequencies, and the

latter one temporarily sets the given value as a cur-

rent frequency. We need these functions because every
device has a different set of frequencies, so supported

frequencies need to be searched first. The prototype of

GetFrequencyList function is given below.

cl int GetFrequencyList(int *num frequencies,

type frequency *pt frequencies)

The above GetFrequencyList function retrieves the

currently available frequencies. This function returns

zero if there are no errors reported. Applications can

set the frequency with the next function.

cl int SetFrequency(int frequency)

The above SetFrequency function sets the given value

by the user as a new frequency only for a single time

interval. This function sets the frequency, and returns

zero if there are no errors reported.
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4.2 Weighted Thresholding

If only a single set of thresholds is available regard-

less of the presence of graphic or GPGPU tasks, it

makes sense that graphic applications have a higher

priority than GPGPU applications to determine the

thresholds, HU and HD, mainly because the number

of existing graphic applications in the fields is much

higher than that of GPGPU applications. However, if

there are more sets available for HU and HD, one can

decide them more intelligently by executing and moni-

toring a sequence of GPGPU applications. In this case,

the GPU’s kernel driver uses a default set of thresholds

when graphic tasks are processed, and switches to a new

set of thresholds when computing tasks are processed.

By adding new HU and HD for computing tasks, influ-

ences to graphic applications can be minimized because

no modifications are made to the thresholds of graphic

applications.

However, an application often uses OpenGL ES and

OpenCL at the same time, and graphic and GPGPU

tasks are generated at the same time. In this case, ap-

propriate thresholds should be selected. For this, we

use a weighted-threshold strategy like Eq. 7 as a new

threshold.

H =
gi
Ti
Hg +

ci
Ti
Hc (7)

Here, gi and ci are the working time of graphic and

computing tasks at time i respectively. Furthermore,

Hg and Hc are the set of thresholds for graphic and

computing tasks respectively, which are determined af-

ter monitoring tasks. Using Eq. 7, the final thresholds

are determined in proportional to the amount of work-

ing time of each task.

4.3 Adaptive Interval Adjustment

Generally, the workloads of GPGPU applications are

difficult to accurately predict simply because the target

GPGPU applications can be very diverse. In order to

effectively adapt to these various workloads, we dynam-

ically adjust the DVFS interval based on the standard

deviation of past utilization factors like the next Eq. 8.

Ti+1 =
σmax

kσ
T when σ =

√√√√√ n∑
k=1

(Ui − µ)2

n

(8)

In Eq. 8, we record the past utilizations, and calcu-

late the standard deviation of them, σ, at every event.

The DVFS interval, Ti+1, is adjusted based on σ and

the default DVFS interval, T . As the standard devi-

ation becomes larger, the DVFS interval gets smaller.

However, the downside of this approach is that many

GPU events may be generated, which can deteriorate

the overall system’s performance. On the other hand, a

very long interval results in slow responses of DVFS to

workload changes. So, we clamp the DVFS interval into

a fixed range. The variable k controls the rates of the

length change of the interval. For instance, if a large

value is used for k, the interval size is reduced quickly

and reaches the minimum interval soon.

In case of quick utilization changes, the DVFS in-

terval is shortened so that the DVFS algorithm can

increase or decrease the frequency more responsively

according to the utilization. In case of slow utilization

changes, the DVFS interval increases under the assump-

tion that the system is in a stable state, and both the

utilization and the frequency are checked less often.

4.4 Multi-level Frequency Adjustment

Besides workload changes, another reason why an interval-

based algorithm can not catch up with utilization changes

is that it increases/ decreases the frequency only by a

single level. In order to resolve this issue, we propose

the use of multi-level frequency update based on the

past utilization history as shown in Eq. 9.

Fi+1 =

{
min{fj |∀j : Fi

fj
Ui < HU} if Ui > HU

max{fj |∀j : Fi
fj
Ui > HD} if Ui < HD,

(9)

where Fi is the past frequency at time i, and fj is one

of the available frequencies.

Eq. 9 finds an appropriate frequency within the range

of HU and HD thresholds. If the utilization is higher

than HU , the minimum frequency that expects less uti-

lization than HU is selected. If the utilization is lower

than HD, the maximum frequency that expects higher

utilization than HD is selected. To summarize, Eq. 9

estimates the proper utilization Ui+1 from Ui. If the

estimated utilization with the corresponding frequency

falls within a range of the up and down thresholds, the

frequency is assumed to be appropriate for the past

workload, and becomes one of the candidates for the fu-

ture frequency selection. Among several candidates, one

value is conservatively selected by the min or max oper-

ator in Eq. 9. Eq. 9 can increase the frequency by multi-

ple levels if the calculated utilization is higher than the

up-threshold. This strategy assumes that a frequency

increase leads to a performance increase and a working

time decrease, and the utilization in Eq. 9 is inversely

proportional to the frequency.
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The utilization is clamped into a range from 0 to

100. So, the true utilization can be higher than 100.

For this special case, a small value ε is added to the

utilization, Ui, at the beginning of this strategy. The

GPGPU-Perf algorithm in the next section also shows

this heuristic in more detail.

4.5 GPGPU-Perf Algorithm

All of the proposed strategies in the previous sections

adjust different parameters of DVFS, and affect the per-

formance of applications with different characteristics.

An individual contribution to performance influence by

each strategy will be demonstrated in Fig. 4, and will

be also discussed in Section 5.2. The performance of

general applications can be maximized by integrating

all these strategies into a single algorithm, which we

call GPGPU-Perf algorithm as shown in Algorithm 1.

Algorithm 1 GPGPU-perf algorithm
1: function Handle DVFS Event
2: if there exist computing tasks then
3: /* Weighted Thresholding */
4: H = gi

Ti
Hg + ci

Ti
Hc

5:
6: /* Adaptive Interval Adjustment */
7: Ti+1 = σmax

kσ
T

8: Clamp Ti+1

9:
10: /* Multi-level Frequency Adjustment */
11: fj = Fi
12: if Ui ≥ 100 then
13: Ui = Ui + ε
14: end if
15: /* Find the min fj satisfying Fi

fj
HU < HU */

16: if Ui > HU and j > 0 then
17: j = j − 1
18: while j ≥ 0 do
19: if Fi

fj
HU < HU then

20: break
21: end if
22: end while
23: end if
24: /* Find the max fj satisfying Fi

fj
HD > HD */

25: if Ui < HD and j < n− 1 then
26: j = j + 1
27: while j < n do
28: if Fi

fj
HD > HD then

29: break
30: end if
31: end while
32: end if
33: Fi+1 = fj
34: end if
35: end function

When integrating our DVFS strategies into a single

algorithm, the multi-level frequency adjustment, line

number 10 in Algorithm 1, in Section 4.4 uses the thresh-

olds, line number 4 in Algorithm 1, adjusted by Section

4.2. The adaptive interval adjustment, line number 6

in Algorithm 1, presented in Section 4.3 can be located

before or after the weighted thresholding, line number

4 in Algorithm 1, or the multi-level frequency adjust-

ment, line number 10 in Algorithm 1, because it has

no conflicts with other thresholds or frequency. If we

set the next frequency first and then set the next in-

terval, unnecessary energy can be wasted before setting

the next interval; since the GPGPU-Perf algorithm is

repetitively triggered while the GPU works, the sum of

energy wastes can be large, and thus we set the interval

first, and then set the frequency. The interval adjust-

ment can be located before the threshold adjustment,

but it is located after the threshold adjustment because

we want to minimize the inconsistency between the next

frequency and the next interval.

5 Experiments and Discussions

In order to verify the effectiveness of the proposed four

DVFS strategies as well as the new GPGPU-Perf algo-

rithm, we used Android OS on the Odroid XU3 because

OpenCL can be used on the board, and all the kernel

and platform sources are open-sourced, so we can freely

make any modifications to the system.

The Odroid XU3 device includes both A15 2.0Ghz

quad core and A7 quad core as a CPU, and Mali-T628

MP6 as a GPU. By default, this GPU uses an interval-

based DVFS algorithm with n = 1 in Eq. 2, with 100

milli-seconds as a fixed DVFS interval, and increases/

decreases the frequency by a single step, namely the

conservative governor in the CPU DVFS term.

We benchmarked eight GPGPU applications to mea-

sure the performance and energy consumption of our al-

gorithms: SmallptGPU, myocyte, bfs, cfd, gaussian elim,

lud, nw and pathfinder available through the Rodinia

benchmark [5]. Myocyte models and simulates the be-

haviors of cardiac myocyte (heart muscle cell). This ap-

plication tries to solve a group of 91 ordinary differential

equations. Bfs (breadth-first search) searches a graph

in a parallel fashion. Cfd (computation fluid dynam-

ics solver) is a solver of 3D Euler equations for com-

pressible flow. Gaussian elim (gaussian elimination) is

a solver for systems of equations. Lud (LU decompsi-

tion) decomposes a matrix into a product of a lower

triangular matrix and an upper triangular matrix. Nw

(Needleman-Wunsch) is an optimization method for DNA

sequence alignments. Pathfinder is a dynamic program-

ming algorithm, and finds the shortest path of a 2D grid

row by row [17]. The Rodinia benchmark does not in-

clude any graphic tasks, but include only computing
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tasks. We port these eight applications into Android,

and uses them for performance comparisons for the re-

maining of this paper.

5.1 Implementation Details

We implement our DVFS strategies as well as the GPGPU-

Perf algorithm as follows. For the new DVFS program-

ming interfaces presented in Section 4.1, the GetFre-

quencyList function reads a file from sysfs that includes

the information of supported frequencies, parses the

file, and gets the frequencies from it. The SetFrequency

function sets a frequency also via the sysfs. We call the

GetFrequencyList function before clEnqueue- functions

in OpenCL, get the available frequencies, and then tem-

porarily set the maximum frequency as a current one

for a single DVFS interval. For the weighted threshold-

ing, the adaptive interval adjustment, and the multi-

level frequency adjustment presented in Sections 4.2,

4.3 and 4.4 respectively, we modify the Linux kernel so

that Eq. 7, Eq. 8, Eq. 9 can determine the thresholds

HU and HD, the interval Ti+1 and the frequency Fi+1.

We set our DVFS parameters as follows. HD is set

to 60, and HU is 85. As new thresholds for Eq. 7, 30

is experimentally chosen and set for HD, and 70 is for

new HU . In Eq. 8, n, k, the min-interval and the max-

interval are set to 3, 2, 50 milli-seconds and 200 milli-

seconds, respectively. As an added value presented in

Section 4.4, ε, 200 is experimentally chosen.

In order to measure the improvements by our strate-

gies, we use the following three metrics: a performance

increase (IP ), an energy increase (IE) and the ratio (R)

of the performance increase and energy consumption in-

crease.

The performance increase, IP , is calculated via Eq.

10 when TI is the execution time of the original interval-

based algorithm, and TG is the reduced execution time

by our algorithms.

IP =
TI
TG

(10)

The energy increase, IE , is calculated via Eq. 11

where EI and EG are the consumed energy of the orig-

inal interval-based and our algorithms respectively.

IE =
EG

EI
(11)

We also use the next metric, R, for checking the

performance increases over the energy consumption in-

crease via our algorithms.

R =
IP
IE

(12)

Eq. 12 is the ratio of the performance increase and

the energy increase of our algorithm over the original

interval-based DVFS. The ratio of greater than one in-

dicates that the new algorithm improves performance

while saving more energy than the original interval-

based DVFS algorithm.

5.2 Results and Analysis

Using the implementations and metrics proposed in the

previous section, we repeat 30 iterations of the Smallpt-

GPU application, and its execution times for an OpenCL

kernel are averaged. We run the Rodinia applications,

and measure their execution times through the clGetEvent-

ProfilingInfo function. Through these execution times,

the performance increase rate can be calculated using

Eq. 10. For the energy increase rate, we get additional

messages from the Linux kernel. These messages include

the used frequency, voltage and utilization as well as

the operating time with them. From these messages,

we can mathematically calculate the consumed energy

using Eq. 1. Through these consumed energies, the en-

ergy increase rate can be calculated using Eq. 11. Table

1 summarizes the results.

Table 1 Performance Improvements and Energy Consump-
tion Improvements using different DVFS strategies. DPI is
the DVFS Programming Interfaces, WT is the Weighted
Thresholding, AIA is the Adaptive Interval Adjustment and
MFA is the Multi-level Frequency Adjustment. The GPGPU-
Perf is our integrated algorithm.

Performance Energy

DPI 2.02 1.61
WT 1.13 1.04
AIA 1.00 0.96
MFA 1.05 0.94

GPGPU-Perf 2.04 1.51

In the DPI case, the kernel-processing time decreases

due to the maximum frequency. In the WT case, HU is

reduced from the default value of 85 with more OpenCL

tasks because of the effects of new HU (70 in this case)

for computing tasks, and so is HD from the default

60 because of the effects of new HD (30 in this case).

With these low thresholds, the frequency tends to be-

come high and stay high, which makes the performance

improvements as well as energy consumption high. In

the AIA case, the kernel adjusts the interval accord-

ing to the utilization changes, the applications react to
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the changes more responsively. In the MFA case, the

frequency increases and decreases in multiple steps de-

pending on the past utilization. So, the performance

and energy are also affected by AIA and MFA.

In the case of our integrated algorithm, GPGPU-

Perf, the overall performance improve rates are 2.04 on

average while the energy consumption rates are 1.51

on average. It has the best performance improvement

compared to the individual DVFS strategy alone, and

its energy increase is relatively low compared to the

performance increases. The energy is not consumed as

much as the performance increases because of two rea-

sons: first, although the voltage and the frequency in-

crease, the GPU working time is reduced as much. In

the SmallptGPU case, the GPU works for 4.52 seconds

with the original interval-based algorithm, whereas only

for 2.03 seconds with the GPGPU-Perf algorithm. Sim-

ilarly, in the cfd case, 25.02 seconds were spent with

the original algorithm, but only 10.17 seconds with the

GPGPU-Perf algorithm. Second, the original interval-

based DVFS algorithm already uses a high frequency in

many cases, and, consequently, the energy consumption

does not increase significantly.

Fig. 4 shows the improvement ratio R, defined by

Eq. 12, of each application in more details. The hori-

zontal axis in the graph shows tested applications, and

the vertical axis shows the ratio R. When R is 1, IP is

equal to IE , which means that the performance increase

rate is equal to the energy increase rate, and the same

performance over energy as the original interval-based

algorithm; the performance over energy is a processing

capability with the same energy, and it represents the

effectiveness of an algorithm.

In Fig. 4, the GPGPU-Perf algorithm has a good

ratio of R in most cases such as SmallptGPU, bfs, cfd,

gaussian, lud, nw and pathfinder. Especially, the per-

formance increases almost double in most cases such

as SmallptGPU (2.00 times), myocyte (1.37 times), bfs

(2.17 times), cfd (2.51 times), gaussian (3.12 times),

lud (1.50 times), nw (2.58 times) and pathfinder (1.07

times). In addition, the GPGPU-Perf algorithm com-

plements different strategies. When a single DVFS strat-

egy is used, the ratio becomes worse in some cases.

For examples, the DPI is the best in the cfd and the

lud cases, nevertheless, it is the worst in myocyte case.

The AIA has a higher ratio than one in the nw and

bfs cases, but it has a lower ratio than one in the lud,

gaussian and pathfinder cases. Moreover, the WT has

a higher ratio than one in the SmallptGPU and bfs

cases, but it has a lower ratio than one in the cfd and

pathfinder cases. However the GPGPU-Perf algorithm

complements each individual DVFS strategy, and shows

the best average ratio as summarized in Table 1. Over-

all, the ratios of the computation-intensive applications

(cfd, gaussian, lud [5]) are remarkably increased by the

DPI and GPGPU-Perf.

As a reason for the low ratio in the myocyte case,

this particular application repetitively executes a short

OpenCL kernel with a few memory operations. Although

the DPI and the GPGPU-Perf algorithms set the max-

imum frequency in the GPU, memory operations in-

side the OpenCL kernel may prevent the performance

enhancement. Accordingly, the GPU’s maximum fre-

quency does not improve the performance. In the pathfinder

case, all of our DVFS strategies do not affect the per-

formance and the energy. This application has extreme

GPU workloads, and the maximum frequency is already

set in the very beginning with the original interval-

based DVFS algorithm. So, the performance and the

energy are not affected by any strategies.

6 Conclusion

When GPGPU applications are executed with a DVFS

algorithm on mobile devices, it is difficult to obtain

the maximum performance of GPU since graphic ap-

plications requiring relatively low performance deter-

mine the DVFS parameters such as thresholds, an in-

terval and a frequency. In order to resolve this problem

without any influences to existing graphic applications,

we suggested four DVFS strategies: new DVFS pro-

gramming interfaces for executing an OpenCL kernel,

weighted thresholding based on working times, adap-

tive interval adjustment based on utilization changes

and multi-level frequency adjustment based on previ-

ous utilization. We proposed the GPGPU-Perf algo-

rithm by integrating all the four strategies. We experi-

mentally verify their effectiveness using various sets of

benchmarks. We showed that each strategy has its own

advantage, and the integrated GPGPU-Perf algorithm

complements each strategy, and improves the perfor-

mance 2.04 times with energy consumption 1.51 times

via intelligent frequency controls.
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