
GPU-based Motion Planning under Uncertainties using POMDP

Taekhee Lee and Young J. Kim

Abstract— We present a novel GPU-based parallel algorithm
to solve continuous-state POMDP problems. We choose the
MCVI (Monte Carlo Value Iteration) method as our base
algorithm [1], and parallelize this algorithm using multi-level
parallel formulation of MCVI. For each parallel level, we
propose efficient algorithms to effectively utilize the massive
data parallelism of GPUs. To obtain the maximum parallel
performance at highest level, we introduce two workload
distribution techniques such as data/compute interleaving and
workload balancing. To the best of our knowledge, our al-
gorithm is the first parallel algorithm that executes POMDP
efficiently on GPUs. Our GPU-based algorithm outperforms the
existing CPU-based algorithm by a factor of 75∼90 on different
benchmarks.

I. INTRODUCTION

The primary task of motion planning is to determine a
motion that brings a robot to a desired state while avoiding
collision with obstacles and minimizing the robot’s efforts
or resources [2]. Motion planning is considered an important
problem in robotics and intelligent system, computer anima-
tion, CAD, etc. Many existing algebraic formulation of mo-
tion planning, such as configuration space-based approach,
is designed based on an assumption that exact information
about robot and its surrounding environment is known a
priori. Moreover, the control and sensing capability of a
robot is assumed to be precise. However, this assumption is
only valid in carefully engineered environment, for instance,
such as well-sealed manufacturing assembly lines. In real
world, there are lots of uncertainties arising due to a lack of
accuracy of robot sensors, imprecisions of robot controls, and
alterations and imperfections of environment information.
These uncertainties can harm the reliability of robot motion
planning seriously.

Over the past years, there has been a significant research
effort to deal with uncertainties such as sampling-based plan-
ning with sensor uncertainty [3], evaluating an uncertain re-
gion in the configuration space [4], the probabilistic roadmap
algorithm for robust motion plans [5], a priori probability
distributions along the robot path [6], etc. However, a more
general framework to handle uncertainties arising in different
part of motion planning is a POMDP (Partially Observable
Markov Decision Process) [7]. This method considers every
possibilities by planning with a belief that is a probability
distribution over a state space.

Even though a POMDP model can deal with a wide range
of uncertainties, it is known to be notoriously challenging to
precisely evaluate in particular for continuous-state POMDPs
and computationally intractable (i.e. PSPACE-hard). [8], [9].

T. Lee and Y. J. Kim are with the Department of Computer Sci-
ence and Engineering at Ewha Womans University in Seoul, Korea.
{taekhee.lee|kimy}@ewha.ac.kr

In recent years, more progress has been made on develop-
ing an efficient, approximate POMDP algorithm. Especially
point-based POMDP algorithms [10], [11], [12], [13], [10],
[14] have drastically reduced the amount of computation
while keeping the intrinsic value of POMDP and thus the
POMDP model becomes a more appealing choice to handle
uncertainties in motion planning. However, these efficient
algorithms take hours of computation time to deal with
moderate-size POMDP problems.

Since the introduction of programmable GPUs (graphics
processing units), applying the massive parallelism of GPU
threads to a challenging computational problem has drawn
a lot of attention from different research communities [15].
The main theme of this paper is also to use the massive par-
allelism readily available on GPUs to accelerate the POMDP
computation. However, parallelizing POMDP algorithms on
GPUs is very non-trivial. First of all, POMDP requires a
large size of memory to deal with the curses of dimen-
sionality and history, however, the typical memory size of
GPU is much less than that of CPU. Moreover, the memory
architecture on modern GPU is hierarchical and its caching
capability is less efficient than the CPU counterpart. Finally,
existing efficient POMDP algorithms such as [11], [16], [17]
are iterative and sequential by nature, and thus identifying
parallelism from these algorithms becomes challenging.
Main Contributions: In this paper, we present a GPU-
based parallel algorithm to solve continuous-state POMDP
problems. Our algorithm is based on the MCVI (Monte Carlo
Value Iteration) method, originally developed for CPU [1] ,
and we parallelize this algorithm using a novel, multi-level
parallel formulation of MCVI; our parallel algorithm can
be executed at four different levels, belief-, action-, policy
graph node- and particle-level. For each level of parallelism,
we propose efficient algorithms running on GPUs. In par-
ticular, to get the maximum parallel performance at highest
level (i.e. belief-level), we introduce two workload distribu-
tion techniques such as data/compute overlapping technique
and workload balancing using the paradigm of gathering,
scheduling and running. To the best of our knowledge,
our algorithm is the first parallel algorithm that executes
PODMP efficiently on GPUs. In our experiments, we also
show that our GPU-based algorithm outperforms the existing
CPU-based algorithm by a factor of 75∼90 on different
benchmarks.

II. PREVIOUS WORK

A. POMDP-based Motion Planning
a) Discrete-state POMDP: The POMDP provides a

general framework for planning using the imperfect infor-

mation of state, sensor and action of a robot [7], [18],
[19], applicable to such areas as operation research, artificial
intelligence, and robotics [20], [21], [22]. Unfortunately,
however, solving a POMDP is computationally intractable
due to the curse of dimensionality and history [8], [9]. Thus,
several approximate methods have been proposed to convert
POMDP to fully observable Markov Decision Process(MDP)
by applying heuristic strategies [20], [21], [22]. Alterna-
tively, point-based algorithms have been successfully shown
to approximately solve a POMDP by working only on a
limited subset of belief space instead of the complete belief
space [13], [23], [10], [14], [24], [25]. Several methods such
as [14], [10], [23], [24], [13] solve a POMDP by sampling
beliefs only from reachable spaces. They maintain both upper
and lower bounds of the optimal value function to test
whether the sampled point is reachable or not [11]. Even
these point-based methods can solve a POMDP with tens of
thousands of states in reasonable time, they still require lots
of computation time and memory.

b) Continuous-state POMDP: To deal with real-world
problems, POMDPs need to model the continuous states,
actions and observations. To plan under continuous environ-
ments, [26], [27] discretize such environment with a grid.
However, it is rather hard to determine the proper dimension
of the grid and the discretization may deteriorate the quality
of a solution. To address this issue, [28], [29], [12], [30]
used Gaussian mixtures or particle filters to represent beliefs.
However, if the environment has discontinuities such as
obstacles, the number of Gaussian components grows too
fast and becomes difficult to control. [31], [17], [32], [33]
approximate the belief dynamics using an extended Kalman
filter and provide locally-optimal solutions to continuous
POMDP problems in polynomial time. [34] introduce a
method for fast and safe motion planning using the prob-
ability of collision.

Monte Carlo Value Iteration (MCVI)-based methods [35],
[1] solve continuous POMDP problems with an acceptably
good result and speed. The MCVI also uses particles for
representing a belief, and employs a policy graph to implic-
itly represent α vectors [36], [7]. To build a policy graph,
MCVI performs Monte Carlo (MC) simulations. Although
MCVI involves more computation than approximate methods
such as [26], [27], it requires less memory by avoiding
the inefficient discretization. More importantly, it can be
relatively easy to parallelize, thus it is a natural choice to
leverage the power of modern multi-core CPUs or GPUs on
these algorithms. [37] takes advantage of multicore CPUs to
devise a scalable parallel algorithm for point-based POMDPs
and apply it to a complex and large domain.

B. GPU-based Motion Planning

Motion planning utilizing the massively parallel power
of GPUs is relatively a new field. Existing GPU-based
planning algorithms mostly focus on accelerating collision
queries that act as a bottleneck of sampling-based planners.
GPU-based algorithms such as [38], [39] use a work queue
to parallelize collision queries based on bounding volume

hierarchy. ITOMP [40] computes a collision-free trajectory
that is smooth and satisfies dynamics constraint on GPU
using a stochastic method. To the best of our knowledge,
accelerating point-based POMDP algorithms using GPU still
remains an open problem [41].

III. PRELIMINARIES

A. Discrete-state POMDPs
Formally, the POMDP model is a tuple of

{S,A,O,T,O(s),rea(s)} with a set of state S, actions
A, observations O, a transition mode (T (a,s) = p(s′ | a,s),
an observation model O(s) = p(o | s), and a reward function
rea(s) ∈ R. At a given moment, the system is in a state s,
an agent executes an action a and receives a reward rea(s),
and the system state changes to s′. The system state is
represented as a belief, a probability distribution over S. If
S is discrete, the belief b after executing a and observing o
is represented as follows:

b(s′) =
p(o | s′)

p(o | a,b) ∑
s∈S

p(s′ | s,a)b(s) (1)

where b(s) returns the probability of a state s from the current
belief b. A function which returns an action from the current
belief is called as a policy, and it is called optimal when it
returns actions that can produce maximum rewards. A value
function returns the reward of a given belief and can be
recursively expressed as:

Vn(b) = arg max
a

Qn(b,a) (2)

with

Qn(b,a) = ∑
s∈S

rea(s)b(s)+ γ ∑
o

p(o | b,a)Vn−1(ba,o), (3)

where S and O are discrete, γ ∈ [0,1) is a discount factor,
and n is the time horizon. Now, an optimal policy π∗ can be
defined as:

π
∗(b) = arg max

a
Q∗(b,a) (4)

where Q∗ is the Q-function associated with the optimal value
function V ∗. The optimal policy is often represented as a
tabular form using beliefs and actions. An optimal policy
can be obtained from V ∗ which is often approximated by
recursively evaluating a sequence of functions Vi, also known
as value iteration [18], [42], [7]. Here, Vi, the value of the
current belief, is expressed as:

Vn(b) = max
{α i

n}i
∑
S

α
i
n(s)b(s), (5)

α
i
n(s) = arg max

{α i
n}i

b(s)α i
n

where {α i
n}i is a set of vectors, each of which provides a

value of a belief state. The value iteration generates a set of
alpha vectors. In functional form, a value iteration is often
expressed using the Bellman recursion [43].

Vn = HVn−1 = max
a∈A
{r(b,a)+ γ ∑

o∈O
p(o|b,a)Vn−1(b′)} (6)

where r(b,a) is the agent’s immediate reward for the given
belief b and action a, and the γ is the discount factor.

B. Continuous-State POMDPs using MCVI

For continuous-state POMDPs such as the MCVI algo-
rithm, a policy graph is used to represent a policy [7], [36].
A policy graph G is a directed graph with the nodes of an
action a∈A and the edges of an observation o∈O. The agent
starts from a suitable node v of G, executes its corresponding
policy, and moves to another node based on its observation
as a result of executing the policy. The value function of b
on G is derived from Eq.8 as:

VG(b) = max
v∈G

∫
s∈S

αv(s)b(s)ds (7)

We can evaluate VG(b) by performing MC simulation; sam-
ple many random states, called particles, from S with a
probability of b(s) and simulate their policy πG,v for ∀v∈G.

The MCVI algorithm finds an optimal policy by iteratively
updating a policy graph G, and mainly consists of two steps:

1) Sampling: A belief tree TR, consisting of belief nodes
reachable from b0, is constructed. Initially TR has only
one root node b0. To expand TR, beliefs are generated
from b0 and evaluate the value function VG(b0) by
performing MC simulation on the policy graph G.
Then, find the best node among generated beliefs and
add it to TR. Adding a new belief node continues until
the depth of TR is sufficiently high or the difference of
the bounds on V ∗(b0) is sufficiently reduced.

2) Backup: TR is traversed from b0 toward the terminal by
performing the value iteration for every belief node to
evaluate V ∗(b0), and the policy graph G is updated to
G′ for each value iteration; this process is called MC-
Backup. More specifically, an α function of a node v,
αv, of G is defined as:

αv = E(
∞

∑
t=0

γ
tr(st ,at)) = r(s,av)+E(

∞

∑
t=1

γ
tr(st ,at))

(8)

max
a∈A

{∫
s∈S

R(s,a)b(s)ds
}

(9)

Note that the sum in Eq.5 is replaced by an integral to
handle the continuous-state space. The integration in
Eq. 7 is performed using MC simulation; from Eqs.6
and 7, the optimal value function V ∗ can be calculated
using value iteration (the Bellman recursion) as shown
in Eq.10.

3) The sampling/backup steps are iterated until the dif-
ference between the upper and the lower bounds on
V ∗(b0) becomes less than a predefined value.

Policy graph node-level

Belief-level

Action-level

Particle-level

(10)

IV. MULTI-LEVEL PARALLEL POMDP ALGORITHM

Among other POMDP algorithms, the MCVI algorithm[1]
is suitable for massive parallelism because (1) the value

iteration using many particles can be executed in parallel
and (2) the required memory footprint to run the algorithm
is relatively small since it does not maintain the history
of belief states. Thus, the goal of our algorithm is to
parallelize the MCVI algorithm using GPUs. Moreover, since
the MC-Backup step explained in Sec.III-B takes 99% of the
total running time in MCVI, our objective is to parallelize
MC-Backup using massively-many parallel GPU threads.
The implementation choice of our GPU parallelization is
CUDA[44], mainly because CUDA is optimized for both
high- and low-end GPUs and low-level optimization is
available such as handling the cache or avoiding memory
access conflicts.

….

….

…. Particle-
level

Policy graph
node-level

Action-
level

Belief-
level ….

Fig. 1. Backup Hierarchy The backup for a belief bi is done in a
hierarchical manner. N × |A| × |G| simulations are needed for one belief
node bi to add a new node and edges to G.

A. Policy graph node-level Parallelism

Eq. 10 is the main equation that constitutes the MC-backup
process. We can further dissect this equation into four nested
levels of computation (also illustrated in Fig.1): particle-,
policy graph node-, action- and belief-level.

The easiest way to parallelizing Eq. 10 is to do it at policy
graph node-level. More specifically, for each node vi, we
assigned a block of threads to it. Moreover, each particle pi,
mapped to a single thread, can share the high-performance
CUDA shared memory assigned to the thread block that
enables the rapid integration calculation. Algorithm 1 is
the pseudo code for a CUDA kernel to perform the MC-
simulation at policy graph node-level.

Algorithm 1 MC−Simulation Kernel
Input: tID : T hreadID, bID : BlockID, b : Belie f , G : PolicyGraph
Output: result[bID] : MC− simulation

1: ptid = GenParticle(b);
2: vbid = PolicyGraphNode[bid];
3: for i = 0 to simulationLength do
4: if ptid == goal then
5: break;
6: end if
7: a = GetActionFromGraph(vbid);
8: reward[tid]+ = discount ∗GetReward(ptid ,a);
9: o = GetObservation(ptid ,a);

10: vbid = GetNextNodeFromGraph(vbid ,o);
11: ptid = GetNextState(s,a);
12: discount∗= discountFactor;
13: end for
14: syncT hread(); {sync all threads within a block}
15: if tid == 0 then {true only once per block}
16: result[bid] = IntegrateRewardsO f AllT hreads();
17: end if

Here, we launch |G|×N threads where |G| is the size of
the current policy graph and N is the size of particles for MC

simulation. Moreover, |G| is equal to the number of blocks
and N is the number of threads for each block; bID, tID
are the block and thread indices. Particle on pi in Fig. 1
can be mapped to ptid and simulation is performed between
the lines 3–13 using a particle ptid sampled from a belief
b on the belief tree TR. During MC-simulation, the reward
is accumulated to a shared memory location reward[tID]. In
line 16, we integrate all reward[i] and store it at the global
memory result[bid], accessible from CPU to actually update
the policy graph. After the kernel terminates, we obtain
the integration value of vi (i.e. MC-simulation result) from
result[i]. The actual update on the policy graph occurs on the
CPU side, since this operations requires random referencing
on G that may not be well mapped to GPUs. Plus, this
operation is not computationally heavy.

The performance result in Section. VI shows that Al-
gorithm 1 outperforms CPU’s result more than 10 times.
However, it requires |A| memory copies from GPU to CPU
for MC-Backup on belief b and entire GPU threads are
stalled whenever a memory copy is executed. This causes
a serious performance loss. In the next section, we address
this issue by increasing the parallel level to action-level.

B. Action-level Parallelism

To reduce the number of memory copies from GPU to
CPU, we should spawn as many blocks and threads as
possible in a single kernel execution. We can achieve this
objective by running MC-simulation for ∀ai ∈A and ∀v j ∈G,
since each simulation result of ai is independent of each
other; thus, we call the same simulation kernel (Algorithm
1) for ∀ai ∈ A and ∀v j ∈G. One tricky aspect that we should
consider while performing action-level MC simulation is that
we need to ensure that the indexing mechanism for each
particle pi does not overflow to access the policy graph G
as follows:

1) Replace PolicyGraphNode[bid] with
PolicyGraphNode[bid%|A|] in Algorithm 1.

2) Execute Algorithm 1 in parallel for |G| × |A| blocks
with N threads each.

3) The result of MC-simulation for v j of ai is result[i×
|A|+ j].

C. Belief-level Parallelism

In general, it is difficult to achieve the belief-level par-
allelism (i.e. running Algorithm 1 concurrently for ∀bi),
because the policy graph needs to be updated sequentially
from bi to bi+1. However, the value iteration can be still
performed on several beliefs concurrently while sacrificing
the improvement rates to get the optimal value. The following
theorem says that the backup on belief bi+1 without the
backup on bi can still increase the quality of the policy graph.

Theorem 1 Given a set of beliefs bi,0 ≤ i < n and b ∈
R∗(b0), the backup on bk for an arbitrary k,1 ≤ k < n can
improve the policy graph [45], [35], [1].

However, if we run MC-simulation concurrently in arbi-
trary sequence (say, b0,bk, ...), the improvement rate of the

policy graph update can be poor if bk is not reachable from
b0 via some action a ∈ A. In this case, we may need more
sampling/backup iterations to achieve the same improvement
rate of the original policy graph update in MCVI algorithm.
However, Section. VI shows that the performance gain by
applying the belief-level parallelism compensates for the loss
of the improvement rate.

V. GPU WORKLOAD DISTRIBUTION

As the parallel level in our algorithm goes up from
particle- to belief-level, more and more blocks and threads
are needed in one kernel execution; for instance, the total
number of threads required at the belief-level parallelism
is |TR|×N×|A|× |G|. As the number of kernel executions
increases, so do the timings for retrieving the policy graph
from CPU to GPU and updating it. We address this problem
by using CPU/GPU interleaving and workload scheduling as
follows:
• A CUDA stream is a sequence of GPU operations that

execute in issue-order on the GPU. A stream enables
a data/compute overlap. For example, a data transfer
for stream 1 and kernel execution for stream 2 can
be executed concurrently unless there is no memory
conflict between the streams.

• We group thread blocks with the same workload into a
working set; here, the workload is defined as the time to
synchronize all threads to finish. For example, as illus-
trated in Fig.2, the maximum simulation length of v0 is
longer than v1 and thus v1 should wait until v0 is finished
and the threads assigned to v1 becomes idle; similarly
for v2,v3. Instead, if we run v0,v2 concurrently with
a similar simulation time, the GPU idle time of core
can be significantly reduced. The number of working
sets is predefined and can be empirically obtained by
experiments.

Sy
n

ch
ro

n
ize p

o
in

t

Performance
Gain

Scheduling

Simulation 𝑝0

𝑣1

𝑣3

𝑣0 𝑣1

𝑣2

Simulation 𝑝1
Simulation 𝑝2

𝑣0

𝑣3

Sy
n

ch
ro

n
ize p

o
in

t

𝑣2

Sy
n

ch
ro

n
ize p

o
in

t

Sy
n

ch
ro

n
ize p

o
in

t

Fig. 2. Performance gain of the workload balancing. The arrow means
the simulation time for each thread. The red arrow is the idle time for each
block to be synchronized. After workload scheduling, the idle time has been
reduced from top to bottom.

We perform three steps to achieve the above optimizations:
gathering, scheduling, and rerunning:
Gathering G: In this step, we gather all blocks and store
them at a three dimensional array with an index to the
node v, action a and belief b. The array will be used for
tossing the MC-simulation result of each block back to the
corresponding action and belief. The gathering step continues
until all blocks in belief tree TR are gathered. It is possible
that the gathered number of blocks could exceed the memory

capacity of GPU. If this happens, we stop gathering the
blocks and do the next step.
Scheduling S: The scheduling step determines the workload
of each block, obtained from the gathering step, and group
them into a few working sets. To determine the workload
for a block v, we rely on simulation coherence. More
specifically, after MC simulation is finished for v, we record
the average simulation length of a thread at a table and use
it for the workload of v of next simulation. The workload
table is updated at every sampling-backup iteration. The size
of a working set is the number of gathered blocks divided
by the number of working sets (8 in our implementation).
The actual scheduling is done by redistributing all the blocks
while keeping the workload variance for each working set
minimum.
Running R: The running step operates on the working sets
with the compute/memory interleaving technique as follows.
First, we create a number of CUDA streams as many as
the number of working sets, and assign CUDA streams to
each working set. Next, we perform an execution/retrieval se-
quence for all CUDA streams. Since execution and retrieval
can be done asynchronously, we retrieve the results from a
completed working set while executing the next working set.

VI. RESULTS AND DISCUSSIONS

A. Performance Benchmark

We have implemented our algorithm on a Windows 7 PC,
equipped with an Intel i7 2.67GHz CPU 3GB and NVIDIA
GeForce 680 2GB. We have tested the performance of our
algorithm on three robot motion planning tasks such as
underwater navigation, corridor, and collaborative search and
capture (i.e. herding), also used in [11], [12], [35].

Throughout the experiment, we set the number of working
sets to 8 that was empirically obtained in our experiments.
Due to the random nature of MCVI, we run the trial many
times and measure its average performance. We also compare
the performance of our algorithm against that of the CPU-
based public MCVI library, APPL1 [1].

Task Reward Policy Action Belief GSR APPL
Underwater 740 24 12 8 4 300

Corridor 1.5 34 18 15 9 726
Herding 15.5 804 297 204 139 12000

TABLE I
Performance Comparisons. The second column is the target reward.

Columns 3-7 are the total timings in seconds to reach the target using

various levels of our algorithm and APPL library.

Our experimental result of APPL is a bit different from
[1] since some optimization parameters for caching and
OpenMP are unknown in the public library. To compare the
performances, we set the target total reward same for both
APPL and our GPU algorithm, and measure the total timing
until each of the algorithms reaches the target value. We use
only single core CPU for the MCVI algorithm. As shown
in Table I, our GPU-based algorithm outperforms the CPU-
based MCVI algorithm by 75∼90 times.

1http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

B. Performance Analysis

n
u
m

b
e
r

o
f
sa

m
p
lin

g
-

b
a
ck

u
p
 i
te

ra
ti
o
n
s

p
e
r

se
co

n
d

Fig. 3. Number of Iterations for Underwater Navigation. Our GPU-
based method (red) performs 10 sampling/backup iterations per second on
average irrespective of the problem size while CPU-based APPL does only
0.1∼0.2 iterations.

Fig.3 shows that our GPU-based method can perform
more sampling/backup iterations per second than APPL for
the underwater navigation benchmark, and the number of
iterations remain constant regardless of the problem size (i.e.
the size of belief tree |TR| and policy graph |G|). In the
graph, the X-axis denotes the problem size (|TR|×|G| and the
Y-axis denotes the number of sampling/backup operations.
This graph also explains why our parallel POMDP solver
significantly outperforms APPL. Also, the constant graph
implies that our method is applicable to more challenging
benchmarks, since the number of iterations is not much
affected by the problem size.

In Fig.4, we also show how much time should be spent for
different levels of parallelism in our algorithm to achieve the
same target reward value. The benchmarking scenario is also
the underwater navigation. The total computation time using
action-level is reduced to a half of policy graph node-level,
mainly because the frequency of retrieving the integration
value of v has been reduced. The arithmetic density further
increases, as the belief-level parallelism is employed and the
performance was enhanced by 150%. Finally, the belief-level
parallelism with GSR method achieves the best performance
using the workload balancing and compute/data parallelism.
The total timing was reduced to 50% of that without GSR.

600

650

700

750

0 5000 10000 15000 20000

av
er

ag
ed

 t
o

ta
l r

ew
ar

d

time(ms)

Policy graph node-level

Action-level

Belief-level

GSR

Fig. 4. Performance Comparison using Different Levels of Parallelism.
VII. CONCLUSION

In this paper, we present a GPU-based parallel algorithm
to solve continuous-state POMDP motion planning problems
under uncertainties. Our algorithm use the multi-level par-
allelism to perform MC-backup which is a bottleneck in
existing CPU-based MCVI algorithm. We observe that our
GPU-based algorithm outperforms the existing CPU-based
algorithm by a factor of 75∼90 on different benchmarks.
However, our algorithm is still limited by the capacity of
GPU, for instance, the memory size of GPU. For future
work, we would like apply our method to online planning
algorithms such as [46], [47] or other planning problems
involving uncertainties, and extend our method to more
challenging 3D planning problems.

ACKNOWLEDGEMENT

This research was supported in part by IT R&D
program of MKE/MCST/KOCCA (KI001818) and
NRF in Korea (No.2012R1A2A2A01046246, No.
2012R1A2A2A06047007).

REFERENCES

[1] H. Bai, D. Hsu, W. Lee, and V. Ngo, “Monte Carlo value iteration
for continuous-state POMDPs,” in Proc. The Int. Workshop on the
Algorithmic Foundations of Robotics 2010.

[2] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[3] B. Brendan and B. Oliver, “Synthesis of hierarchical finite-state
controllers for pomdps,” in 2007 IEEE Int. Conf. on Robotics and
Automation, 2007.

[4] H. K. L. Guibas, D. Hsu and E. Rehman, “Bounded uncertainty
roadmaps for path planning,” in Proc. The Int. Workshop on the
Algorithmic Foundations of Robotics, 2008.

[5] P. Missiuro and N. R. Adapting, “Adapting probabilistic roadmaps
to handle uncertain maps,” in IEEE Int. Conf. on Robotics and
Automation, 2006.

[6] J. Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized path
planning for robots with motion uncertainty and imperfect state
information,” in Proc. of Robotics: Science and Systems, 2010.

[7] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial Intelligence, vol.
101, no. 1–2, pp. 99–134, 1998.

[8] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov
decision processes,” Mathmatics of Operations Research, vol. 12,
no. 3, pp. 441–450, 1987.

[9] O. Madani, S. Hanks, and A. Condon, “On the undecidability of
probabilistic planning and infinite-horizon partially observable markov
decision problems,” in Proc. 16th National Conf. on American Asso-
ciation for Artificial Intelligence, 1999.

[10] M. T. J. Spaan and N. Vlassis, “A point-based pomdp algorithm for
robot planning,” in IEEE Int. Conf. on Robotics and Automation, 2004.

[11] H. Kurniawati, D. Hsu, and W. Lee, “SARSOP: Efficient point-
based POMDP planning by approximating optimally reachable belief
spaces,” in Proc. Robotics: Science and Systems, 2008.

[12] J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart, “Point-based
value iteration for continuous pomdps,” J. Mach. Learn. Res., vol. 7,
pp. 2329–2367, Dec. 2006.

[13] D. Hsu, W. Lee, and N. Rong, “A point-based POMDP planner for
target tracking.”in IEEE Int. Conf. on Robotics and Automation, 2008.

[14] T. Smith and R. Simmons, “Point-based POMDP Algorithms: Im-
proved Analysis and Implementation,” in Proc. of the Conf. on
Uncertainty in Artificial Intelligence, July 2005.

[15] D. Luebke, M. Harris, J. Krger, T. Purcell, N. Govindaraju, I. Buck,
C. Woolley, and A. Lefohn, “Gpgpu: general purpose computation on
graphics hardware,” in ACM SIGGRAPH 2004 Course Notes, 2004.

[16] H. Kurniawati, Y. Du, D. Hsu, and W. Lee, “Motion planning under
uncertainty for robotic tasks with long time horizons,” Int. J. Robotics
Research, vol. 30, no. 3, pp. 308–323, 2011.

[17] J. Berg, S. Patil, and R. Alterovitz, “Efficient approximate value
iteration for continuous gaussian pomdps,” in Proc. AAAI Conf. on
Artificial Intelligence, 2012.

[18] E. J. Sondik, “The optimal control of partially observable markov
processes,” in Stanford University PhD thesis, 1971.

[19] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable markov processes over a finite horizon,” ARTIFICIAL
INTELLIGENCE, vol. 21, no. 5, pp. 1071–1088, 1973.

[20] R. Simmons and S. Koenig, “Probabilistic robot navigation in partially
observable environments,” in Proc. of the Int. Jnt. Conf. on Artificial
Intelligence, 1995, pp. 1080–1087.

[21] A.R.Cassandra, L. Kaelbling, and J. Kurien, “Acting under uncertainty:
Discrete bayesian models for mobile robot navigation,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 2, 1996,
pp. 963–972.

[22] G. Theocharous and S. Magadevan, “Approximate planning with
hierarhical partially observable markov decision processes for robot
navigation,” in Proc. of the IEEE/RSJ Int. Conf. on Robotics and
Automation, Washington D.C., 2002.

[23] G. Shani, R. I. Brafman, and S. E. Shimony, “Forward search value
iteration for pomdps,” in in Proc. Int. Jnt. Conf. on Artificial Intelli-
gence, 2007.

[24] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for pomdps,” in Proc. of the Conf. on Uncertainty
in Artificial Intelligence, 2003, pp. 477–484.

[25] J. Hoey, A. von Bertoldi, P. Poupart, and A. Mihailidis, “Assisting per-
sons with dementia during handwashing using a partially observable
markov decision process,” in in Proc. Int. Conf. on Vision Systems,
2007.

[26] S. Thrun, “Monte carlo POMDPs,” in Advances in Neural Information
Processing Systems 12, S. Solla, T. Leen, and K.-R. Müller, Eds. MIT
Press, 2000, pp. 1064–1070.

[27] N. Roy, “Finding approximate pomdp solutions through belief com-
pression,” Ph.D. dissertation, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, September 2003.

[28] A. Brooks, A. Makarendo, S. Williams, and H. Durrant-Whyte,
“Parametric pomdps for planning in continuous state spaces,” Robotics
& Autonomous Systems, vol. 54, no. 11, pp. 887–897, 2006.

[29] E. Brunskill, L. Kaelbling, T. Lozano-Perez, and N. Roy, “Continuous-
state pomdps with hybrid dynamics,” in Int. Symp. on Artificial
Intelligence & Mathematics, 2008.

[30] S. Prentice and N. Roy, “The belief roadmap: Efficient planning in
linear pomdps by factoring the covariance,” in Int. Symp. on Artificial
Intelligence & Mathematics, 2007.

[31] J. Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty
using iterative local optimization in belief space,” Int. Journal Robotics
Research - IJRR, 2012.

[32] J. Berg and S. Patil and R. Alterovitz, “Motion planning under
uncertainty using differential dynamic programming in belief space,”
in Proc. Int. Symposium of Robotics Research - ISRR, 2011.

[33] S. Patil, J. Berg, and R. Alterovitz, “Motion planning under uncertainty
in highly deformable environments,” in Proc. Robotics: Science and
Systems - RSS, 2011.

[34] S. Patil, J. Berg, R. Alterovitz, “Estimating probability of collision
for safe planning under gaussian motion and sensing uncertainty,” in
Proc. IEEE Int. Conf. on Robotics and Automation - ICRA, 2012.

[35] Z. Lim, D. Hsu, and W. Lee, “Monte carlo value iteration with
macro-actions,” in Advances in Neural Information Processing Systems
(NIPS), 2011.

[36] E. Hansen, “Solving pomdps by searching in policy space,” in Proc.
AAAI Conf. on Artificial Intelligence, 1998, pp. 211–219.

[37] G. Shani, “Evaluating point-based pomdp solvers on multicore ma-
chines,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 40, no. 4, pp. 1062 –1074, aug. 2010.

[38] J. Pan and D. Manocha, “Gpu-based parallel collision detection for
real-time motion planning,” in Workshop on Algorithmic Foundation
of Robotics (WAFR), 2010.

[39] J. Pan, D. Manocha, “Gpu-based parallel collision detection for fast
motion planning,” in Int. Journal of Robotics Research (IJRR), 2012.

[40] C. Park, J. Pan, and D. Manocha, “Gpu-based parallel collision
detection for real-time motion planning,” in Int. Conf. on Automated
Planning and Scheduling (ICAPS), 2012.

[41] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based
pomdp solvers,” Autonomous Agents and Multi-Agent Systems,
pp. 1–51, 2012. [Online]. Available: http://dx.doi.org/10.1007/
s10458-012-9200-2

[42] M. Hauskrecht, “Value function approximations for partially observ-
able markov decision processes,” Journal of Artificial Intelligence
Research, vol. 13, pp. 33–95, 2000.

[43] R. E. Bellman, “Dynamic programming,” in Princenton University
Press, 1957.

[44] NVIDIA, “Cuda programming guide 4.2,”
http://developer.nvidia.com/cuda, 2012.

[45] E. Hansen and R. Zhou, “Synthesis of hierarchical finite-state con-
trollers for pomdps,” in Int. Conf. on Automated Planning and Schedul-
ing, 2003.

[46] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning
algorithms for pomdps,” Journal of Articial Intelligence Research,
2008.

[47] H. S. Chang, R. Givan, and E. K. P. Chong, “Parallel rollout for online
solution of partially observable markov decision processes,” Discrete
Event Dynamic Systems, 2004.

