Deriving Upper and Lower Bounds of Hausdorff Distance for Polygonal Models

Min Tang and Young J. Kim

Dept of Computer Science and Engineering Ewha Womans Univ., Seoul, Korea {tangmin, kimy}@ewha.ac.kr

In this document, we prove the lemmas and theorems presented in the paper, "Interactive Hausdorff Distance Computation for Polygonal Models".

DEFINITION 1

Given two compact sets \mathcal{A}, \mathcal{B} in \mathbb{R}^3 , the one-sided Hausdorff distance¹ from \mathcal{A} to \mathcal{B} is defined as:

$$h(\mathcal{A}, \mathcal{B}) \equiv \max_{\mathbf{a} \in \mathcal{A}} \min_{\mathbf{b} \in \mathcal{B}} d(\mathbf{a}, \mathbf{b}), \tag{1}$$

where $d(\cdot, \cdot)$ denotes the Euclidean distance operator in \mathbb{R}^3 . Then, the two-sided Hausdorff distance between \mathcal{A} and \mathcal{B} is defined as:

$$H(\mathcal{A}, \mathcal{B}) \equiv \max(h(\mathcal{A}, \mathcal{B}), h(\mathcal{B}, \mathcal{A})).$$
 (2)

From the above definition, one can derive the following theorem for polygonal models.

THEOREM 1

If \mathcal{A} , \mathcal{B} are polygonal models, and $\Delta^{\mathcal{A}}$ denotes a triangle in \mathcal{A} , then

$$h(\mathcal{A}, \mathcal{B}) = \max_{\Delta^{\mathcal{A}} \in \mathcal{A}} \left(h(\Delta^{\mathcal{A}}, \mathcal{B}) \right) \tag{3}$$

From Theorem 1, computing h(A, B) boils down to computing $h(\Delta^A, B)$. Now we show lemmas related to bounds of Hausdorff distance metric.

LEMMA 1

Given compact sets A, A', B, B' with $A \subseteq A'$ and $B \subseteq B'$, the following inequalities hold:

$$h(\mathcal{A}, \mathcal{B}') \le h(\mathcal{A}, \mathcal{B}) h(\mathcal{A}, \mathcal{B}) \le h(\mathcal{A}', \mathcal{B})$$
(4)

¹Whenever distinguishable from the context, we simply refer to Hausdorff distance as one-sided Hausdroff distance throughout the paper.

Proof Since $\mathcal{B} \subseteq \mathcal{B}'$ and $\mathcal{B}' - \mathcal{B} \neq \emptyset$,

$$\begin{split} &h(\mathcal{A}, \mathcal{B}') \\ &= \max_{\mathbf{p} \in \mathcal{A}} (d(\mathbf{p}, \mathcal{B}')) \\ &= \max_{\mathbf{p} \in \mathcal{A}} (\min(d(\mathbf{p}, \mathcal{B}), d(\mathbf{p}, \mathcal{B}' - \mathcal{B}))) \\ &\leq \max_{\mathbf{p} \in \mathcal{A}} (d(\mathbf{p}, \mathcal{B})) \\ &= h(\mathcal{A}, \mathcal{B}) \end{split}$$

Let $\mathbf{q} \in \mathcal{A}$ be a point realizing $d(\mathbf{q}, \mathcal{B}) = h(\mathcal{A}, \mathcal{B})$. Since $\mathcal{A} \subseteq \mathcal{A}'$ and $\mathbf{q} \in \mathcal{A}'$,

$$h(\mathcal{A}',\mathcal{B}) = \max_{\mathbf{p} \in \mathcal{A}'} (d(\mathbf{p},\mathcal{B})) \ge d(\mathbf{q},\mathcal{B}) = h(\mathcal{A},\mathcal{B})$$

Based on the above lemma, we present a simple way to compute upper and lower bounds of the one-sided Hausdorff distance between polygonal models.

LEMMA 2

Let $\mathbf{v}_i^{\mathcal{A}}(i=1,2,3)$ represent one of the three vertices in a triangle $\Delta^{\mathcal{A}} \in \mathcal{A}$. Then, upper and lower bounds of $h\left(\Delta^{\mathcal{A}},B\right)$ can be obtained as:

$$\overline{h}(\Delta^{\mathcal{A}}, \mathcal{B}) = \min_{\Delta_{\mathcal{B}} \in \mathcal{B}} \left(h(\Delta^{\mathcal{A}}, \Delta^{\mathcal{B}}) \right)
\underline{h}(\Delta^{\mathcal{A}}, \mathcal{B}) = \max_{i=1,2,3} \left(d(\mathbf{v}_i^{\mathcal{A}}, \mathcal{B}) \right)$$
(5)

Proof Since $\mathbf{v}_i \in \mathcal{A}$ and $h(\mathbf{v}_i^{\mathcal{A}}, \mathcal{B}) = d(\mathbf{v}_i^{\mathcal{A}}, \mathcal{B})$, we have $d(\mathbf{v}_i^{\mathcal{A}}, \mathcal{B}) \leq h(\Delta^{\mathcal{A}}, \mathcal{B})$ for all i. Thus, $\max_i (d(\mathbf{v}_i^{\mathcal{A}}, \mathcal{B})) \leq h(\Delta^{\mathcal{A}}, \mathcal{B})$. Moreover, for all $\Delta^{\mathcal{B}} \in \mathcal{B}$, we have $h(\Delta^{\mathcal{A}}, \mathcal{B}) \leq h(\Delta^{\mathcal{A}}, \Delta^{\mathcal{B}})$. Thus, $h(\Delta^{\mathcal{A}}, \mathcal{B}) \leq \min_{\Delta_{\mathcal{B}} \in \mathcal{B}} (h(\Delta^{\mathcal{A}}, \Delta^{\mathcal{B}}))$.

THEOREM 2

We have the upper bound \overline{h} and lower bound \underline{h} of h(A, B) as:

$$\overline{h}(\mathcal{A}, \mathcal{B}) = \max_{\Delta^{\mathcal{A}} \in \mathcal{A}} (\overline{h}(\Delta^{\mathcal{A}}, \mathcal{B}))$$

$$\underline{h}(\mathcal{A}, \mathcal{B}) = \max_{\Delta^{\mathcal{A}} \in \mathcal{A}} (\underline{h}(\Delta^{\mathcal{A}}, \mathcal{B}))$$
(6)

Proof The result follows from Lemma 2. \square

Now we prove the lemmas for the Voronoi subdivision method.

LEMMA 3

Given the subdivided triangle $\Delta_s^{\mathcal{A}} \subseteq \Delta^{\mathcal{A}}$, if $\overline{h}\left(\Delta_s^{\mathcal{A}}, \mathcal{B}\right) = d(\mathbf{v}_u^{\mathcal{A}}, \Delta_u^{\mathcal{B}})$ and $\underline{h}\left(\Delta_s^{\mathcal{A}}, \mathcal{B}\right) = d(\mathbf{v}_l^{\mathcal{A}}, \Delta_l^{\mathcal{B}})$ for some $\mathbf{v}_u^{\mathcal{A}}, \mathbf{v}_l^{\mathcal{A}} \in \Delta_s^{\mathcal{A}}$, then $\{\Delta_u^{\mathcal{B}}, \Delta_l^{\mathcal{B}}\} \subseteq \mathbf{L}$ where \mathbf{L} is obtained in the step 1 of subdivision.

Proof Suppose $\Delta_u^{\mathcal{B}} \not\in L$, then $d\left(\Delta^{\mathcal{A}}, \Delta_u^{\mathcal{B}}\right) > \overline{h}(\Delta^{\mathcal{A}}, \mathcal{B})$ by the definition of L. Further, $\overline{h}\left(\Delta_s^{\mathcal{A}}, \mathcal{B}\right) = d(\mathbf{v}_u^{\mathcal{A}}, \Delta_u^{\mathcal{B}}) \geq d\left(\Delta_s^{\mathcal{A}}, \Delta_u^{\mathcal{B}}\right)$ since $\mathbf{v}_u^{\mathcal{A}} \in \Delta_s^{\mathcal{A}}$, and $d\left(\Delta_s^{\mathcal{A}}, \Delta_u^{\mathcal{B}}\right) \geq d\left(\Delta^{\mathcal{A}}, \Delta_u^{\mathcal{B}}\right)$ since $\Delta_s^{\mathcal{A}} \subseteq \Delta^{\mathcal{A}}$. Thus, we have $\overline{h}\left(\Delta_s^{\mathcal{A}}, \mathcal{B}\right) > \overline{h}(\Delta^{\mathcal{A}}, \mathcal{B})$. However, since $\Delta_s^{\mathcal{A}} \subseteq \Delta^{\mathcal{A}}$, $h\left(\Delta_s^{\mathcal{A}}, \mathcal{B}\right) \leq h\left(\Delta^{\mathcal{A}}, \mathcal{B}\right)$. Moreover since $\min_{\Delta_{\mathcal{B}} \in \mathcal{B}} \left(h(\Delta_s^{\mathcal{A}}, \Delta^{\mathcal{B}})\right) \leq \min_{\Delta_{\mathcal{B}} \in \mathcal{B}} \left(h(\Delta^{\mathcal{A}}, \Delta^{\mathcal{B}})\right)$

and $\overline{h}\left(\Delta_{s}^{\mathcal{A}},\mathcal{B}\right)\equiv\min_{\Delta_{\mathcal{B}}\in\mathcal{B}}\left(h(\Delta_{s}^{\mathcal{A}},\Delta^{\mathcal{B}})\right),\overline{h}\left(\Delta^{\mathcal{A}},\mathcal{B}\right)\equiv\min_{\Delta_{\mathcal{B}}\in\mathcal{B}}\left(h(\Delta^{\mathcal{A}},\Delta^{\mathcal{B}})\right)$ using Lemma 2, $\overline{h}\left(\Delta_{s}^{\mathcal{A}},\mathcal{B}\right)\leq\overline{h}(\Delta^{\mathcal{A}},\mathcal{B})$. We have contradiction.

Suppose $\Delta_l^{\mathcal{B}} \not\in L$, then $d\left(\Delta^{\mathcal{A}}, \Delta_l^{\mathcal{B}}\right) > \overline{h}(\Delta^{\mathcal{A}}, \mathcal{B})$ by the definition of L. Further, $\underline{h}\left(\Delta_s^{\mathcal{A}}, \mathcal{B}\right) = d(\mathbf{v}_l^{\mathcal{A}}, \Delta_l^{\mathcal{B}}) \geq d\left(\Delta_s^{\mathcal{A}}, \Delta_l^{\mathcal{B}}\right)$ and thus $\underline{h}\left(\Delta_s^{\mathcal{A}}, \mathcal{B}\right) > \overline{h}(\Delta^{\mathcal{A}}, \mathcal{B})$, which is contradiction since $\underline{h}\left(\Delta_s^{\mathcal{A}}, \mathcal{B}\right) \leq h(\Delta_s^{\mathcal{A}}, \mathcal{B}) \leq h(\Delta_s^{\mathcal{A}}, \mathcal{B})$.

LEMMA 4

Let $\mathbf{v}^{\mathcal{A}}$, $\Delta^{\mathcal{B}}$ be the vertex in \mathcal{A} and triangle in \mathcal{B} that realize $\underline{h}(\Delta^{\mathcal{A}}, \mathcal{B})$; i.e. $\underline{h}(\Delta^{\mathcal{A}}, \mathcal{B}) = d(\mathbf{v}^{\mathcal{A}}, \mathcal{B})$. Further, let us call the closest direction vector from $\mathbf{v}^{\mathcal{A}}$ to $\Delta^{\mathcal{B}}$ as \mathbf{d} such that $||\mathbf{d}|| = d(\mathbf{v}^{\mathcal{A}}, \mathcal{B})$. Then, when we translate $\Delta^{\mathcal{A}}$ along \mathbf{d} by $||\mathbf{d}|| + \varepsilon$, if $\Delta^{\mathcal{A}}$ is completely enclosed by the model \mathcal{B} , the following inequalities hold:

$$\forall \mathbf{p} \in \Delta_{\mathcal{A}}, \ d\left(\mathbf{p}, \mathcal{B}\right) \le \underline{h}\left(\Delta^{\mathcal{A}}, \mathcal{B}\right) + \varepsilon \tag{7}$$

Thus,
$$h\left(\Delta^{\mathcal{A}}, \mathcal{B}\right) = \max_{\mathbf{p} \in \Delta_{\mathcal{A}}} d\left(\mathbf{p}, \mathcal{B}\right) \leq \underline{h}\left(\Delta^{\mathcal{A}}, \mathcal{B}\right) + \varepsilon$$

Proof As illustrated in Fig.1, let $\Delta^{A'}$ be an affine copy of the triangle Δ^{A} after being translated along \mathbf{d} by $||\mathbf{d}|| + \varepsilon$. Further, let \mathbf{p} be any point on Δ^{A} and \mathbf{p}' be the corresponding point on $\Delta^{A'}$. If we denote \mathbf{q} as a point on \mathcal{B} intersected with the line segment \mathbf{pp}' , the following inequality should be satisfied:

$$d(\mathbf{p}, \mathcal{B}) \le d(\mathbf{p}\mathbf{q}) < d(\mathbf{p}\mathbf{p}') = \underline{h}(\Delta^{\mathcal{A}}, \mathcal{B}) + \varepsilon$$

Figure 1: Termination Condition for Closed Models. $\Delta^{\mathcal{A}}$ is enclosed by \mathcal{B} when $\Delta^{\mathcal{A}}$ is translated by $\underline{h}(\Delta^{\mathcal{A}},\mathcal{B}) + \varepsilon$.