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Figure 1: Interactive Hausdorff Distance Computation. Our algorithm can compute Hausdorff distance between complicated models at
interactive rates (the first three figures). Here, the green line denotes the Hausdorff distance. This algorithm can also be used to find
penetration depth (PD) for physically-based animation (the last two figures). It takes only a few milli-seconds to run on average.

Abstract
We present a simple algorithm to compute the Hausdorff distance
between complicated, polygonal models at interactive rates. The
algorithm requires no assumptions about the underlying topology
and geometry. To avoid the high computational and implementa-
tion complexity of exact Hausdorff distance calculation, we approx-
imate the Hausdorff distance within a user-specified error bound.
The main ingredient of our approximation algorithm is a novel
polygon subdivision scheme, called Voronoi subdivision, combined
with culling between the models based on bounding volume hier-
archy (BVH). This cross-culling method relies on tight yet simple
computation of bounds on the Hausdorff distance, and it discards
unnecessary polygon pairs from each of the input models alterna-
tively based on the distance bounds. This algorithm can approxi-
mate the Hausdorff distance between polygonal models consisting
of tens of thousands triangles with a small error bound in real-time,
and outperforms the existing algorithm by more than an order of
magnitude. We apply our Hausdorff distance algorithm to the mea-
surement of shape similarity, and the computation of penetration
depth for physically-based animation. In particular, the penetration
depth computation using Hausdorff distance runs at highly interac-
tive rates for complicated dynamics scene.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems
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Computing a distance measure between geometric models is an
important problem in diverse fields including computer graphics,
computer games, virtual environment, geometric modeling, and
robotics. Various types of distance measures have been extensively
investigated and efficient algorithms have been proposed over the
past two decades [Lin and Manocha 2003]. In particular, because of
their practical importance, fast and reliable algorithms to compute
Euclidean distance (also known as separation distance) have been
proposed by many researchers, and are considered as a solved prob-
lem for polygonal models in R3 [Larsen et al. 2000; Ehmann and
Lin 2001]. In contrast, distance measures appropriate for quantify-
ing the similarity between two polygonal models, such as Hausdorff
distance, have been relatively poorly studied, even though there are
many graphics and computer vision applications that would ben-
efit from such measures. These include shape matching [Alt and
Guibas 2000], mesh simplification [Luebke et al. 2002; Lopez and
Reisner 2008], geometric modeling [Varadhan and Manocha 2004],
model rendering [Alexa et al. 2003], image registration and recog-
nition [Zitová and Flusser 2003; Huttenlocher et al. 1993b], and
face detection [Jesorsky et al. 2001]. However, due to the high com-
putational complexity and difficult implementation of proposed ap-
proaches, very few algorithms exist to compute Hausdorff distance
for polygonal models in R3. Thus, many applications circumvent
this problem: for instance, by using conservative approximations
[Cohen et al. 1996] or by employing other measures [Garland and
Heckbert 1997].

Intuitively speaking, the Hausdorff distance between two models is
the maximum deviation between them. For polygonal models in R3

with O(n) polygons, the expected time taken by the best-known
algorithm to exactly evaluate the Hausdorff distance is O(n3+ε),
where ε > 0 [Alt et al. 2003]. Moreover, this algorithm requires
the computation of a lower envelope of a set of non-linear algebraic
surfaces in R3, which is prone to degeneracies and numerical er-
ror, making it quite challenging to implement for high values of n
[Kettner et al. 2008]. This is hardly a practical algorithm.

MAIN RESULTS We present a fast and simple algorithm to com-
pute the Hausdorff distance between complicated polygonal models
at interactive rates. Our algorithm makes no assumptions about the
underlying topology and geometry of the models. To the best of
our knowledge, this is the first real-time algorithm that can calcu-
late Hausdorff distances between complicated polygonal models.
Avoiding the complexity of exact evaluation of Hausdorff distance,
our algorithm approximates the distance within a user-specified er-
ror bound. It does this by calculating tight upper and lower bounds
to the exact Hausdorff distance value, and then it refines these



bounds by polygon subdivision until the error bound is obtained.
We also prove inclusion properties related to Hausdorff distance
measures, and utilize these properties to perform efficient bounding
volume hierarchy (BVH) culling on the input models. Thus, our
algorithm is able to calculate Hausdorff distance for polygon-soup
models consisting of tens of thousands of triangles in real-time. As
an application of our algorithm, we show how it can rapidly calcu-
late a similarity between polygonal models for shape analysis, and
we also show how to compute penetration depth (PD) efficiently
for physically-based animation. We define the PD as the point of
maximal mutual interpenetration of the two models, which can be
formulated as the Hausdorff distance of the intersection of the two
models. In practice, we show that our PD algorithm takes only a
few milli-seconds to run for complicated scene.

2 Previous Work

Since the seminal work by [Atallah 1983], different algorithms for
calculating Hausdorff distances have been proposed in the litera-
ture, in particular by the computational geometry community. In
this section, we briefly survey work which is directly relevant to
ours, and refer readers to [Alt and Guibas 2000] for a more exten-
sive survey of the field. Broadly, the literature on Hausdorff dis-
tance algorithms can be classified based on their objectives and the
types of models dealt with as follows:

Point-Sets Given two point-sets with n and m points respec-
tively, a brute-force algorithm to compute the Hausdorff distance
requires O(nm) time. For R2, [Alt et al. 1995] presented a method
based on the Voronoi diagram which requires O((n+m) log(n+
m)) running time. For R3, [Alt et al. 2003] proposed a randomized
algorithm with O((n+m+ (nm)

3
4 ) log(n+m)) expected time.

Polytopes and Polygonal Models For R2, [Atallah 1983] pre-
sented a linear-time algorithm for convex polygons. For simple,
non-convex polygons with n and m vertices, [Alt et al. 1995] pre-
sented an O((n + m) log(n + m))-time algorithm based on an
observation that the Hausdorff distance can only be realized at the
points of intersection between Voronoi boundary surfaces and the
polygon edges. In R3, for polygon-soup models with n triangles,
[Godau 1998; Alt et al. 2003] presented deterministic and random-
ized algorithms that run respectively inO(n5) andO(n3+ε), where
ε > 0. [Llanas 2005] proposed an algorithm using random cover-
ing, and also demonstrated implementation results for simple, con-
vex ellipsoids. Recently, more practical algorithms have been put
forward, but all these algorithms only approximate the Hausdorff
distance due to the complexity of the exact computation. [Guthe
et al. 2005] use polygon subdivision to approximate the solution
within an error bound. [Cignoni et al. 1998; Aspert et al. 2002]
sample a polygonal surface to approximate the distance, but no
sampling analysis is provided. However, the performance of these
algorithms is still too slow for interactive applications: they require
tens of seconds or more for models of practical size.

Hausdorff Distance under Motion An important variation of
the Hausdorff distance problem is that of finding the minimal Haus-
dorff distance when one of the models is allowed to move. This
problem is known as ‘geometric matching’ under the Hausdorff
distance metric. For R2, [Huttenlocher et al. 1992; Huttenlocher
et al. 1993a] presented methods based on upper envelopes of a
Voronoi diagram, and dynamic Voronoi diagrams which can find
matches under translation and rigid motions. [Chew et al. 1997]
proposed methods of matching points and line segments under rigid
motions using parametric searching. [Agarwal et al. 2003] also

used a parametric searching technique to match points, balls and
unions of balls under translation in R3. However, none of these al-
gorithms have been implemented in practice. The complexities of
different matching problems in R2 are summarized by [Rucklidge
1996]. [Goodrich et al. 1999] implemented approximate matching
for point-sets under rigid motions in R2 and R3 using approximate
nearest-neighborhood search. No matching algorithm is known to
have been implemented for polygon-soup models in R3.

3 Preliminaries and Overview

In this section, we present some preliminary concepts and theorems
related to our Hausdorff distance algorithm before presenting the
algorithm itself.

3.1 Problem Formulation

We define our problem of Hausdorff distance computation as fol-
lows:

DEFINITION 1
Given two compact sets A and B in R3, the one-sided Hausdorff
distance1 from A to B is defined as:

h(A,B) ≡ max
a∈A

(
min
b∈B

d(a,b)

)
, (1)

where d(·, ·) denotes the Euclidean distance operator in R3. Then,
the two-sided Hausdorff distance between A and B is defined as:

H(A,B) ≡ max (h(A,B), h(B,A)) . (2)

From the above definition, one can trivially derive the following
theorem for polygonal models:

THEOREM 1
If A and B are polygonal models, and ∆A denotes a triangle in A,
then

h(A,B) = max
∆A∈A

(
h(∆A,B)

)
. (3)

From Theorem 1, computing h(A,B) boils down to computing
h(∆A,B). Now we will present lemmas related to the bounds of
the Hausdorff distance metric, which will plays a vital role in cross-
culling in Sec. 4.

LEMMA 1
Given compact sets A,A′,B,B′, with A ⊆ A′ and B ⊆ B′, the
following inequalities hold [Tang and Kim 2009]:

h(A,B′) ≤ h(A,B)
h(A,B) ≤ h(A′,B).

(4)

Based on the above lemma, we present a simple way to compute
the upper and lower bounds of the one-sided Hausdorff distance
between polygonal models.

LEMMA 2
Let vAi (i = 1, 2, 3) represent one of the three vertices of a triangle
∆A ∈ A. Then, the upper and lower bounds of h

(
∆A, B

)
can be

obtained as follows [Tang and Kim 2009]:

h(∆A,B) = min
∆B∈B

(
h

(
∆A,∆B

))
h(∆A,B) = max

i=1,2,3

(
d

(
vAi ,B

)) (5)

1In most places, where it is clear, we mean one-sided Hausdorff distance
when we refer to Hausdorff distance.
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Figure 2: Hausdorff Distance Computation Algorithm.

Notice that the lower bound h(∆A,B) (or d(vAi ,B)) can easily
be obtained by using a known proximity package such as the PQP
library [Larsen et al. 2000], with minor modifications, since this
computation only requires Euclidean distance from points to ob-
jects. Moreover, since h

(
∆A,∆B

)
= max

i

(
d

(
vAi ,∆

B)), where

vAi is a vertex in ∆A [Atallah 1983], the upper bound h(∆A,B)
can also be obtained simply.

THEOREM 2
We have the upper bound h and the lower bound h of h(A,B) as
follows:

h(A,B) = max
∆A∈A

(
h(∆A,B)

)
h(A,B) = max

∆A∈A

(
h(∆A,B)

) (6)

Proof The result follows from Theorem 1 and Lemma 2. �

3.2 Overview

Based on Theorem 1, the main step of our algorithm is to calculate
h(∆Ai ,B) for each ∆Ai ∈ A, 1 ≤ i ≤ |A| and then to maxi-
mize it. However, computing h(∆Ai ,B) exactly is expensive and
is avoided by our algorithm. We therefore proceed by making the
significant observation that some triangle ∆Aj may not contribute to
the final value of h(A,B), if there exists another triangle ∆Ai such
that h(∆Aj ,B) < h(∆Ai ,B). More precisely, let us call hi(A,B)
as the current lower bound of h(A,B) after the first i triangles in
A have been considered such that:

hi(A,B) ≡ max
1≤j≤i

h(∆Aj ,B). (7)

Then, when we consider the (i + 1)th triangle ∆Ai+1, we com-
pute its upper bound h(∆Ai+1,B) and compare it against hi(A,B).
If h(∆Ai+1,B) < hi(A,B), then we can safely cull ∆Ai+1; oth-
erwise, we calculate a lower bound h(∆Ai+1,B), and update the
current lower bound, and also keep the triangle ∆Ai+1 to calculate
h(∆Ai+1,B) more precisely. We call this process culling on model
A (more details are provided in Sec. 4.1).

Further, when computing an upper bound h(∆A,B), it is not neces-
sary to consider h(∆A,∆B) for all triangles ∆B in B, since we are
only interested in the minimum of h(∆A,∆B) over all ∆B ∈ B.
Similar reasoning can be applied to the lower bound computation.
This step of culling on model B will be explained in Sec. 4.2.

After completing this cross-culling on A and B, we have a list
of triangles ∆A which survived the cull, as well as their individ-
ual upper and lower bounds h(∆A,B), h(∆A,B). We can also
compute the upper and lower bounds h(A,B), h(A,B) of h(A,B)

from h(∆A,B), h(∆A,B), as shown in Theorem 2. Then, if there
is a triangle ∆A such that h(∆A,B) < h(A,B), it cannot con-
tribute to h(A,B), and we can further remove these triangles. For
the remaining triangles ∆A, we need to compute their Hausdorff
distances within the user-specified error bound ε. We use a novel
Voronoi subdivision method to evaluate h(A,B) accurately (more
details are given in Sec. 5). In summary, our algorithm to compute
h(A,B) consists of three steps as illustrated in Fig.2: (1) culling on
modelA, (2) culling on model B, and (3) polygon subdivision. We
present the notation used throughout this paper in Table 1.

Notation Meaning

h(A,B) the one-sided Hausdorff distance fromA to B
H(A,B) the two-sided Hausdorff distance betweenA and B

h(A,B), h(A,B) the upper and lower bounds on h(A,B)

∆A, vA a triangle in modelA and a vertex of ∆A

hi(A,B) the current upper and lower bounds of h(A,B) after
hi(A,B) considering the triangles ∆A1 , ∆A2 · · ·∆

A
i inA (Eq.7)

hi(∆
A,B) the current upper and lower bounds of h(∆A,B) after

hi(∆
A,B) considering the triangles ∆B1 , ∆B2 · · ·∆

B
i in B (Eq.12,13)

d(A,B) the Euclidean distance betweenA and B
BV(∆A) a bounding volume that contains ∆A

Table 1: Notation.

4 Cross-Culling

The purpose of cross-culling is to conservatively to find a set of
triangles ∆A inA that do not contribute to h(A,B) (culling onA),
and a set of triangles ∆B in B that do not contribute to h(∆A,B)
(culling on B), where ∆A are the triangles that have survived the
cull on A.

4.1 Culling on Model A

As explained in the previous section, some triangles ∆Aj need not
be considered in the computation of h(∆Aj , B) if its upper bound
h(∆Aj ,B) is less than the current global lower bound hi(A,B).
We can extend this culling to a set of triangles using a bounding
volume.

Let BV(∆Aj ) be a volume that bounds a set of triangles ∆Aj (i.e.
∆Aj ⊂ BV(∆Aj )). Using Lemma 1, we get

h(∆Aj ,B) ≤ h
(
BV(∆Aj ),B

)
≤ h

(
BV(∆Aj ),q

)
, (8)

where q is some point in B. Thus, if h(BV(∆Aj ),q) is less than the
current lower bound hi(A,B), we can cull all the triangles ∆Aj that
are included in the bounding volume BV(∆Aj ). To be even more ef-
fective, this culling procedure can be executed hierarchically using



a standard bounding volume hierarchy (BVH) such as swept sphere
volumes (SSV) [Larsen et al. 2000].

In fact, our choice of bounding volume is SSV. The SSV con-
sists of PSS, LSS, and RSS which are respectively defined as the
Minkowski sums of a point, a line, and a rectangle with a sphere
(e.g. Fig.3). The reason for our choice of SSV is twofold. First,
using SSV, one can efficiently calculate the Euclidean distances be-
tween polygon-soup models, and this operation is frequently called
for in our Hausdorff distance computation. Second, Eq.8 can be
evaluated simply. More precisely, we set q to be the point closest
to BV(∆Aj ) in B, and then h(BV(∆Aj ),q) can be obtained simply
by considering the Euclidean distance between q and the genera-
tor vertices that comprise the SSV. In the case of a rectangle swept
sphere (RSS), for example, h(BV(∆Aj ),q) is obtained as follows:

h
(
BV(∆Aj ),q

)
= max

ci

(d (ci,q)) + r, (9)

where ci, i = 1, · · · , 4 are the four vertices of the generator prim-
itive rectangle of the RSS, and r is the radius of the swept sphere
used to construct the RSS, as shown in Fig.3.

r
c1

c3

c2

c4

Figure 3: Rectangle Swept Sphere.

The pseudo-code for this procedure is Alg.1. Once we have filtered
out the triangles that have no chance of contributing to h(A,B),
we attempt to find tight upper and lower bounds on the remaining
triangles using Lemma 2. In the next section, we explain how we
can calculate these bounds efficiently.

4.2 Culling on Model B

The lower and upper bounds of h(∆A,B) in Lemma 2 can be re-
formulated as follows:

h
(
∆A,B

)
= min

∆B∈B

(
max

vA∈∆A

(
d

(
vA,∆B

)))
(10)

h
(
∆A,B

)
= max

vA∈∆A

(
min

∆B∈B

(
d

(
vA,∆B

)))
. (11)

Similarly, as in Sec. 3.2, we can define the current upper bound
hi(∆

A,B) of h(∆A,B), after considering the first i triangles in B,
as follows:

hi(∆
A,B) ≡ min

1≤j≤i

(
max

vA∈∆A

(
d

(
vA,∆Bj

)))
. (12)

As can be seen from Eq.10, we need to reduce hi
(
∆A,B

)
to get

h(∆A,B). Then the following inequality holds for a set of triangles
∆Bj in B and for its bounding volume BV(∆Bj ):

d
(
∆A, BV

(
∆Bj

))
≤ d

(
∆A,∆Bj

)
≤ max

vA∈∆A

(
d

(
vA,∆Bj

))
.

Suppose d(∆A, BV(∆Bj )) > hi(∆
A,B). Then,

max
vA∈∆A

(d(vA,∆Bj )) > hi(∆
A,B). Thus, neither ∆Bj nor

Algorithm 1 CullingOnA
Input: nA: BVH node in A, nB.root: BVH root node of B,
hi(A,B).
Output: hi (A,B) and hi (A,B).

1: if nA is a leaf node then
2: {∆A := the triangle included in nA}
3:

(
h(∆A,B), h(∆A,B)

)
=CullingOnB(∆A, nB.root,∞, (∞,∞,∞));

4: if h(∆A,B) > hi(A,B) then
5: hi(A,B) = h(∆A,B);
6: end if
7: if h(∆A,B) > hi(A,B) then
8: hi(A,B) = h(∆A,B);
9: end if

10: return
(
hi (A,B) , hi (A,B)

)
;

11: else
12: d1 = h(nA.leftchild,q); {Using Eq.9}
13: d2 = h(nA.rightchild,q); {Using Eq.9}
14: if d1 > hi(A,B) then
15:

(
hi (A,B) , hi (A,B)

)
=CullingOnA(nA.leftchild, nB.root, hi(A,B));

16: end if
17: if d2 > hi(A,B) then
18:

(
hi (A,B) , hi (A,B)

)
=CullingOnA(nA.rightchild, nB.root, hi(A,B));

19: end if
20: return

(
hi (A,B) , hi (A,B)

)
;

21: end if

any triangle contained in BV(∆Bj ) can realize h(∆A,B). There-
fore, all the triangles in BV(∆Bj ) (including ∆Bj ) can be culled
away.

Now, in Eq.11, to obtain h(∆A,B), let us express the current lower
bound hi(∆

A,B) of h(∆A,B), after considering ith triangle in B
as follows:

hi(∆
A,B) ≡ max

vA∈∆A

(
min

1≤j≤i

(
d

(
vA,∆Bj

)))
. (13)

We also need to reduce the value of hi
(
∆A,B

)
for a given tri-

angle ∆A and its vertices vA. Suppose d
(
∆A, BV

(
∆Bj

))
>

hi
(
∆A,B

)
, then d

(
∆A, BV

(
∆Bj

))
> hi

(
∆A,B

)
since

hi
(
∆A,B

)
≤ hi

(
∆A,B

)
. Thus, neither ∆Bj nor any triangle in-

cluded in BV
(
∆Bj

)
can contribute to h

(
∆A,B

)
; so these triangles

can be culled away.

In summary, for a given ∆A, the inequality d
(
∆A, BV

(
∆Bj

))
>

hi
(
∆A,B

)
is our culling condition on model B to find a set of

triangles that contribute neither to h
(
∆A,B

)
nor to h

(
∆A,B

)
.

4.2.1 Group Traversal

To compute hi(∆A,B), for a given triangle ∆A, the culling tech-
nique above requires the calculation of d(vA,B) for all three ver-
tices vA in ∆A, which in turn requires us to find the closest tri-
angle in B to vA, which we call ∆B (see Eq.12). However, re-
peated computation of d(vA,B) for different vertices of the same
triangle ∆A is wasteful when several vertices in A are all closest
to a set of nearby triangles in B, since finding d(vA,B) requires
a separate, top-down BVH traversal, as illustrated in Fig.4-(a). In
order to speed up this computation, we partition and cluster the tri-
angles in B, and enclose each cluster with a bounding volume; in



our implementation, we always put four or fewer triangles into one
leaf-level bounding volume. Then, we perform a closest-distance
query between ∆A and the clustered bounding volumes. Once we
have found the minimal distance from ∆A to a leaf-level bounding
volume BVB, and if it is less than hi(∆A,B), we test all possible
pairwise combinations of ∀vA ∈ ∆A and ∀∆B ⊂ BVB to find
d(vA,B), as shown in Fig.4-(b). This group traversal concept is
reminiscent of the ray-packet idea that uses BVH for ray-tracing
[Wald et al. 2007]. The pseudo-code for culling on model B with
group traversal is Alg.2.

Algorithm 2 CullingOnB
Input: ∆A, nB: BVH node in B, hi(∆A,B), d: temp. vector for
hi(∆

A,B).
Output: hi(∆

A,B), hi(∆A,B).
1: {Group Traversal}
2: if # of triangles in nB ≤ 4 then
3: {Using Eq.10}

4: d1 = min
∆B∈nB

(
max

vA∈∆A

(
d

(
vA,∆B

)))
;

5: if d1 < hi(∆
A,B) then

6: hi(∆
A,B) = d1;

7: end if
8: {Using Eq.11}
9: for all vA ∈ A do

10: d.vA = min
∆B∈nB

(
d

(
vA,∆B

))
;

11: if d.vA < d.vA then
12: d.vA = d.vA;
13: end if
14: end for
15: hi(∆

A,B) = max
vA∈∆A

(
d.vA

)
;

16: return
(
hi(∆

A,B), hi(∆
A,B)

)
;

17: else
18: d1 = d(∆A, nB.leftchild);
19: d2 = d(∆A, nB.rightchild);

20: if d1 ≤ hi(∆A,B) then
21:

(
hi(∆

A,B), hi(∆
A,B)

)
=CullingOnB(∆A, nB.leftchild, hi(∆

A,B),d);
22: end if
23: if d2 ≤ hi(∆A,B) then
24:

(
hi(∆

A,B), hi(∆
A,B)

)
=CullingOnB(∆A, nB.rightchild, hi(∆

A,B),d);
25: end if
26: return

(
hi(∆

A,B), hi(∆
A,B)

)
;

27: end if

5 Subdivision

Now we need to compute the Hausdorff distance h(∆A,B) of those
triangles ∆A inAwhich survived the cross-culling. In other words,
if h(∆A,B) for a triangle ∆A is greater than the global lower
bound h(A,B) in Eq.6, we need to evaluate h(∆A,B). However,
as we have already mentioned, since exact evaluation of h(∆A,B)
is costly, we approximate it within a user-specified error bound ε.
The main idea is that we subdivide ∆A until the difference between
the upper and lower bounds of the Hausdorff distance of ∆A is less
than ε (i.e. |h(∆A,B) − h(∆A,B)| ≤ ε) or until the exact Haus-
dorff distance is obtained.

BVH 

∆

∆ 

(a) Normal Traversal

∆

BVH 

BV

(b) Group Traversal

Figure 4: Group Traversal for BVH. To compute d(vA,B) for all
vA ∈ ∆A, (a) we can perform individual, top-down BVH traver-
sal, or (b) a single top-down BVH group traversal for ∆A and the
bounding volume BVB.

5.1 Algorithm

When we subdivide a triangle ∆A into four sub-triangles (a set of
three triangles ∆As plus a single triangle ∆Ac ) as illustrated in Fig.5-
(a), we can apply the culling and bound computation techniques,
already explained in Sec. 4.1 and 4.2, to the sub-triangles. And,
we can further optimize this process by utilizing the proximity in-
formation obtained during the bound computation for ∆A, since
we expect quite a high coherence between the bounds of ∆A and
the triangles ∆As and ∆Ac . The subdivision process is executed as
follows:

1. Given ∆A and its upper bound h(∆A,B), we first find a
set of triangles L in B such that ∀∆B ∈ L, d

(
∆A,∆B

)
≤

h(∆A,B) using the BVH traversal. Note that the size of L is
very small since h(∆A,B) ' d(∆A,B).

2. The triangle ∆A is subdivided along each edge into the four
sub-triangles ∆As and ∆Ac as illustrated in Fig.5-(a) (more de-
tails are in Sec. 5.2).

3. The upper and lower bounds of ∆As could be computed us-
ing Eqs.10 and 11; however, we only use the set L instead of
the entire set B as explained below, and this process is quite
efficient since |L| << |B|. Lemma 3 validates this process.

• We first compute the bounds of the central triangle ∆Ac
as follows:

h(∆Ac ,B) = max
vA∈∆Ac

(
min
∆B∈L

(
d

(
vA,∆B

)))
h(∆Ac ,B) = min

∆B∈L

(
max

vA∈∆Ac

(
d

(
vA,∆B

)))
.

• The bounds of the other three sub-triangles ∆As are ob-
tained in a similar way to the above from the set L. Note
that the closest distance d(vA,B) from the vertices vA

of the triangle ∆A to the model B can be reused for the
bounds of the sub-triangles ∆As , since the vertices vA

are shared by ∆A and ∆As .

4. We repeat steps of 2 and 3 until one of the following condi-
tions is met:

• If the triangles closest to all the vertices in ∆A are the
same, then the subdivision terminates for ∆A, since the
upper and lower bounds are identical: i.e. h(∆A,B) =

h(∆A,B). This termination condition is also used by
[Guthe et al. 2005]. In this case, we have the exact
Hausdorff distance h(∆A,B).



• The difference between the lower and upper bounds
becomes less than the user-defined error bound: i.e.
|h(∆A,B)− h(∆A,B)| ≤ ε.

• (Optional) If the models A and B are both closed, we
check whether ∆A is enclosed by B when translated
by d(vA,B) + ε as described in Lemma 4 below and
in Fig.6. If so, the user-defined accuracy ε has already
been achieved by h(∆A,B), and thus no more subdivi-
sion is required.
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Figure 5: Voronoi Subdivision. (a) The triangle ∆A is subdivided
into four sub-triangles. (b) A new vertex v′ on an edge v1v2 is the
intersection of the bisector surface P of ∆B1 ,∆

B
2 and v1v2.

LEMMA 3
Given the subdivided triangle ∆As ⊆ ∆A, if h

(
∆As ,B

)
=

d(vAu ,∆
B
u ) and h

(
∆As ,B

)
= d(vAl ,∆

B
l ) for some vAu ,v

A
l ∈

∆As , then {∆Bu ,∆Bl } ⊆ L, where L is obtained in Step 1 [Tang
and Kim 2009].

LEMMA 4
Let vA and ∆B respectively be the vertex inA and the triangle in B
that realize h(∆A,B): i.e. h(∆A,B) = d(vA,B). Further, let us
refer to the closest direction vector from vA to ∆B as d, such that
||d|| = d(vA,B). Then, when we translate ∆A by ||d||+ ε along
d, and if ∆A is completely enclosed by the model B, the following
inequality holds:

∀p ∈ ∆A, d (p,B) ≤ h
(

∆A,B
)

+ ε. (14)

Thus, h
(
∆A,B

)
= max

p∈∆A
d (p,B) ≤ h

(
∆A,B

)
+ ε. [Tang and

Kim 2009].
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Figure 6: Termination Condition for Closed Models. ∆A is en-
closed by B when ∆A is translated by h(∆A,B) + ε.

5.2 Voronoi Subdivision

One simple way to subdivide ∆A in Step 3 of the previous section is
simply to bisect each edge in ∆A until the termination condition is
met, as proposed by [Guthe et al. 2005]. However, one can employ
a more efficient method with the aim of terminating the subdivision
early. The main observation here is that when all the vertices in

∆A are projected into the same triangle in B, no more subdivision
is necessary. Thus, we want to add a new vertex along an edge
such that this new vertex is projected into the same triangle as the
previous vertices are projected.

More specifically, as shown in Fig.5-(b), let v1v2 be an edge with
end-vertices v1 and v2 that needs to be subdivided, since v1 and
v2 are projected into different triangles, namely ∆B1 and ∆B2 , re-
spectively. Then, we want to add a new vertex v′ on the edge v1v2

such that v′ is equidistant from ∆B1 and ∆B2 ; i.e. d(v′,∆B1 ) =
d(v′,∆B2 ). In other words, we want to find an intersection point be-
tween the bisector surface P (or Voronoi boundary) of ∆B1 and ∆B2
and the edge v1v2. Since computing a bisector surface for trian-
gles is relatively expensive, we conservatively find a vertex v′ that
is equidistant from the planes embedding ∆B1 and ∆B2 , by solving a
simple linear equation. We find this method works well in practice.

6 Two-sided Hausdorff Distance

So far, we have described an efficient method to compute h(A,B).
A simple way to compute the two-sided Hausdorff distance
H(A,B) is to calculate h(A,B) and h(B,A) independently and
take their maximum. However, one can find H(A,B) more effi-
ciently by exploiting the inter-dependency between the computa-
tion of h(A,B) and that of h(B,A). More specifically, we first
compute h(A,B) using the technique explained in Secs. 4 and 5,
and then use the following observations to accelerate the computa-
tion of h(B,A):

• Since h(A,B) ≤ H(A,B), we can use h(A,B) to initial-
ize the current lower bound h0(B,A) of h(B,A). This gives
much better culling than the trivial lower bound h0(B,A) =
0 for the first cull of Sec. 4.1.

• In computing h(A,B), the second cull of Sec. 4.2 requires
finding many closest triangles inA and B. We can cache these
pairs and reuse them in the second cull of h(B,A).

7 Results and Discussions

We will now present some results obtained with our algorithm, and
compare its performance against other existing algorithm. We also
explain how we can apply our algorithm to the computation of pen-
etration depth. Finally, we explain some of the limitations of our
algorithm.

7.1 Implementation and Benchmarks

We implemented our Hausdorff distance algorithm using C++ on a
Windows XP PC, equipped with an Intel 2.6GHz CPU and 2.7GB
of memory. Our implementation has not been fully optimized. We
used modified code from the public-domain proximity library PQP
[Larsen et al. 2000] for point/object distance calculations, and use
the CGAL library2 of graph data-structures for computing penetra-
tion depths. We benchmarked our Hausdorff distance algorithm us-
ing models of different complexities, ranging from 2.2K to 1.3M
triangles, as shown in Fig.7. More specifically, we placed two
models in space, initially separated by approximately three times
their longest dimension. As we translated one of the models to-
ward the other, we computed the two-sided Hausdorff distance be-
tween them, measured the timings and averaged them. Throughout
the entire experiments, we set the user-specified bound ε as 10−4.
We repeated this test for different combinations of the models, as
shown in Figs.1 and 8. The timing statistics as well as cross-culling

2http://www.cgal.org



Figure 7: Benchmarking Models. From left to right (with triangle counts): Bunny1 (16.7K), Bunny2 (69.7K), Bird1 (2.2K), Bird2 (6.2K),
Fish1 (11K), Fish2 (36.5K), Puma1 (8.2K), Puma2 (7.1K), Watch1 (3.8K), Watch2 (38.1K), Lion (1.3M), Dog (3.2K)

Figure 8: Hausdorff Distance Computation Results. The green
line denotes the Hausdorff distance result.

rates are given in Table 2. As can be seen from the table, our algo-
rithm takes only a fraction of a second, even for very complicated
models, and cross-culling is effective, with a rate of over 99% for
most benchmarks. This means that fewer than 1% of triangles need
to be subdivided. We also observed that the maximum number of
Voronoi subdivision is typically less than ten, and is sensitive to ε.
In Fig.9, we show the timing of each step of our algorithm.

Benchmark
Timing (msec) Culling Rates (%)

Avg. Min. Max. OnA On B
Bird1/Bird2 2.57 0.10 6.37 99.27 99.42

Watch1/Watch2 6.92 1.50 31.31 99.93 97.60
Puma1/Puma2 6.10 1.63 21.28 99.18 98.43

Bunny1/Bunny2 21.95 0.18 948.40 97.12 99.77
Fish1/Fish2 18.77 1.24 69.22 99.59 99.60
Dog/Lion 84.31 0.04 670.60 98.03 99.99

Table 2: Performance of the Two-sided Hausdorff Distance Com-
putation.

7.2 Comparative Performance

We compared the performance of our algorithm against that due to
[Guthe et al. 2005], which is known to be the fastest practical al-
gorithm for polygonal models. For this comparison, we overlapped
two static models such that their two-sided Hausdorff distance is
less than 3% of the longest dimension of the models, and ran both
algorithms. [Guthe et al. 2005]’s algorithm and ours share some
similarities, but there are the following major differences:

• [Guthe et al. 2005] use octree data structures for proximity
computations, whereas we rely on BVH. Thus our algorithm
consumes much less memory for a similar result. Moreover,
the current implementation of [Guthe et al. 2005]’s algorithm
does not allow for arbitrary rigid transformation of objects.

• Our algorithm provides simple yet effective bounds on the
Hausdorff distance.

• Our algorithm uses a novel Voronoi subdivision technique so
that it produces fewer polygon subdivisions than [Guthe et al.
2005].
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Figure 9: Timing Profiles. Timings for culling on A, culling on
B, and subdivision steps in our algorithm, as well as two-sided
Hausdorff distance results, for the Puma1/Puma2 models (top two
graphs) and Watch1/Watch2 models (bottom two graphs).

As a result of these differences, our algorithm outperforms [Guthe
et al. 2005] by more than an order of magnitude, as shown in Fig.10.
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Figure 10: Performance Comparisons. The performance was mea-
sured for severely overlapped models.

7.3 Application to Penetration Depth Computation

A penetration depth (PD) measures the extent of the interpenetra-
tion of two objects overlapping in space [Kim et al. 2002]. A typi-
cal application of PD is the simulation of rigid and articulated-body
dynamics for physically-based animation. Here, PD can be used to
compute penalty forces in a penalty-based system [Moore and Wil-
helms 1988] or to calculate collision impulses in an impulse-based
system [Guendelman et al. 2003]. Moreover, in constraint-based



dynamics, in which the non-penetration constraint must be strictly
imposed, PD is employed to reposition an object to satisfy that con-
straint [Redon 2004].

Various definitions of penetration depth are to be found in the lit-
erature [Zhang et al. 2007]. In many physically-based animation
applications, PD is often defined as the point of deepest interpene-
tration of A and B [Guendelman et al. 2003]. We call this point-
wise PD (or simply PD) and we use this definition in our work.
As most known definitions of PD require inside/outside classifica-
tions with respect to the given models, the input models A and B
must be closed manifolds. Note that this version of pointwise PD
is much simpler than the configuration space-based formulation of
[Kim et al. 2002; Zhang et al. 2007] in terms of computational and
implementation complexity. Practical implementation of pointwise
PD is based on the use of distance fields [Fisher and Lin 2001;
Guendelman et al. 2003]. However, due to the high memory con-
sumption of distance fields, some game physics engines no longer
use this type of implementation [NVIDIA 2009]. Our PD algorithm
uses a more compact geometric representation based on BVH and
the Hausdorff distance computation.

PD Algorithm Given two overlapping, closed models A and B,
our PD algorithm consists of two stages as follows:

1. Compute the volume V of the intersection of A and B. Then
the portions of the boundary surfaces of A and B that belong
to V are denoted as ∂VA and ∂VB, respectively: see Fig.11-
(a).

2. Compute the two-sided Hausdorff distance H(∂VA, ∂VB)
and report it as the pointwise PD of A and B: see Fig.11-(b).

Step 1 of the above algorithm can be implemented by using an exist-
ing collision detection algorithm such as the one in the PQP library
to find intersection curves. Then, using the intersecting curves as
seed points, a simple flood-filling algorithm can be used to find the
vertices and triangles of A and B that are inside V . A similar ap-
proach has been proposed by [Hippmann 2004] for Step 1.

(a) Intersection volume (b) PD results

Figure 11: Penetration Depth Computation. The surfaces of inter-
section volume V are highlighted as blue (∂VA) and red (∂VB) in
(a) and (b). In this case, there are three disjoint, intersection vol-
umes. For each intersection volume, the PD result H(∂VA, ∂VB)
is displayed as a green line and the deepest penetrating points are
shown as blue and red spheres in (b).

Performance We measured the performance of our PD algorithm
on two complicated dynamic scenes: Alphabet Domino and Falling
Bunnies (see Fig.1 and the supplemental video). For the Alpha-
bet Domino scene, we physically simulated the dominos consist-
ing of 12 alphabet characters, each composed of around 200 tri-
angles, and a bunny with 1K triangles. For Falling Bunnies, we

dropped 50 bunnies, each consisting of 1K triangles, on top of each
other. In both cases, we used the HavokTM software3 to simulate
the dynamics. Then, we plugged our algorithm into the dynamic
sequences and measured its average performance. The Alphabet
Domino and 50 Falling Bunnies benchmarks respectively required
only 0.97 msec and 3.88 msec on average for the PD computations.

7.4 Limitations

There are a few limitations to our algorithm: it is not exact, even
though it can compute Hausdorff distance within a user-specified
accuracy and its performance is sensitive to the relative configura-
tion of objects. More specifically, it takes more time as the Haus-
dorff distance becomes smaller. This phenomenon has been also
observed by [Llanas 2005]. Our penetration depth algorithm is lim-
ited to closed models with well-defined insides and outsides.

8 Conclusions

We have presented an efficient algorithms to compute the Haus-
dorff distance between polygonal models. The main idea of our
algorithm is the use of cross-culling on the input models using tight
distance bounds and Voronoi polygon subdivision. Our algorithm
shows interactive performance for models of practical size. We
have also applied our Hausdorff distance algorithm to computing
penetration depth for physically-based animation.

Future Work We would like to extend our algorithm to handle dy-
namically changing models such as deformable or breaking objects.
The bound calculation presented in the paper would remain valid
for such models, but dynamic BVH updating would be required to
implement an efficient culling procedure. Devising an incremen-
tal Hausdorff distance algorithm for a highly coherent environment
would be an interesting project. And it would also be highly desir-
able to be able to apply our algorithm to the computation of Haus-
dorff distance under motion. We are also interested in extending
our PD framework to deformable and polygon-soup models. Ap-
plying the PD algorithm to robot motion planning would also be
worthwhile.
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