
Haptic Puppetry for Interactive Games

Sujeong Kim, Xinyu Zhang, and Young J. Kim�

Department of Computer Science and Engineering,
Ewha Womans University, Seoul, Korea

kimsujeong@ewha.ac.kr, {zhangxy, kimy}@ewha.ac.kr

Abstract. In interactive computer games and computer animation, intuitively
controlling the motion of an articulated character is considered as a difficult task.
One of the reasons is that, typically, an articulated model used in the field has
a high degree-of-freedom (DOF) for joints so that it is challenging to devise an
easy-to-use interface to control the individual DOF. In this paper, as an alternative
to existing techniques for controlling articulated characters, we propose the tradi-
tional marionette control [1] as natural interfaces to control the characters, and ex-
plain how to implement a virtual marionette based on physically-based modelling
and haptic paradigm. Using our virtual marionette system, we can rapidly but eas-
ily create sophisticated motions for a high-DOF articulated character. Moreover,
our system relies on haptic interfaces to model the behavior of real-world mari-
onette controls and provides to the puppeteer responsive forces as a result of the
created motions. This results in the puppeteer having a better sense of control
over the marionette that she or he manipulates. Our experimentations show that
our system can create reasonably complicated motions for articulated characters
in an easy and quick manner at highly interactive rates.

1 Introduction

In computer animation and interactive computer games, controlling the motion of an ar-
ticulated character intuitively is considered as a difficult task. One of the reasons is that,
typically, an articulated model used in the fields has a high degree-of-freedom (DOF)
for joints so that it is challenging to devise an easy-to-use interface to control an indi-
vidual DOF. For example, the human model used in typical gaming environments has
more than 30 DOFs [2] and controlling each DOF in the model intuitively is very diffi-
cult. In order to address these issues, techniques based on motion capturing or manual
motion composition have been proposed [3]. However, these techniques require huge
motion database or tedious manual work to create sophisticated motions. Moreover,
these methods are often computed as off-line process so that creating an interactive
response of characters at run-time is very difficult.

As a completely new alternative, we propose the traditional marionette control as
natural interfaces for articulated character control in computer games and computer an-
imation. In our system, instead of controlling an individual joint parameter in an articu-
lated character, we use a virtual marionette to create sophisticated motions very quickly.
The virtual marionette is simulated using physically-based modelling paradigm. For the
most of real-world marionettes, a puppeteer manipulates the control - typically shaped

� Corresponding author. Tel.:+82-2-3277-4068, Fax:+82-2-3277-2306.

Z. Pan et al. (Eds.): Edutainment 2006, LNCS 3942, pp. 1292–1302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Haptic Puppetry for Interactive Games 1293

as cross or bar - to create a swinging motion of strings, which in turn moves the mar-
ionette itself. Our system relies on haptic interfaces to accurately model the behavior
of real marionette controls and provides to a puppeteer accurate responsive forces as a
result of created marionette motions. This results in the puppeteer having a better sense
of control over the marionette that she or he manipulates. Typically, two controllers
are used for real-world marionette controls: one for primary control and the other one
for secondary, delicate control. In our system, we use two commodity haptic interfaces
such as Sensable’s OmniTM to model each of them.

Our virtual marionette system based on haptic interfaces provides the following ben-
efits over other existing animation system for articulated characters:

– Using our system, we can quickly create complicated motions for an articulated
character in games.

– Haptic interfaces in our system enable users to intuitively control the articulated
character and make them interact with virtual environments in real-time.

– Our system is based on physically-based modelling paradigm so that the generated
motions and their responses are similar to those experienced in the real world.

– Our puppetry can be used as a stand-alone game like [4].

2 Related Work

2.1 Interfaces for Controlling Animation

Recently, many interfaces have been introduced to control animation for virtual char-
acters [5, 6]. Typically, 2D interfaces like mouse [7, 4], a pen [8, 9] or a combination
of mouse and keyboards are considered as most popular and approachable choices for
an animation control. Along this line of approaches, an intuitive mapping of limited
device-dependent actions, for example mouse clicks or dragging, to animation controls
has been major research issues [10]. However, for high DOF characters like human, it
is very challenging to create intuitive interfaces to map device actions in 2D to compli-
cated character motions in 3D. In order to alleviate the issues of mapping 2D actions
to 3D motions, different types of interfaces have been considered. A particular strength
of 3D interfaces is that, unlike 2D interfaces, one does not need to rely on complicated
mapping or animation sketching scheme to interpret device outputs in terms of charac-
ter animation [11, 12]. However, it is still challenging to create complicated character
motions using these devices, and some researchers have developed specialized inter-
faces for particular animation characters [5]. However, this approach lacks a generality
of application to other types of characters.

2.2 Haptic Interfaces

Thanks to the recent advancement in hardware and software of haptic technology, haptic
rendering techniques have been improved from a simple, point-based method [13, 14],
generating only translational forces, to an object-based 6DOF haptic rendering method
[15], creating both translational and rotational (i.e., torque) forces. Unlike other 3D
interfaces, haptic interfaces are a promising tool for creating complicated character mo-
tions in that users can get an immediate response (i.e., force feedback) from what they

1294 S. Kim, X. Zhang, and Y.J. Kim

control. However, most of work in haptically-inspired character control has been cen-
tered on controlling an individual joint in an articulated, animating character [11, 12],
instead of creating the character’s full body motion.

2.3 Physically-Based Animation

Compared to other animation techniques like traditional, cell-based animation [16] and
motion capture-based animation [3], the physically-based animation technique has a
particular strength in creating a realistic animation responsive to the surrounding envi-
ronments. At a broad level, physically-based animation techniques can be classified into
rigid body and deformable body simulation [17]. In our work, we are interested in rigid
body simulation techniques for simulating the marionette itself [18, 19] as well as de-
formable body simulation techniques for simulating strings attached to the marionette
[17].

3 Virtual Marionette

A real-world marionette is mainly composed of three parts: a control, strings, and a
marionette itself [1]. The control is a tool with which one can actually manipulate the
marionette. It is normally constructed by combining several bars, where strings are
attached to each bar. The strings link the control to the marionette body, and deliver the
manipulated result of the control to the body while they also deliver the forces generated
by the marionette movement back to the control - actually to the human hand holding
the control. Strings pull each part of the body, making a variety of body motions.

Since the goal of our system is to mimic controlling a real marionette, we model
the essential components of a real marionette in a physically-correct manner. Thus, the

(a) Marionette (b) String (c) Control

Fig. 1. Modeling. A string is modelled as a chain of particles undergoing different forces like
spring force fs, inner friction ff , gravity fg , air friction fa, ground friction fx, fz , ground ab-
sorption fabs and ground repulsion frep.

Haptic Puppetry for Interactive Games 1295

interactions among these components are simulated entirely based on physically-based
animation techniques. There are many types of marionettes, but we only consider a
human-like marionette in our work.

3.1 Marionette Modeling

The marionette is made up of twelve rigid bodies (one sphere-like body and eleven box-
like bodies) and eleven joints that connect the bodies together. Each body represents,
respectively, the head, torso, two upper arms, two lower arms, two upper legs, two lower
legs and two feet of a marionette.

The eleven joints are, respectively, the neck, shoulder, elbows, hips, knees, and an-
kles and they play an important role in generating a proper body motion. These joints
are dotted as pink circles in Fig. 1.

We use three types of joints to connect the bodies as shown in Fig. 2 (terms borrowed
from [20]): ball-and-socket, hinge and universal joints. The ball-and-socket joint simply
makes two bodies always move together. The hinge joint makes two bodies only rotate
around a certain axis. The universal joint acts like two hinge joints are combined at an
anchor position. The universal joint provides relatively limited movement compared to
other joint types, but it is more flexible than the hinge joint. However, restricting motion
is not always a desirable way.

The constraint dynamics equation for each joint is expressed as follows [20]:

J1v1 + Ω1ω1 + J2v2 + Ω2ω2 = c + Cλ

λ ≥ l

λ ≤ h (1)

Ji and Ωi are the Jacobian matrices. Different joint types have different constraints
(i.e., Jacobian matrices). The linear and angular velocity vectors for the first body par-
ticipated in the joint are v1 and ω1. Similarly v2 and ω2 correspond to the second body. c
is a joint-dependent constraint vector. λ is a constraint force that is applied to the bodies
to ensure that Eq. 3.1 is satisfied. λ has a lower (l) and upper (h) bound. C is a diagonal
matrix, called the constraint force mixing (CFM) matrix. It allows the constraint force
λ to be part of the constraint equation. C can be manipulated to get certain interesting
effects [20].

The yellow circles in Fig. 1 are the locations in which the strings are attached to
the marionette bodies: center of the head, torso, lower arms, and lower legs. Only six

Fig. 2. Different Joint Types: ball and socket joint, universal Joint, hinge joint (from left to right)

1296 S. Kim, X. Zhang, and Y.J. Kim

parts of the body can be moved by strings, but from our experience these are enough
to generate the whole body motion. The body can also return responsive forces back to
the strings as a result of body-string interaction.

The forces of a string to pull each part of the body is calculated as follows:

fbody = −k(xbody − xstring) − kd(ẋbody − ẋstring), (2)

where xstring is the position of the last mass particle in the string, xbody is the position
of the part of body that the string is attached to, k is a stiffness constant, and kd is a
damping constant. The force that is returned to the string is simply f = −fbody.

3.2 String Modeling

The strings provides a mean to deliver user’s intention to the marionette. The user ma-
nipulates strings by using the control, and the strings pull each part of the marionette
body so that the body finally creates some pose.

We model the string as a deformable body. There exist many methods to model a
string-type deformable body, but we value the speed rather than the accuracy of simula-
tion. In this regard, we select the spring-mass method, mainly because it is fast and, at
the same time, it can provide a reasonable accuracy of the system. This method models
a string as a set of mass particles inter-linked by a spring. The shape and behavior of a
string are approximated by the particles’ motion. However, we do not consider twisted
motion of a string since real-world marionette strings are rarely twisted.

In our system, six strings hold the body: head string, hip string, two hand strings, two
leg strings. The position of the first particle in each string is updated at every simulation
time step and follows the position of the control. The motions of the rest of particles are
governed by particle dynamics based on the following forces:

1. Spring force between two adjacent particles: fs = −ks(xi − d) where ks is a
stiffness constant of a spring, xi is the distance between two particles, and d is the
string length that we want to maintain.

2. Inner friction force: ff = −kf × (ẋi − ẋi+1) where kf is a friction constant
3. Gravitational force: fg = mg where m is the mass of a particle and g is the gravi-

tational acceleration.
4. Air friction: fa = −kairẋi where kair is an air friction constant
5. Ground friction (when particles fall on to the ground): The ground friction force

is applied only to the x and z direction; fx = −vx
i kground and fz = −vz

i kground

where vx
i , vz

i is the velocity of a particle i along x and z directions and kground is a
ground friction constant.

6. Ground repulsion (when particles continue to remain on the ground): Apply ground
absorption force fabs = vy

i kabs and repulsion force frep = vy
i (hground−py

i) where
kabs is a ground absorption constant, py

i is the y position of a particle i and hground

is the ground height

After accumulating all the aforementioned forces (F), we numerically solve the
Newtonian second order ordinary differential equation (ODE) for a particle system (i.e.,
ẍ = F

m) using the implicit Euler’s method [18].

Haptic Puppetry for Interactive Games 1297

We perform collision detection and collision response between strings and the
ground. If the position of a particle falls below the ground, we apply the ground repul-
sion and absorption force to the particles (steps 5 and 6). However, we do not consider
collision detection and response between a string and a string and between strings and
bodies. The reasons are as follows:

– Our system requires to be highly interactive so that we can not afford such costly
collision detection and response time.

– The goal of our system is a character motion control, not string simulation.
– In real-world marionette control, there is no technique using twisted strings requir-

ing collision detection between them.

3.3 Modeling of the Control

The control itself is not a target object to be physically simulated in our system. It is just
a tool or an interface that takes the user’s inputs (position and orientation) and delivers
them to the system. In other words, it just drives other physical objects (e.g., strings and
marionette body) in our system to move accordingly. Each part in the marionette body
is manipulated by a string, and the string is operated by the control. Users can generate
various marionette motions by moving the control and give it different positions and
orientations. The control is directly manipulated by the user through haptic interface.
In our system, we have two controls, a main control and a hand bar. The main control
is for controlling the main body including the head, torso, legs; the hand bar is for the
hands. The geometric structure of the control in our system is very similar to the real
marionette controls.

The real-world control can be classified into two types, vertical and horizontal con-
trols. Ours resembles the latter. The strings are attached to a marionette as shown in
Fig. 1 (the white circles).

4 Haptic Interfaces

A notable aspect in our puppetry system is that we use haptic interfaces to manipulate
the virtual marionette. In fact, the haptic interfaces are directly mapped to control bars
as shown in Fig. 3. As a result, we can provide a more intuitive, easier way to manipulate
the marionette, instead of using complicated key combinations.

4.1 Interface Design

We use two stylus-type, commodity haptic devices, Omni developed by Sensable, to
model the main control and hand bar in our system, as shown in Fig. 3.

Each device has six degree-of-freedom (DOF) inputs (position and orientation of
haptic stylus) and three DOF outputs (translational forces). Its position and orienta-
tion are updated at haptic update rates (i.e., 1KHz). The tips of the haptic stylus in
the two haptic interfaces are mapped to the center of mass of the main control and the
hand bar, respectively as shown in Fig. 3. Furthermore, since each haptic device has its

1298 S. Kim, X. Zhang, and Y.J. Kim

(a) System Setup (b) Control

Fig. 3. System Setup and Control Mapping. (a) shows the system setup and (b) shows of mapping
the control to the haptic stylus.

own device coordinate system, we need to get its proper position in world coordinate
system.

4.2 Haptic Force Computation

In order to take into account tension forces from strings, we distinguish the state of a
string into tight and loose. We simply calculate the Euclidean distance between the first
and last particles comprising the string, and if it is greater than a certain threshold, we
call the state of a string tight; otherwise call it loose.

When a string i is tight, its haptic feedback Fi is delivered to the haptic device based
on the following equation:

Fi = −k(xproxy − xstring) − mg − kd(ẋproxy − ẋstring) (3)

where k is a stiffness constant, m is the total mass of a marionette, kd is a device-
dependent damping factor, g is a gravitational acceleration, xstring is the position of
the last particle in the string, and xproxy is the position of haptic device. If the string is
loose, no force is calculated. The force is accumulated from each string (F =

∑
Fi)

and it is finally delivered to the haptic device.
In practice, however, when a string is almost tight, a slight perturbation in the under-

lying dynamic simulation can unstably change the state of a string from tight to loose
and vice versa. This can introduce unstable force jump in haptic force computations.
Worse yet, the unstable jump in force computation can also cause haptic stylus to vi-
brate, which makes strings and marionette also move unstably following the device.
This sequence of instabilities in force computation can make the entire simulation very
unstable.

As a remedy to this problem, we do not allow a string to switch its state very often
when the distance between the first and last particles comprising the string does not
change much.More specifically, when the string state once enters a tight state, the string
can not easily get out of a loose state. In our case, we enforce a threshold for distance
difference to allow for state changes.

Haptic Puppetry for Interactive Games 1299

5 Results and Analysis

5.1 Implementation Issues

We have implemented our puppeteering system using Visual C++ and OpenGL graph-
ics library. We have chosen Sensable’s Omni haptic devices and OpenHaptics library
[21] as haptic APIs. To perform articulated body dynamics for a marionette at inter-
active rates, we bound each body part of a marionette with a simple bounding volume
such as a box, a cylinder, and a sphere, and perform dynamics based on them. How-
ever, when we render the marionette, we display the actual geometry contained in the
bounding volume. The Open Dynamics Engine (ODE) [20] has been adopted as a basic
physics engine for articulated body dynamics and slightly modified to be better suited
for our purpose. We use ODE’s ball-and-socket, hinge and universal joints to model
Marionette’s joints.

In our system, we maintain four independent processes that need to be synchronized:
string simulation, marionette body dynamics, haptic rendering, and graphical rendering
as shown in Fig. 4. Different processes are synchronized in the following manner:

1. The haptic simulation loops around asynchronously at haptic update rates.
2. The string simulation reads the position of the tip in the haptic device, and deforms

corresponding strings.
3. The result of deformable string simulation acts as external forces to the articulated

body dynamics engine of the marionette.
4. The created motion of the marionette is graphically rendered.
5. The marionette motion applies forces to the last particles of strings, and the entire

strings are deformed responsively.
6. The simulation results (i.e., forces) of strings and marionette motions are sent back

to the haptic device.

Each process is updated at different rates; 1KHz for string simulation and haptic
rendering, 30Hz for marionette body dynamics and graphical rendering. Typically we
maintain 50 particles to simulate string dynamics and one can adaptively simulate the
string dynamics using the technique like [22].

RenderingSimulation

Fig. 4. System Diagram. The red block is an asynchronous process whereas the blue blocks are
synchronized with each another.

1300 S. Kim, X. Zhang, and Y.J. Kim

Fig. 5. Animation Sequences In Our Virtual Marionette System. The virtual marionette is standing
up from a chair, and kicking and chasing a ball.

5.2 Results

With our system, an animator or a puppeteer can easily sketch motions for an articulated
character as shown in Fig. 5. Our system is highly interactive (running at more than 1
KHz) and can create physically-plausible responses of a marionette to the environments.
In Fig. 5, a virtual marionette is manipulated to stand up from a chair, kick a ball and
chase it.

Haptic Puppetry for Interactive Games 1301

6 Conclusions and Future Work

We have presented an interactive system that simulates a marionette in a physically cor-
rect way. Moreover, our system provides an intuitive interface based on haptic devices
to a puppeteer. The puppeteer can control a marionette using two haptic interfaces and
perform a variety of interesting motions including interactions with environments that
would be very difficult to be performed with a real-world puppet. As future work, we
will like to apply our technique to other types of puppets (e.g., non-string type puppet).
In order to improve the performance of our system, we want to apply an adaptive tech-
nique like [22] to both articulated body dynamics and string simulation. One limitation
of our system is that it can not handle inter-string collisions and body-string collisions.
However, this may be required for other types of more sophisticated puppets. We will
like to incorporate such collision cases into our future puppeteering system. Finally, we
want to apply our technique to higher DOF haptic interfaces to gain a more intuitive
control over a marionette.

Acknowledgements

This work is sponsored in part by the grant R08- 2004-000-10406-0 of the KRF funded
by the Korean government, the Ewha SMBA consortium, the ITRC program and the
MOST STAR program.

References

1. Currell, D.: Making and Manipulating Marionettes. The Crowood Press (2004)
2. Boulic, R., Fua, P., Herda, L., Silaghi, M., Monzani, J., Nedel, L., Thalmann, D.: An

anatomic human body for motion capture. In: EMMSEC. (1998)
3. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: ACM SIGGRAPH. (2002)
4. Healey, M.: (Ragdoll Kungfu) http://www.ragdollkungfu.com/.
5. A. Bar-Lev, A.M.B., Elber, G.: Virtual marionettes: A system and paradigm for real-time 3D

animation. Technical report, Technion, I.I.T., Israel (2004)
6. Davis, J., Agrawal, M., Chuang, E., Popovi, Z., Salesin, D.: A sketching interface

for articulated figure animation. In: SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. (2003)

7. Vodislav, D.: A visual programming model for user interface animation. In: Visual Lan-
guages. (1997) 348–355

8. Laszlo, J., Panne, M., Fiume, E.: Interactive control for physically-based animation. In:
Proceedings of SIGGRAPH 2000. (2000) 201–209

9. Oshita, M.: Pen-to-mime: A pen-based interface for interactive control of a human figure.
In: Sketch-Based Interfaces and Modelling. (2004) 43–52

10. Thorne, M., Burke, D., Panne, M.: Motion doodles: An interface for sketching character
motion. In: Proc. of ACM SIGGRAPH. (2004)

11. Oore, S., Terzopoulos, D., Hinton, G.: A Desktop Input Device and Interface for Interactive
3D Character Animation. In: Proc. Graphics Interface. (2002) 133–140

12. Jorissen, P., Wijinants, M., Lamotte, W.: Dynamic interactions in physically realistic collab-
orative virtual environments. IEEE Transactions on Visualization and Computer Graphics 11
(2005) 649–660

1302 S. Kim, X. Zhang, and Y.J. Kim

13. Basdogan, C., Srinivasan, M.: Haptic rendering in virtual environments. In: Virtual Environ-
ments HandBook. (2001)

14. Zilles, C., Salisbury, J.: A constraint based god-object method for haptic display. In: IEE/RSJ
International Conference on Intelligent Robots and Systems, Human Robot Interaction, and
Cooperative Robots. (1995)

15. Kim, Y.J., Otaduy, M.A., Lin, M.C., Manocha, D.: Six-degree-of-freedom haptic display
using incremental and localized computations. Presence 12 (2003)

16. Lasseter, J.: Principles of traditional animation applied to 3D computer animation. In: Proc.
of ACM SIGGRAPH. (1987)

17. Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H.: Physics Based Animation. Charles
River Media (2005)

18. Witkin, A., Baraff, D.: Physically based modeling: Principles and practice. In: SIGGRAPH
Course Note. (1997)

19. Featherstone, R.: Robot Dynamics Algorithms. Kluwer (1987)
20. Smith, R.: Open Dynamics Engine user guide (2004)
21. SensAble: (3D Touch SDK OpenHaptics toolkit version 1.02 API reference)

http://www.sensable.com.
22. Redon, S., Galoppo, N., Lin, M.C.: Adaptive dynamics of articulated bodies. In: Proceedings

of SIGGRAPH 2005. (2005)

	Introduction
	Related Work
	Interfaces for Controlling Animation
	Haptic Interfaces
	Physically-Based Animation

	Virtual Marionette
	Marionette Modeling
	String Modeling
	Modeling of the Control

	Haptic Interfaces
	Interface Design
	Haptic Force Computation

	Results and Analysis
	Implementation Issues
	Results

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

