
Versatile 3D Texture Painting using Imaging Geometry

Xinyu Zhang, Young J. Kim∗ Xiuzi Ye
Dept. of Computer Science and Engineering Dept. of Computer Science

Ewha Womans University, Korea Zhejiang University, China
{zhangxy,kimy}@ewha.ac.kr yxz@cs.zju.edu.cn

Abstract

Texture map-based traditional painting systems
are often limited by the model’s parameterization
from 3D model space to 2D texture space, since
finding such a parameterization can be very diffi-
cult in practice (sometimes nearly impossible) for
models with complex topology or detailed struc-
ture distribution. We present a novel data repre-
sentation, imaging geometry, for 3D appearance
modelling and painting. By generating 3D col-
ored points for each triangle contained in a poly-
hedral surface model, the imaging geometry can
support a great variety of painting operations sim-
ilar to that of the conventional 2D image editor.
The key ingredient of our approach is a novel,
adaptive data representation for geometry, topol-
ogy and color of an arbitrary surface, which al-
lows users to treat each triangle as an image. In
our experiments, we demonstrate how easily the
imaging geometry is applicable to 3D painting for
any arbitrary surfaces that includes a model con-
sisting of only a single triangle, multi-part ge-
ometry, a non-orientable model, a non-manifold
model, an open or a closed model.

Key words: 3D Painting, Texturing, Point geom-
etry

1. Introduction

Traditional texture mapping techniques map a 2D
image onto a 3D surface to describe visual fea-
tures of the surface without increasing the com-
plexity of the underlying geometry. Not only for
augmenting visual characteristics to the surface,
but texturing also can be employed for augment-
ing other surface attributes such as surface color,

∗Corresponding author

surface normal, peculiarity, transparency, illumi-
nation and surface displacement. Most of 3D
painting systems use texture mapping by param-
eterizing the geometry and topology of a model
in 2D texture space. As a result, 3D painting
is often limited by the underlying parameteriza-
tion between the model’s geometry and 2D tex-
ture space, since all parameterization techniques
introduce discontinuities, stretching, and other ar-
tifacts. Moreover, finding parameterizations can
be very difficult in practice (sometimes nearly im-
possible) for models with complex topology or de-
tailed structure distribution.

In our 3D painting system based on our ear-
lier research work [21], we apply the 2D raster-
ization technique to 3D mesh geometry by point-
sampling the surface of a triangular mesh with
colored 3D points until the surface is completely
covered by a suitable number of these points.
We generate these sampled points with suitable
resolutions and point sizes using the hardware-
supported occlusion query [14]. Moreover, we
also present a parameterization-free texture map-
ping method to eliminate the artifacts introduced
by point-sampling.

The major advantages of our painting system
compared to the earlier approaches are as follows:

• For 3D painting, the proposed surface repre-
sentation can handle any types of polygonal
mesh models and can represent both geome-
try and surface properties such as color in the
model.

• No texture parameterization is required.

• Traditional texturing techniques can be inter-
mixed with our representation. The transi-
tion between texture mapping and imaging
geometry can be achieved easily.

1



• The geometry and topology of a given model
are preserved for further mesh editing.

The remainder of the paper is organized as fol-
lows. After discussing the related work in Sec. 2,
we show the data representation of imaging ge-
ometry in Sec. 3. We discuss the process of 3D
painting in our system in Sec. 4. Finally, we show
the examples and experimental results of our sys-
tem in Sec. 5 and conclude the paper in Sec. 6.

2. Related Work

With the availability of a 3D painting system, de-
signers are now able to paint textures directly on
the surface of a model. The seminal work pro-
posed by Hanrahan and Haeberli [8] enables di-
rect painting on a 3D surface and now becomes
available in various commercial systems. These
tools let designers paint textures directly on 3D
models by projecting screen space paint strokes to
the 3D surface and then into texture space, where
they are blended with other strokes.

Many commercial 3D shape modeling pro-
grams provide painting features, where designers
can freely paint a 2D texture image in a 3D view
[2, 10, 13, 19]. In these systems, designers set
up a UV-mapping manually or automatically, and
the system subsequently re-projects the designers’
strokes in 3D to a corresponding position in a 2D
image based on the pre-calculated UV-mapping.
Manual mapping methods require repeated pro-
jection operations and unwrapping of the model
into a planar domain. This process is tedious and
challenging even for those who are familiar with
such mathematic concepts.

A research progress has been made on au-
tonomous UV-mapping [4, 7, 9, 11, 12, 20, 18].
A powerful texture painting system that supports
a direct 3D interface via force-feedback devices
was proposed by Foskey et al. [6]; Here, even
though their technique supports automatic param-
eterization, texture distortion or stretching can be
still caused by the parameterization itself.

Unparameterized painting methods exploiting
an Octree have been presented recently. Debry et
al. [5] present a solution for texture mapping an
unparameterized model using an Octree to store
texture data. Benson and Davis [3] have also done
a similar work using Octree textures. Both of
the systems remove 2D parameterization and store

texture data as a sparse, adaptive Octree. The
research trends based on Octree textures are ex-
pected to continue.

Another work similar to our approach is the re-
search work by Zwiker et al. [22]. Their 3D paint-
ing system is also based on point geometry and
uses irregular 3D points as 3D image primitives.
However, they point-sample an input model irreg-
ularly and produce an irregularly point-sampled
model as an output. As opposed to triangle prim-
itives, point samples do not store connectivity in-
formation, so they must undergo an interactive pa-
rameterization step. Other painting systems using
polynomials [2], triangles [1], implicit functions
[16, 17] and images [15] have been presented for
the past decade. Among them, Agrawala et al. [1]
use a Cyberware scanner device to acquire the sur-
face geometry of a given a physical object. Their
system treats the sensor of the space tracker as a
paintbrush and color the corresponding locations
on the scanned mesh.

3. Data Representation

In this section we describe a flexible and adap-
tive data representation for 3D painting, imaging
geometry. Our main goal is to get rid of param-
eterizations required for 3D painting. In order to
accomplish this objective, we store the color in-
formation inside sampled points of the model, in-
stead of in parameterized 2D textures.

3.1. Regular Sampling

Given an arbitrary triangle modelM, we create a
set of regular points for each triangleT in M by
point-samplingT. Let T be a triangle inM with
verticesv0, v1, v2. Initially, we createn points
for each edge inT and calln the resolution of the
imaging triangle. Then, we connect these points
and maintain virtual lines parallel to the edges.
The intersections of these virtual lines indicate the
locations of other sampled points to be created;
See Fig. 1-(a). Fig. 1-(b), -(c) and -(d) demon-
strate the examples of imaging triangles. In Fig.
1-(b), the resolution (R) is 11 and the rasterized
diameter of points (D) is 10. We will explain what
we mean by the rasterized diameter of points in
Sec. 3.3. Likewise, in Fig.1-(c),R is 11 andD is
20 and in Fig. 1-(d),R is 251 andD is 2.

2



0

2

3

……

n (n+1)/2-1

1

4 5

n (n-1)/2

6 7 8 9

v0

v1 v2

(a)

(b) R=11,D=10 (c) R=11,D=20 (d) R=251,D=2

Figure 1. Sampling a triangle. (a) Sampling pat-
tern (b)-(d) Examples of imaging triangles.

This process will createn(n+1)
2 points for each

triangle;n can be different for different triangles.
If we use an index value representing the location
of a point in the triangle, we needn(n+1)

2 index val-
ues in total. Moreover, we can treat this imaging
triangle as a 1D array of indexed location values
with color properties (r, g, b, a). These colored
points are created for all triangles. We call these
triangles as imaging geometries and we can get
the new modelM′ from the original modelM by
imaging all the geometries.

In our system, we use 4 bytes to represent a
RGBA color value. As a result, the total data size
for each triangle is 2n(n+ 1) bytes. This size of
data can overload the rendering time especially
when the resolution is very high. In the follow-
ing section, we explain techniques to speed up the
performance.

3.2. Parameterization-Free Texture Map

In many commercial painting systems,
parameterization-based texture mapping is
normally used to perform painting operations. In
these systems, a given mesh is parameterized in
2D image space. In this section, we present a
parameterization-free texture mapping method to
speed up the rendering performance.

As illustrated in Fig. 2, for each triangle in a
given mesh, we create a texture and map the tri-
angle with this texture. In Fig. 2, the right lower
triangle-shaped half-image is used to texture the

v0

v2v1

v2

v1

v0

Figure 2. Texture mapping. The highlighted pix-
els are the corresponding points for 4, 7 and 8 in
Fig 1-(a)

front of the triangle whereas the left upper is for
the back of the triangle. Initially, the resolution of
the prepared image is the same as a user-provided
maximum resolution; however we assume that the
resolutions of triangles can not be extremely high.
From Fig.’s 1 and 2, we can see that there exists
one-to-one mapping between the imaging geom-
etry and a triangle-shaped half-image. Therefore,
we can convert our imaging geometry to a regular
texture without losing any surface details. Mean-
while, sampling and texturing both the front and
back faces allows users to handle arbitrary sur-
faces, M̈obius strips, for example.

To find the corresponding pixel for each col-
ored point in imaging geometry, we use the fol-
lowing transformation between imaging geometry
and 2D texture space: Given a point location in-
dex valueid in a triangle,id specifies the location
of a colored point. We need to compute the coef-
ficients of a bi-linear interpolation. This is equiv-
alent to acquiring a (u, v) coordinate value based
on the index valueid in a triangle. We can resolve
this problem by solving the equation:

id =
U(U +1)

2
(id ≥ 0).

We get

U =
−1+

√
4id +1

2
.

Then, we can getu = dUe andv = id− u(u−1)
2 .

For the front of a given triangle, the pixel posi-
tion is [R−(u−v)−1,R−u−1], and for the back
of the given triangle,[R−u−1,R−v−1]

3.3. Multi-resolution

In order to reduce the amount of memory required
in our system, we apply a multi-resolutional con-

3



cept to imaging geometry. There are two parame-
ters to control the appearance of imaging geome-
try. The first one is the resolution of imaging ge-
ometry and the other one is the size of a rasterized
point.

(a) (b)

(c) (d)

Figure 3. Multi-resolution and anti-aliasing. The
rasterized diameter of a point is used to control
the resolution of imaging geometry and the anti-
aliasing should be followed to smooth out the ras-
terization.

Popular graphics library such as OpenGL can
specify the rasterized diameter of a point. In our
experiments, the maximum point size used is 63
and the minimum value is 1. If the rasterized size
of a point is constant, we can change the resolu-
tion of a imaging triangle to obtain the appropriate
appearance. If the resolution of imaging geome-
try is constant, we can change the rasterized size
of a point. Moreover, when zooming in the model
to see its details, we can also adjust the resolu-
tion and point size to get rid of apertures. We can
approximate the resolution and the pixel size of a
given triangles by solving the following equation:

NOQ =
(n)(n+1)

2
× πD2

4

whereNOQ is the number of rasterized pixels of a
triangle reported by the HW-supported occlusion
query. We use the nVIDIA’s occlusion query func-
tion to query the number of rasterized fragments
[14].

In order to get rid of such artifacts as sharp
edges and corners in imaging geometry, it is nec-
essary that anti-aliasing for points should be per-

formed (see Fig. 3). Another possible aliasing
effect can be caused by the resolution difference
between adjacent triangles. We always set the res-
olution difference as one or two. Providing a user
interface to control the resolution of adjacent tri-
angles is an alternative solution.

4. Painting Method

Our system can easily handle the models that are
normally used in other systems. For surface paint-
ing, we move the mouse in screen space while
drawing strokes directly on the model surface.
One way to find a 3D model position from the
2D mouse cursor is to find where the line of sight
through the 2D mouse position intersects with the
3D surface. If multiple intersections are found,
we choose the closest one. In OpenGL, we use
the selection and feedback features to implement
such an interactive operation. The selection op-
eration provided as a current feature in OpenGL
allows us to take a 2D mouse click as an input
and determine which part of the geometry in the
model is beneath it. With the OpenGL’s selec-
tion feature, we can specify a viewing volume and
determine which objects fall inside that viewing
volume. Based on the aforementioned features,
we can get the vertices of a triangle,vi , v j , vk, as
well as the location information of other colored
points. As we mentioned in Sec. 3, for each tri-
angle, we use an index value to specify the loca-
tion of points. Here, we save the texture properties
(i.e., the color information) in an one dimensional
array.

5. Results

We have tested our system on a number of mod-
els with a simple or complicated connectivity in-
formation. In Fig. 4-(a) and -(b), we show two
imaging triangles and their painting results. Fig.’s
4-(c) and -(d) show a torus with many holes. We
paint funny patterns on the torus without requiring
any additional parameterization just like we paint
a 2D image using well-known Painter or Photo-
shop program. To produce fancy textures in Fig
4-(e) and -(f), we utilize the texture features avail-
able in the PointShop 3D [22]. Users can create
such painted models very easily in ten or twenty

4



Figure 4. Painting examples

minutes. In Fig.’s 4-(e) and -(f), we show the re-
sults of painting on the M̈obius strip.

6. Conclusions

We present a novel data representation to paint di-
rectly on any 3D triangle surface. Imaging geom-
etry allows us to treat each triangle as a 2D image
and paint points on a 3D triangle surface without
requiring parameterization nor texture mapping
process. The output of our paint system is still
a triangular mesh model with colored points. This
information can be further used in any rendering
program by texturing the color pointed back to the
surface geometry.

For future work, we would like to provide an in-
tuitive man/machine interface to our painting sys-
tem based on haptic interfaces such as PHANToM
Premium 1.5.

Acknowledgement

This work is sponsored in part by the grant R08-
2004-000-10406-0 of the KRF funded by the Ko-
rean government, the Ewha SMBA consortium,
the ITRC program, China National Science Foun-
dation (60273060; 60073026), China Ministry of
Science and Technology software special project
(2003AA4Z1020).

References

[1] Maneesh Agrawala, Andrew C. Beers, and
Marc Levoy. 3D painting on scanned sur-
faces. InProceedings of the 1995 Sym-
posium on Interactive 3D Graphics, pages
145–150, 1995.

[2] Alias Wavefront. Maya.
http://www.aliaswavefront.com, 2002.

[3] David Benson and Joel Davis. Octree tex-
tures. InProceedings of SIGGRAPH 2002,
pages 785–790, 2002.

[4] Nathan A. Carr and John C. Hart. Painting
detail. InProceedings of SIGGRAPH 2004,
pages 845–852, 2004.

[5] David Debry, Jonathan Bibbs, Devorah D.
Petty, and Nate Robins. Painting and ren-
dering textures on unparameterized models.
In Proceedings of SIGGRAPH 2002, pages
763–768, 2002.

[6] Mark Foskey, Miguel A. Otaduy, and
Ming C. Lin. Artnova:touch-enable 3d
model design. InProceedings of IEEE Vir-
tual Reality Conference 2002, pages 119–
126, 2002.

[7] Steven Haker, Sigurd Angenent, Allen Tan-
nenbaum, Ron Kikinis, Guillermo Sapiro,

5



and Michael Halle. Conformal surface
parameterization for texture mapping. In
Transactions of Visualization and Computer
Graphics, volume 6, pages 181–189, 2000.

[8] Pat Hanrahan and Paul Haeberli. Direct
WYSIWYG painting and texturing on 3D
shapes. InComputer Graphics (Proceedings
of ACM SIGGRAPH 90), volume 24, pages
215–223, 1990.

[9] Takeo Igarashi and Dennis Cosgrove. Adap-
tive unwrapping for interactive texture paint-
ing. In Proceedings of the 2001 Symposium
on Interactive 3D Graphics, pages 209–216,
2001.

[10] Interactive Effects,Inc. AMAZON 3D Paint.
http://www.ifx.com, 2002.

[11] Bruno Lévy. Constrained texture mapping
for polygonal meshes. InProceedings of
SIGGRAPH 2001, pages 417–424, 2001.

[12] Jerome Maillot, Hussein Yahia, and Anne
Verroust. Constrained texture mapping for
polygonal meshes. InProceedings of SIG-
GRAPH 93, pages 27–34, 1993.

[13] Metacreations,Inc. Paint 3D.
http://www.metacreations.com, 2002.

[14] NVIDIA. http://oss.sgi.com/projects/ogl-
sample/registry/NV/occlusion-query.txt.

[15] Byong Mok Oh, Max Chen, Julie Dorsey,
and Frdo Durand. Image-based modeling
and photo editing. InProceedings of SIG-
GRAPH 2001, pages 433–442, 2001.

[16] Hans Kohling Pedersen. Decorating implicit
surfaces. InProceedings of SIGGRAPH 95,
pages 291–300, 1995.

[17] Ronald N. Perry and Sarah F. Frisken.
Kizamu: A system for sculpting digital char-
acters. InProceedings of SIGGRAPH 2001,
pages 47–56, 2001.

[18] Emil Praun, Adam Finkelstein, and Hugues
Hoppe. Lapped textures. InProceedings of
SIGGRAPH 2000, pages 465–470, 2000.

[19] Right Hemisphere Ltd. Deep
paint 3D (Deep UV, Deep Paint).
http://www.righthemisphere.com, 2002.

[20] Pedro V. Sander, John Snyder, Steven J.
Gortler, and Hugues Hoppe. Texture map-
ping progressive meshes. InProceedings of
SIGGRAPH 2001, pages 409–416, 2001.

[21] Xinyu Zhang, Xiuzi Ye, and Sanyuan Zhang.
3D painting based on imaged geometry.
Journal of Software, 15(3):461–467, 2004.

[22] Matthias Zwicker, Mark Pauly, Oliver Knoll,
and Markus Gross. Pointshop 3D: An inter-
active system for point-based surface edit-
ing. In Proceedings of SIGGRAPH 2002,
pages 322–329, 2002.

6


