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Abstract— In robotic task planning, symbolic planners using
rule-based representations like PDDL are effective but struggle
with long-sequential tasks in complicated environments due to
exponentially increasing search space. Meanwhile, LLM-based
approaches, which are grounded in artificial neural networks,
offer faster inference and commonsense reasoning but suffer
from lower success rates. To address the limitations of the
current symbolic (slow speed) or LLM-based approaches (low
accuracy), we propose a novel neuro-symbolic task planner
that decomposes complex tasks into subgoals using LLM and
carries out task planning for each subgoal using either symbolic
or MCTS-based LLM planners, depending on the subgoal
complexity. This decomposition reduces planning time and
improves success rates by narrowing the search space and
enabling LLMs to focus on more manageable tasks. Our method
significantly reduces planning time while maintaining high
success rates across three task planning domains, as well as
real-world and simulated robotics environments. More details
are available at http://graphics.ewha.ac.kr/LLMTAMP/.

I. INTRODUCTION

In AI planning, symbolic language-based planning using
logic formulations such as Planning Domain Definition Lan-
guage (PDDL) [1] has been effective in generating valid
plans across various domains. Such use of symbolic language
in robotic task planning is traced back to the Shakey robot
project in the early 1970s using STRIPS [2]. However, since
the time complexity of these symbolic planners is known
to be PSPACE-hard [3], solving long-sequential tasks in
domains with extensive search spaces using these symbolic
planners is intractable, making their practical application
to robot task planning limited. Recently, Large Language
Models (LLMs) have shown advantages as autonomous robot
task planners due to the short inference time compared to
symbolic planners and their ability to leverage commonsense
knowledge and generalization capabilities [4].

At a high level, the use of LLMs for task planning is
divided into treating LLMs as a policy model (known as
L-Policy) or as a world model (known as L-Model) [4]. L-
Policy exploits the commonsense knowledge of LLMs to
query proper policy for a given state directly. At the same
time, L-Model utilizes LLMs as a simulation model of the
world to query the state of the world as a result of executing
an action or a policy. However, despite their strengths, LLMs
suffer from token inefficiency and correction inefficiency [5],
often generating hallucinated action sequences and failing on
complex tasks [6]. To address the limitations of current LLM-
based task planners, we propose a novel neuro-symbolic
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task planner that leverages LLMs as both L-Policy and L-
Model to solve a long-sequential robotic task. Our planner is
significantly faster than symbolic planners and more accurate
than LLM-based planners.

An immediate issue in handling long-sequential tasks
using LLMs is LLM’s token inefficiency since the planning
descriptions involve a long and repetitive sequence of world
and robotic states and a history of policies and their results.
To circumvent this issue, we utilize LLMs as L-Model to
generate a sequence of subgoals for a long-horizon task,
effectively decomposing it into smaller and manageable
sub-tasks. This goal decomposition also provides a useful
side-effect to reduce the overall search space, yielding an
accurate subgoal planner based on LLMs. Indeed, we use
the Monte Carlo Tree Search (MCTS) algorithm while using
LLMs as L-Policy to accurately solve each subgoal, reducing
the correction inefficiency common in LLM-based planners.
Furthermore, if the original task is moderately complex,
requiring a smaller minimum description length (MDL) [4] to
solve the given problem, one can rely on a symbolic planner
to solve the subgoals precisely while effectively avoiding the
exponential growth of planning time.

Overall, our planning pipeline consists of three major
steps:

1) Planning formulation: Given a planning goal in natu-
ral language and domain knowledge, our task planner
relies on PDDL to encode the problem descriptions.
We also obtain the semantic and spatial relationships
of target objects in the environment using a multimodal
LLM, translated and encoded in problem PDDL.

2) Subgoal generation: We utilize the L-Model to gener-
ate a sequence of subgoals by decomposing the given
planning goal.

3) Task planning: If the MDL is moderate, we rely on
a symbolic planner to solve each subgoal; otherwise,
we generate and expand a search tree and use the
MCTS algorithm with L-Policy as a rollout policy to
solve the subgoal. This subgoal planning is repeated
for each sub-task, and the plans are combined to form
the overall plan.

We conducted experiments across three task planning
domains while varying the problem complexity. Compared
to the state-of-the-art symbolic task planner like the Fast
Downward planner [3], our approach significantly reduced
planning time while maintaining an acceptable success rate.
Additionally, we conducted experiments using dual robot
manipulators and a robotic simulator to demonstrate the
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utility of our planner.
In summary, the main contributions of our work are:
• We propose a novel neuro-symbolic task planning

pipeline for executing complex robotic tasks on physical
robots utilizing LLMs as both L-Model and L-Policy.

• L-Model is used to decompose the given goal into
multi-level subgoals to reduce the planning time while
increasing the planning success rates. L-Policy is ex-
ploited to plan subgoals combined with MCTS. For a
moderately complex planning task, a symbolic planner
is alternatively used to guarantee more accurate plan-
ning results.

• Experimentally, we have shown that our new planner
achieves an average success rate of 88.2% ∼ 100%
while the planning time is only 3.3× ∼ 10.2× slower
than the baseline LLM planner, which approaches zero
success rate, depending on the problem complexity.

• We demonstrate the applicability of our new planner on
both real and simulated robot task planning scenarios.
We also perform an ablation study to demonstrate the
effectiveness of our goal decomposition strategy.

II. RELATED WORK

A. Symbolic Robot Task Planning

Symbolic or rule-based robot task planning is rooted in
classical AI planning using symbolic languages and has been
extensively studied for over four decades [2]. We refer the
readers to recent surveys on this topic, such as [7]. The
current trend in symbolic task planning is to use hierarchical
planning to solve a complex problem or to integrate it
with geometric motion planning, known as Task and Motion
Planning (TAMP) [8]. However, the intrinsically high time
complexity of symbolic planning hinders its scalability to
adapt to the physical world [2].

B. LLM-based Robot Task Planning

Recent studies have explored using LLMs for robot task
planning by leveraging their real-world understanding. [9]
combines language understanding with action grounding
in real-world affordances, enabling robots to execute tasks
based on their capabilities. Similarly, [10] introduced a
prompting scheme that enables LLM to generate Python
codes composed of robot action primitives, incorporating
environmental state feedback. [11] fine-tuned multimodal
LLMs to integrate physical grounding with visual inputs for
task planning. TAMP has also been addressed using LLM
by [12], enabling LLM as spatial relationship generators
between environment objects. Some studies combined LLM-
based high-level planning with reinforcement learning for
low-level control [13]. However, these approaches’ common
limitations are low success rates in solving long sequential
tasks, limited multi-step reasoning, and weak failure recov-
ery.

Recent Large Reasoning Models have shown high suc-
cess rates across various PDDL domains without additional
frameworks. However, their performance still declines as task

complexity increases, with success rates approaching zero in
highly constrained domains [14].

C. Hybird Task Planning
Recently, studies have been conducted on integrating

LLMs with symbolic planning methods. [15] and [16] used
LLMs to translate natural language problem descriptions into
PDDL initial states and goals through few-shot prompting.
However, these approaches struggle in real-world appli-
cations where problems are not presented in natural lan-
guage. [17] combined LLMs with vision models to gen-
erate planning problem specifications based on real-world
scenes, using re-prompting to correct specification errors.
LLMs have also been used to solve PDDL problems. [18]
showed that while LLMs can solve some non-trivial PDDL
problems, they often fail on more complex tasks, though
their outputs can guide heuristic planners. [19] improved
this by generating Python functions for PDDL planning
with automated debugging, while [20] introduced an iterative
refinement framework using validator feedback. While these
methods have improved success rates compared to LLM-
only methods, they have been tested mostly on small-scale
problems.

D. Integrating LLMs with Tree Search
Combining tree structures with LLM-generated actions has

been explored in various studies. [21] samples possible next
actions from the current state using an LLM and selects
the best one via an LLM-evaluator, iterating with DFS or
BFS. To improve token and runtime efficiency, [5] proposes
sampling multiple plans at once to generate an action tree
and selecting actions from the tree based on observations and
histories. [22] integrates MCTS with LLMs for iterative state
transitions in MDPs, and [4] employs LLMs as both L-Model
and L-Policy within MCTS to solve large-scale POMDPs.

Our method also samples multiple plans at once using
an LLM and applies MCTS, but unlike [5], ours relies
on LLM-induced goal decomposition to generate multiple
deterministic sub-problems. Unlike [4], our MCTS operates
on a fixed tree for a sub-problem rather than the entire
planning problem.

III. TASK PLANNING PIPELINE
We formulate our task planning problem as a multi-valued

planning task (MPT) [3] using a tuple:

P ≡ ⟨S,O,A, T , s0, S
⋆⟩, (1)

where S is a finite set of fully observable states, O is
environment objects, A is a finite set of possible actions,
T : S × A → S is a deterministic state transition function,
s0 ∈ S is an initial state, and S⋆ ⊂ S is a set of goal
states. Our planning objective is to find a policy π =
{a1, · · · , an|∀ai ∈ A} for P in Eq. 1 to transit from s0
to ∃sn ∈ S⋆ in finite steps. Now, we explain each step in
our planning pipeline to find a valid π for P and provide
a more detailed explanation of the subgoal planner in the
next section. An overview of our pipeline is also illustrated
in Fig. 1.
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Fig. 1: Neuro-symbolic task planning pipeline. LLM (the green blocks) and symbolic languages (the orange blocks) are
used for various steps in the pipeline.

A. Planning Formulation
For the robot to fully understand and interact with its

environment, both semantics and geometry about the objects
in the environment are required. We use a multimodal LLM
such as GPT-4o1 to simultaneously process image and text
prompts. By providing a color image captured by an RGBD
camera along with the prompt, e.g., ”What objects are on
the table? Tell me each of their appearance and spatial
relationships.”, the LLM can describe the objects on the
table, including their spatial relationships, positions, and
appearance. Given the scene description, user-provided goal
task, the domain PDDL, and an in-context example, the LLM
generates a problem PDDL including environment objects
O, the initial state s0, and the goal state S⋆ to specify the
planning problem P . We utilize one-shot prompting [23]
by providing an example of problem PDDL generation to
enhance the LLM’s responses.

We also employ a 2D open-vocabulary object detection
model [24] to estimate the geometric information, specifi-
cally the bounding box of the target objects identified by the
multimodal LLM. These bounding boxes are essential for a
robot manipulator to motion-plan their grasp poses.

B. Subgoal Generation
Solving a complex task by breaking it down into smaller,

easier tasks is often effective [25]. In our case, while LLMs
can directly generate relatively accurate plans for smaller
tasks, their performance significantly decreases as the task
complexity increases and the plan grows beyond a certain
size [6]. To address this problem, we leverage the common-
sense knowledge of LLMs, i.e., the L-Model, to decompose
a given goal into multiple subgoals, simplifying the planning
process.

Let us call an ordered set of G = {S⋆
0 , S

⋆
1 , · · · , S⋆

n} a
sequence of subgoals or simply subgoals of P in Eq. 1 iff
S⋆
i is reachable from S⋆

i−1 for 1 ≤ ∀i ≤ n via a finite
number of state transitions from ∃si−1 ∈ S⋆

i−1 to ∃si ∈ S⋆
i

and S⋆
0 = {s0}, S⋆

n = S⋆. Our objective is to decompose the
original task problem P into n smaller sub-problems Pi’s,
0 ≤ ∀i ≤ n− 1 as

Pi ≡ ⟨S,O,A, T , si, S
⋆
i+1⟩. (2)

We prompt the LLM with domain knowledge and a
one-shot planning example along with the explanation of

1https://openai.com

the steps for solving the problem and then ask the LLM
to generate G by observing how the example problem is
solved. For instance, in the Blocksworld-new domain, if
the blocks are stacked in the order (on b1 b2)(on b2
b3)(on-table b3 t1), the reverse order stacking re-
quires each of the three blocks to be unstacked with no ob-
jects on each block—(clear b1)(clear b2)(clear
b3)(clear-table t1)—to rearrange them appropri-
ately.

C. Task Planning

Once the subgoals G are generated, we attempt to find a
policy πi ⊂ π for each sub-planning problem Pi. The role
of the subgoal planner is explained in detail in Sec. IV. By
sequentially applying actions from the policy πi to the initial
state si, we determine the resulting state si+1. If si+1 ∈
S⋆
i+1, πi is called a valid policy for Pi, and si+1 becomes

the initial state for the next sub-problem Pi+1. Finally, by
aggregating each valid policy π0, π1, . . . , πn−1 for each sub-
problem, we can obtain the final policy, π =

⋃
i πi, which

is symbolically represented as a plan PDDL. LLM then
translates the plan PDDL into robot-executable low-level
code. The robot then automatically executes the correspond-
ing actions by invoking predefined high-level robot action
primitives, e.g., such as pick, place [26].

IV. SUBGOAL PLANNER

We use either a symbolic planner or an MCTS LLM
planner to solve each sub-problem Pi in Eq. 2, depending
on the size of Pi. This section details both planners.

A. Symbolic LLM Planner

When the size |Pi| of Pi is moderate, it is better to use a
symbolic planner rather than an LLM-based planner to solve
Pi precisely. However, estimating |Pi| is not easy. In theory,
one can use a problem measure like MDL [4] to estimate it,
but in practice, deriving the MDL for a challenging task is
quite hard. Instead, one may estimate an MDL-like metric
for Pi by empirically measuring the planning time spent by
running the MCTS LLM planner or a symbolic planner for
a sampled Pi. If such an estimate is sufficiently high, we
assume that Pi is complex and resort to the MCTS LLM
planner in the next section; otherwise, we use a symbolic
planner.

To solve Pi symbolically, one can use any symbolic
planner, but we opted for the Fast Downward planner [3],
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Fig. 2: An overview of the MCTS LLM Planner. First, the L-Policy samples ns plans for a sub-problem Pi. For instance,
the initial state si of Pi is (on b1 b2)(on-table b2 t1), etc., and the goal state S⋆

i+1 should satisfy (clear
b1)(clear b2)(clear-table t1). A state tree Ti is then generated, and our MCTS algorithm uses Ti to search for
a plan that reaches S⋆

i+1.

one of the fastest symbolic planners. This guarantees an exact
solution to Pi if one exists.

B. MCTS LLM Planner

When |Pi| is high, using a symbolic planner to solve Pi

is impractical due to the high combinatorial search space. In
this case, we use an MCTS planner combined with the LLM.
As illustrated in Fig. 2, our MCTS LLM planner first samples
ns plans for a sub-problem Pi using an LLM (i.e., L-Policy),
then builds a state tree with the LLM-sampled plans, which
serves as the reduced search space. The MCTS algorithm
then searches this tree to identify an action sequence (i.e., a
policy) that leads to a state satisfying the subgoal S⋆

i+1.
1) Plan Sampling: Given the domain PDDL in Sec. III-A

and a few in-context planning examples, the LLM generates
ns plans, {π1

i , π
2
i , · · · , π

ns
i } to achieve the subgoal in Pi.

Unlike [5], which samples the entire problem P , we only
sample for a sub-problem Pi, leading to presumably higher
accuracy. Also, the action weight is computed as the sum
of token log probabilities for each LLM-generated action,
reflecting the LLM’s confidence when generating the action
[27]. Since a token’s log probability represents its conditional
probability given previous tokens, the action weight can be
viewed as the conditional probability of the current action
occurring, given the history of previous actions. This action
weight will guide the rollout process in the MCTS.

2) State Tree Generation: We generate a state tree Ti for
Pi by coalescing the sampled ns plans where each node in
Ti represents a state s ∈ S and each edge corresponds to an
action a ∈ A connecting s, s′ when s′ = T (s, a). Ti bounds
the MCTS search space, ensuring the search is restricted to
valid LLM-generated actions. Moreover, we verify whether
the preconditions of a, as defined in the domain PDDL, hold
for s. If valid, then a is added to Ti; otherwise, subsequent
actions are removed from Ti. This post-validity check is
applied to every action in all sampled plans.

3) Monte Carlo Tree Search: We search the state tree
Ti using the MCTS to find a policy πi for Pi. Our MCTS
is quite different from conventional MCTS like [22] in
that: 1) we already expanded the tree Ti that is fixed and
constrains the overall search space, so the expansion step is
not needed during the search; 2) our rollout policy searches

only within Ti. The goal of our MCTS is to estimate the
reward for tree nodes and find a valid πi from the initial
state si to a goal state s⋆ ∈ S⋆

i+1, guided by the rewards.
The following selection, simulation, and backpropagation
processes are repeated to find πi.

1. Selection: Starting from the root node si, we recursively
traverse Ti by selecting the child node with the highest UCB1
score [28] from the set of visited nodes. This continues until
reaching a node whose all child nodes are visited for the
first time. Then, one of the child nodes is randomly selected,
say sr. If sr is included in the goal states sr ∈ S⋆

i+1, the
MCTS stops immediately and sr is traced back to si, thereby
constructing a plan πi for Pi.

2. Simulation: The simulation step is rolled out and
estimates the reward of sr passed from the selection process.
Our rollout policy works as follows: Among the possible next
nodes (states) that can be transited from the current node
(state), the node with the highest action weight (on the red
edges in Fig.2), already computed during the plan sampling
step, is selected for the next node to visit. This process is
repeated on the tree Ti until a leaf node s⋆ is reached. If
s⋆ ∈ S⋆

i+1, the returned reward is 1
1+d where d is the nodal

distance from sr to s⋆; otherwise, zero reward is returned.
If sr ∈ S⋆

i+1, the reward is 1.
3. Backpropagation: The reward (the green nodal values

in Fig. 2) obtained from the simulation step is backpropa-
gated to update the nodes traversed earlier, incrementing its
visit count and adding the reward.

V. EXPERIMENTS

A. Experimental Setup

All task planning experiments were conducted on an
Intel Core i9 CPU and NVIDIA RTX 6000 GPUs. We
employed GPT-4o for the multimodal LLM and used the Fast
Downward planner as the symbolic PDDL planner. We con-
ducted PDDL task planning experiments in three well-known
IPC domains by modifying their problem complexities [29]:
Barman-new, Blocksworld-new, and Gripper-new.

a) Barman-new: This domain involves a dual-arm ma-
nipulator making cocktails. The goal is to prepare 2 ≤ n ≤
10 cocktails and pour them into a different shot glass, similar
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Fig. 3: Success rates (top row) and planning time (bottom row) of CoT, FD, Symbolic LLM, MCTS LLM planners with
3 ≤ ns ≤ 5, and MCTS LLM planner without goal decomposition with ns = 5. The x axis in all the graphs denotes the
domain complexity n.

to examples in [15]. The number of ingredients is three, and
the number of shot glasses is n+ 1.

b) Blocksworld-new: In this domain, a robotic arm
stacks 3 ≤ n ≤ 10 blocks, randomly divided into one to
three stacks arranged on a table. The goal is to rearrange
the blocks for each stack. Unlike the original Blocksworld
domain, we increase the planning complexity by creating six
block placement positions for the interim workspace. As a
result, the planner must also specify positions for placing the
blocks rather than using a single on-table predicate as in
the original domain.

c) Gripper-new: In the Gripper-new domain, four
robots move 2 ≤ n ≤ 10 balls to four different rooms from
their initial location. We incorporate four robots, making the
planning process more complex in a multi-agent scenario,
similar to [15]. The positions of the balls and robots in both
the initial and goal states are random.

For each n in the above domains, we randomly generated
30 problem PDDL files for the experiments and measured
the planning performances.

B. Performance Analysis

The success rate and planning time for each experiment
are shown in Figure. 3. The success rate is verified by the
PDDL validator VAL [30]. The total planning time includes
the subgoal generation and planning time for each subgoal.
For each task, we compared four methods:

1) CoT planner: baseline LLM planner grounded in [18],
[20] which uses chain-of-thought few-shot prompting
[31] with two or three in-context examples to generate
a plan with LLM directly.

2) FD planner: baseline symbolic planner using the Fast
Downward planner with the ”seq-opt-fdss-1” configu-
ration.

3) Symbolic LLM planner: our method using the sym-
bolic planner as a subgoal planner, explained in
Sec. IV-A.

4) MCTS LLM planner: our method using the MCTS
planner as a subgoal planner, explained in Sec. IV-B.

Comparisons: The CoT planner is the fastest among
the four but has the lowest accuracy, with its success rate
approaching nearly zero as n increases; on the other hand,
the FD planner maintains a 100% success rate, but its
planning time increases exponentially as n grows. This
indicates that both baseline methods struggle to solve long-
sequential problems in highly complex search spaces. In
contrast, our Symbolic LLM planner consistently achieved
a success rate of 100%, and our MCTS planner obtained
on average 98.5%, 92.6%, 88.2% success rates for Barman-
new, Blocksworld-new, and Gripper-new domains, respec-
tively. Compared to the CoT Planner, on average, the
planning times of our symbolic and MCTS planners are
6.5×/3.8× (Barman-new), 4.9×/10.2× (Blocksworld-new),
and 3.36×/8× (Gripper-new) slower.

It is difficult to compare the performance of our method
against other state-of-the-art, LLM-based methods since they
use different LLMs or generate non-deterministic results.
However, one can estimate comparisons based on the original
authors’ report. [15] show very low success rates (almost
zero) for complex benchmarks like ours, [19] show similar
success rates with ours for the single robot benchmark
whereas ours is multiple, more complex setup, and [20] show
slightly inferior success rates than ours for the Blocksworld
when n ≤ 4, but it is unclear how it would perform
for n > 4. Even though this comparative study is not
purely experimental, one can say that the performance of our
methods is substantially better than the existing methods.

16199



Fig. 4: Physical robotic demonstration of our planner on Blocksworld-new domain. Initially, ten blocks, labeled from 1 to
10, are divided into three stacks and placed on the table (leftmost image). The goal is to restack the blocks at the same
position in the following order: 10 on 7, 7 on 9, 9 on 8, 1 on 3, 3 on 2, 6 on 5, and 5 on 4 (rightmost image).

Fig. 5: Simulated robotic demonstration of our planner on Barman-new domain. Initially, three ingredients, three shots, and
a shaker are placed on the table (leftmost image). The goal is to make a cocktail and pour it into a shot (rightmost image).

Symbolic LLM vs. MCTS LLM: In the Barman-new
domain, where each sub-task (making a cocktail) requires
a long MDL and the domain’s state space S is large, the
planning time for the Symbolic LLM planner increases
rapidly as n grows. In contrast, the MCTS LLM planner
shows an almost linear growth in planning time with respect
to n, resulting in faster performance than the Symbolic LLM
planner. However, in the Blocksworld-new and Gripper-new
domains, the planning time for the Symbolic LLM planner
does not increase as quickly as in the Barman-new domain,
and it was faster than the MCTS LLM planner. This is
probably because these domains are less complex than the
Barman-new domain, with a shorter MDL between subgoals.

Sampled Plans: We performed further experiments on the
number of sampled plans used by the MCTS LLM planner by
varying 3 ≤ ns ≤ 5 and observed a general trend of higher
success rates, accompanied by an increase in planning time.
However, as noted in [5], success rate improvement is limited
when ns exceeds a certain point due to the upper bound on
search space complexity, with subgoal decomposition further
restricting the space in our case.

Ablation Study on Goal Decomposition: We conducted
an ablation study on the effectiveness of goal decomposition.
We executed our MCTS LLM planner with ns = 5 with
and without goal decompositions. As shown in Fig. 3, our
planner with goal decomposition achieved a much higher
success rate than the one without it, whereas the planner
without goal decomposition approached zero success rates
for complex problems.

C. Robot Demonstration

We conducted planning experiments with a real robot
in the Blocksworld-new domain to demonstrate the practi-
cality of our neuro-symbolic robot task planners. We used
dual UR5e manipulators with Robotiq 3F grippers for the
real robot demonstration. An Intel RealSense D455 RGBD
camera was employed for visual input, fixed above the
table for a top-down view. For the Barman-new domain,

we conducted experiments in the CoppeliaSim environment
[32], which was set up similarly to the real robot setup. For
both experiments, our task planners were integrated into the
MoveIt motion planner [33] in ROS via the translated action
primitives. Key robot action primitives such as pick and
place were predefined using MoveIt, and task planning
results were converted into code composed of these action
primitives using the LLM. Once executed, corresponding
robot actions were carried out accordingly.

D. Failure Analysis
In both real-world and simulation experiments, failures

fell into two categories: execution and planning. Execution
failures mostly stemmed from stability issues, such as occlu-
sion in cluttered environments leading to inaccurate planning
formulation, failed grasps, or collapsed stacks of blocks.
Planning failures were more common in the MCTS LLM
planner. In the Blocksworld-new domain, it struggled with
spatial reasoning and misordered block stacking sequences,
while in the Gripper-new domain, it misinterpreted the goal
state, occasionally moving irrelevant balls.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a novel task-planning pipeline based

on neuro-symbolic language models by decomposing a com-
plicated, long-sequential goal into multi-level subgoals. Our
planner performs much faster than the baseline symbolic
methods, achieving high accuracy. Future improvements
include developing automated generalizable strategies for
selecting the level of goal decomposition and choosing
between symbolic and MCTS planners, which currently
rely on empirical criteria. Further integration of our task-
planning pipeline with motion planning (i.e., the TAMP) is
also needed.

ACKNOWLEDGMENT
This work was supported in part by the ITRC/IITP Pro-

gram (IITP-2025-RS-2020-II201460), and in part by the
NRF (NRF-2022R1A2B5B03001385) in South Korea.

16200



REFERENCES

[1] M. Fox and D. Long, “Pddl2. 1: An extension to pddl for expressing
temporal planning domains,” Journal of artificial intelligence research,
vol. 20, pp. 61–124, 2003.

[2] S. M. Lavalle, Planning Algorithms. Cambridge University Press,
2006.

[3] M. Helmert, “The fast downward planning system,” Journal of Artifi-
cial Intelligence Research, vol. 26, pp. 191–246, 2006.

[4] Z. Zhao, W. S. Lee, and D. Hsu, “Large language models as common-
sense knowledge for large-scale task planning,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[5] M. Hu, Y. Mu, X. Yu, M. Ding, S. Wu, W. Shao, Q. Chen, B. Wang,
Y. Qiao, and P. Luo, “Tree-planner: Efficient close-loop task planning
with large language models,” arXiv preprint arXiv:2310.08582, 2023.

[6] K. Valmeekam, S. Sreedharan, M. Marquez, A. Olmo, and S. Kamb-
hampati, “On the planning abilities of large language models (a
critical investigation with a proposed benchmark),” arXiv preprint
arXiv:2302.06706, 2023.

[7] H. Guo, F. Wu, Y. Qin, R. Li, K. Li, and K. Li, “Recent
trends in task and motion planning for robotics: A survey,” ACM
Computing Surveys, vol. 55, pp. 1 – 36, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:256630415

[8] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-
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