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Networks of Images 
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Or of Shapes, Or of Both 
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Joint Data Analysis 
As we acquire more and more data, our data sets become 
increasingly interconnected and inter-related, because 
• we capture information about the same objects in the 

world multiple times, or data about multiple instances of 
an object  

• natural and human design often exploits the re-use of 
certain elements, giving rise to repetitions and 
symmetries 

• objects are naturally organized into classes or 
categories exhibiting various degrees of similarity 
 

Data sets are often best understood not in isolation, but in 
the context provided by other related data sets. 
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Relations Between Visual Data 

5 
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Function Spaces, Linear Operators Functors, Categories, Limits/Co-limits 



Each Data Set Is Not Alone 
The interpretation of a particular piece of geometric 
data is deeply influenced by our interpretation of other 
related data 

7 3D Segmentation 



And Each Data Set Relation is 
Not Alone 
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State of the art algorithm 
applied to the two vases 

Map re-estimated using advice  
from the collection 

3D Mapping 



Societies, or 
Social Networks of Data Sets 

Our understanding of data can greatly benefit from 
extracting these relations and building relational networks. 
 
We can exploit the relational network to 
• transport information around the network 
• assess the validity of operations or interpretations of data (by checking 

consistency against related data) 
• assess the quality of the relations themselves (by checking consistency 

against other relations through cycle closure, etc.) 

 
Thus the network becomes the great regularizer in joint 
data analysis. 
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Semantic Structure Emerges 
from the Network 
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Key: Relationships as Collections 
of Correspondences or Maps 

Multiscale mappings 
Point/pixel level 
part level 
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Maps capture what 
is the same or similar  
across two data sets 

 



Relationships as First-Class 
Citizens 

How can we make data set 
relationships concrete, tangible, 
storable, searchable objects? 
 
How can we understand the 
“relationships among the 
relationships” or maps? 
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Good Correspondences or Maps 
are Information Transporters 
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A Dual View: 
Functions and Operators 

Functions on data 
Properties, attributes, 
descriptors, part indicators, etc. 
But also beliefs, opinions, etc 

Operators on functions 
Maps of functions to functions 

Laplace-Beltrami operator on a 
manifold  
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heat diffusion 

Laplace Beltrami eigenfunctions 

Curvature 
Parts 

SIFT flow, C. Liu 2011 



Functional Maps 
(a.k.a. Operators) 
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[M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, L. G., Siggraph ’12] 



Starting from a Regular Map φ 

16 φ: lion → cat 



Attribute Transfer via Pull-Back 

17 Tφ: cat → lion 



Functional Map Representation 
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The Operator View of Maps 

Functions on cat are transferred to lion using F 

F is a linear operator (matrix) 

from cat to lion 
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The Functional Framework 
An ordinary shape map lifts to a linear operator mapping the 
function spaces 
With a truncated hierarchical basis, compact representations 
of functional maps are possible as ordinary matrices 
Map composition becomes ordinary matrix multiplication 
Functional maps can express many-to-many associations, 
generalizing classical 1-1 maps 
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Using truncated 
Laplace-Beltrami 
basis 



Estimating the Mapping Matrix 

Suppose we don’t know C. However, we expect a pair of 
functions   and     to correspond. Then, C 
must be s.t. 

where 

Given enough          pairs in correspondence, we can 
recover C through a linear least squares system.    21 



Function Preservation Constraints 

Suppose we don’t know C. However, we expect a pair of 
functions   and     to correspond. Then, C 
must be s.t. 

Function preservation constraint is quite general and includes:  

Descriptor preservation (e.g. Gaussian curvature, spin 
images, HKS, WKS).  

Landmark correspondences (e.g. distance to the point).  

Part correspondences (e.g. indicator function). 

Texture preservation 
22 



Commutativity Constraints 

In addition, we can phrase operator commutativity 
constraint, given two operators          and 
             . 

Thus:                                           should be minimized 

Note: this is a linear constraint on C. S1 and S2 could 
be symmetry operators or e.g. Laplace-Beltrami or 
Heat operators.  
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Regularization 

Lemma 1: 

The mapping is isometric, if and only if the functional 
map matrix commutes with the Laplacian:  
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Regularization 

Lemma 2: 

The mapping is locally volume preserving, if and 
only if the functional map matrix is orthonormal: 
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Map Estimation Quality 

26 Roughly 10 probe functions + 1 part correspondence 



App: Shape Differences 
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[R. Rustamov, M. Ovsjanikov, O. Azercot, M. Ben-Chen, F. Chazal, L.G. Siggraph ’13] 

vs. 



Understanding Intrinsic 
Distortions 

Where and how are shapes different, locally and 
globally, irrespective of their embedding 
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Area distortion Conformal distortion 



Classical Approach to 
Relating Shapes 

To measure distortions induced by a map, 
we track how inner products of vectors 
change after transporting 

Challenges: 
• point-wise information only, hard 

to aggregate  
• noisy 

Riemann 
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A Functional View of 
Distortions 

To measure distortions induced by a 
map, track how inner products of 
vectors change after transporting. 

 
To measure distortions induced by a 

map, track how inner products of  
functions change after transporting. 

Riemann 
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The Art of Measurement 
A metric is defined by a 
functional inner product 
 
 
So we can compare M and N by 
comparing 

 
 

 
 

31 

Riemann 

M 

F N 

The functional map F 
transports these functions to N, 
where we repeat this 
measurement with the inner 
product hN(F(f),F(g)) 
 



Measurement Discrepancies 

after before 

Both can be considered as 
inner products on the cat  32 



The Universal Compensator 

There exists a linear operator 
 
 
such that 

1907 1909 

Comptes Rendus Hebdomadaires des  
Séances de l'Académie des Sciences de Paris 

Frigyes Riesz 
 

Riesz Representation Theorem 
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Area-Based Shape Difference:  
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A Small Example of V 
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Conformal Shape Difference: R 
Consider a different inner-product of functions ... 
     get information about conformal distortion 
 
 

The choice of inner product should be driven by  
the application at hand. 
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Shape Differences in 
Collections 

37 



Comparing Differences I 

… 
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Intrinsic Shape Space 

… 

Area Conformal 1 8 

64 57 

28 29 

36 37 
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Area Conformal 

13 

4 

16 

1 

21 24 

Intrinsic Shape Space 
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Localized Comparisons 

supported in RoI 

… 

ROI 

½ : M ! R

D1½ to D2½
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Exaggeration of Difference in 
RoI 
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Comparing Differences II 
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Analogies: D relates to C as B 
relates to A 

A B 

C D 

output 

D = C + (B – A) 
hands raised up 
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Analogies: D relates to C as 
B relates to A 

Entire 
SCAPE 

D 

output 

… 

A B 

C 

Input 

F 
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Shape Analogies 
A B A 

C D 

B 

output 

C D 

output 
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Comparing Differences III 
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Aligning Disconnected 
Collections 

First Collection Second Collection 
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Complete graph 

… … 

Complete graph 

Aligning Disconnected 
Collections 
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Aligning, Without 
“Crossing the River” 

50 

Comparing the differences is sometimes easier than comparing the originals 



The Network View 

51 



Map Networks for Related Data 
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Maps vs.  
similarities 

Networks of “samenesses” 
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Saunders MacLane 

Samuel Eilenberg 

The Information is 
in the Maps 

Herni Cartan 

A Functorial View of Data 

Homological Algebra 
1956 



Yes, But With a Statistical 
Flavor 

Yes, straight out of the playbook of homological algebra 
/ algebraic topology 
But, the maps  

are not given by canonical constructions 
they have to be estimated and can be noisy 
the network acts as a regularizer … 
commutativity still very important 
imperfections of commutativity in function transport 
convey valuable information: consistency vs. 
variability – “curvature” in shape space 
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Cycle-Consistency ≡ Low-Rank 

In a map network, commutativity, path-invariance, or 
cycle-consistency are equivalent to a low rank or 
semidefiniteness condition on a big mapping matrix 
 
 
 
 
 
Conversely, such a low-rank condition can be used to 
regularize functional maps 
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Maps vs. Distances/Similarities 
Networks vs. Graphs 
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A B C 



Exploitation of the Wisdom in a 
Collection 

57 



Shared Structure 
Discovery 
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Entity Extraction in Images 

Task: jointly segment a set of related images 
same object, different viewpoints/scales: 
 
 
similar objects of the same class: 
 
 

Benefits and challenges:  
Images can provide weak supervision for each other 
But exactly how should they help each other? How to 
deal with clutter and irrelevant content? 

[F. Wang, Q. Huang, L. G., ICCV ’13] 
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Co-Segmentation via an Image 
Network 

 Image similarity graph based on GIST 
Each edge has global image similarity       
and functional maps in both directions; 
Sparse if large. 
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Graph for iCoseg-Ferrari 

Graph for PASCAL-Plane 



The Pipeline 

a) Superpixel graph representation of images 
 

b) Functions over these graphs expressed in terms of the eigenvectors 
of the graph Laplacian 
 

c) Estimation of functional maps along network edges such that 
• Image features are preserved  
• Maps are cycle consistent in the network 

 
d) The “cow functions” emerge as the most consistently transported set 61 



Superpixel Representation 

Over-segment images 
into super-pixels 
 
Build a graph on super-
pixels 

Nodes: super-pixels 
Edges weighted by length 
of shared boundary 
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Encoding Functions over Graphs 

Basis of functional space 
: First M Laplacian 
eigenfunctions of the graph 

 
Reconstruct any function with 
small error (M=30) 

Binary indicator function Reconstructed function Thresholded  
reconstructed function 

Reconstruction error 63 



Functional map: 
A linear map between functions in two 
functional spaces 
 
Can be recovered by a set of probe functions 

 

Joint Estimation of Functional Maps, 
I 

64 



Joint Estimation of Functional Maps, 
I 

Recover functional maps by aligning image 
features: 

 
Features (probe functions) for each super-pixel: 

average RGB color, 3-dimensional; 
64 dimensional RGB color histogram; 
300-dimensional bag-of-visual-words. 
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Joint Estimation of Functional Maps, 
II 

Regularization term: 
 
 

Correspond bases of similar spectra 
Enforce sparsity of map 

Map with regularization Map without regularization 

Λi, Λj diagonal matrices 
of Laplacian eigenvalues 
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Joint Estimation of Functional Maps, 
III 

Incorporating map cycle consistency: 
A transported function along any loop should be 
identical to the original function: 
 
 
Consistency term: 

 
 
 

 

  
 
 

Image global similarity weight via 
GIST 
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Joint Estimation of Functional Maps, 
III 

Plato’s allegory of the cave 

68 
X 30x30, Y 30x20 



Joint Estimation of Functional Maps, 
IV 

Overall optimization 
 
 
Alternating optimization: 

Fix Y, solve X           Independent QP problems 

 
Fix X, solve Y            Eigenvalue problem 

69 



Consistency Matters 

70 

Source 
image 

Target 
image 

Without  
cycle 
consistency 

With 
cycle 
consistency 



Generating Consistent 
Segmentations 

Two objectives for segmentation functions 
consistent under functional map transportation 
 

 
agreement with normalized cut scores: 

 
 
Joint optimization:  

Easy to incorporate 
labeled images with 
ground truth segmentation 

Eigen-decomposition 
problem 

consistent 

71 

We look for network fixed points! 



Experiments 

iCoseg dataset 
Very similar or the same object in each class; 
5~10 images per class. 

MSRC dataset  
Similar objects in each class; 
~30 images per class. 

PASCAL data set 
Retrieved from PASCAL VOC 2012 challenge; 
All images with the same object label; 
Larger scale; 
Larger variability. 
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Kuettel’12 (Supervised) Unsupervised  
Fmaps 

Image+transfer Full model 

87.6 91.4 90.5 

Class Joulin 
’10 

Rubio 
’12 

Vicente 
’11 

Fmaps 
-uns 

Alaska Bear 74.8 86.4 90.0 90.4 

Red Sox Players 73.0 90.5 90.9 94.2 

Stonehenge1 56.6 87.3 63.3 92.5 

Stonehenge2 86.0 88.4 88.8 87.2 

Liverpool FC 76.4 82.6 87.5 89.4 

Ferrari 85.0 84.3 89.9 95.6 

Taj Mahal 73.7 88.7 91.1 92.6 

Elephants 70.1 75.0 43.1 86.7 

Pandas 84.0 60.0 92.7 88.6 

Kite 87.0 89.8 90.3 93.9 

Kite panda 73.2 78.3 90.2 93.1 

Gymnastics 90.9 87.1 91.7 90.4 

Skating 82.1 76.8 77.5 78.7 

Hot Balloons 85.2 89.0 90.1 90.4 

Liberty Statue 90.6 91.6 93.8 96.8 

Brown Bear 74.0 80.4 95.3 88.1 

Average 78.9 83.5 85.4 90.5 

iCoseg data set 
New unsupervised method 

Mostly outperforms other 
unsupervised methods 
Sometimes even 
outperforms supervised 
methods 
Supervised input is easily 
added and further improves 
the results 

Supervised 
method 
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MSRC 
Unsupervised performance comparison 

Supervised performance comparison 

Class N Joulin 
’10 

Rubio 
’12 

Fmaps 
-uns 

Cow 30 81.6 80.1 89.7 

Plane 30 73.8 77.0 87.3 

Face 30 84.3 76.3 89.3 

Cat 24 74.4 77.1 88.3 

Car(front) 6 87.6 65.9 87.3 

Car(back) 6 85.1 52.4 92.7 

Bike 30 63.3 62.4 74.8 

Class Vicente 
’11 

Kuettel 
’12 

Fmaps 
-s 

Cow 94.2 92.5 94.3 

Plane 83.0 86.5 91.0 

Car 79.6 88.8 83.1 

Sheep 94.0 91.8 95.6 

Bird 95.3 93.4 95.8 

Cat 92.3 92.6 94.5 

Dog 93.0 87.8 91.3 

• PASCAL 
Class N L Kuettel 

’12 
Fmaps 

-s 
Fmaps 

-uns 

Plane 178 88 90.7 92.1 89.4 

Bus 152 78 81.6 87.1 80.7 

Car 255 128 76.1 90.9 82.3 

Cat 250 131 77.7 85.5 82.5 

Cow 135 64 82.5 87.7 85.5 

Dog 249 121 81.9 88.5 84.2 

Horse 147 68 83.1 88.9 87.0 

Sheep 120 63 83.9 89.6 86.5 

• New method mostly 
outperforms the state-of-
the-art techniques in both 
supervised and 
unsupervised settings 
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iCoseg: 5 images per class are shown 
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iCoseg: 5 images per class are shown 
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iCoseg: 5 images per class are shown 
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iCoseg: 5 images per class are shown 
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MSRC: 5 images per class are shown 
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MSRC: 5 images per class are shown 
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PASCAL: 10 images per class are shown 
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PASCAL: 10 images per class are shown 
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PASCAL: 10 images per class are shown 
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PASCAL: 10 images per class are shown 
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Multi-Class Co-Segmentation 

Input:  
A collection of N images sharing M objects 
Each image contains a subset of the objects 
 
 

Output 
Discovery of what objects appear in each 
image 
Their pixel-level segmentation 85 

      
          

[F. Wang, Q. Huang, M. Ovsjanikov, L. G., CVPR’14] 



Partial cycle consistency: 

Consistent Functional Maps 

86 

Must deal with non-total maps 

Related to topological persistence / persistent homology 



Latent functions: 
Discrete variables: 
Relationship:  
Consistency: 

Consistent Functional Maps 
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YiDiag(zi) = Yi

zi = fzil 2 f0;1g;1 · l · Lg

XijY i = Y jDiag(zi); (i; j) 2 E:

Y i = (yi1; ¢ ¢ ¢ ;yiL)

Images 

O
bj

ec
ts

 



The consistency regularization 
 
 
 
Overall optimization 

Consistent Functional Maps 
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fcons =¹
X

(i;j)2E
kXijYi ¡YjDiag(zi)k2

+ °
NX

i=1

kYi ¡YiDiag(zi)k2;

fX?
ijg = argminXij

0

@¹fcons +
P

(i;j)2E
fpair

1

A



Framework 
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Initialization 

Solve for consistent segmentation with 
ALL images together 
 
 
Pick the first M eigenvectors 
Each object class is initialized as:  

fseg =
1

jGj
X

(i;j)2G
kXijsik ¡ sjkk2F +

°

N

NX

i=1

sTikLisik

= skLsk;

Ck = fi; s.t. ksikk ¸ max
i

ksik=2g

90 



Alternating between: 
Continuous optimization:  

Optimal segmentation functions in each class  
Combinatorial optimization:  

Class assignment by propagating segmentation 
functions 

 
 

Optimizing Segmentation Functions 

91 



Continuous Optimization 

Optimize segmentations in each object class 
Consistent with functional maps 
Align with segmentation cues 
Mutually exclusive 

min
sik;i2Ck

MX

k=1

X

(i;j)2E\(Ck£Ck)
kXijsik ¡ sjkk2

+ °
X

l 6=k

X

i2Ck\Cl
(sTilsik)

2 + ¹
MX

k=1

X

i2Ck
sTikLisik

subject to
X

i2Ck
ksikk2 = jCkj; 1 · k · K:

92 



Combinatorial Optimization 

Expand each object class by propagating 
segmentations to other images 

max
sik

1

jN (i) \ Ckj
X

j2N (i)\Ck
(sTikXjisjk)

2

¡ °
X

l 6=k;i2Cl
(sTiksil)

2 ¡ ¹sTikLisik

subject to ksikk2 = 1

93 



Optimizing Segmentation Functions 

More images will be included in each 
object class 
 
 
 

• Segmentation functions are 
improved during iterations 
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Experimental Results 

Accuracy 
Intersection-over-union 
Find the best one-to-one matching between each 
cluster and each ground-truth object. 

Benchmark datasets 
MSRC: 30 images, 1 class (degenerated case); 
FlickrMFC data set: 20 images, 3~6 classes 
PASCAL VOC: 100~200 images, 2 classes 

95 



Experimental Results 

class N M Kim’12 Kim’11 Joulin 
’10 

Mukherjee 
’11 

Ours 

Apple 20 6 40.9 32.6 24.8 25.6 46.6 

Baseball 18 5 31.0 31.3 19.2 16.1 50.3 

butterfly 18 8 29.8 32.4 29.5 10.7 54.7 

Cheetah 20 5 32.1 40.1 50.9 41.9 62.1 

Cow 20 5 35.6 43.8 25.0 27.2 38.5 

Dog 20 4 34.5 35.0 32.0 30.6 53.8 

Dolphin 18 3 34.0 47.4 37.2 30.1 61.2 

Fishing 18 5 20.3 27.2 19.8 18.3 46.8 

Gorilla 18 4 41.0 38.8 41.1 28.1 47.8 

Liberty 18 4 31.5 41.2 44.6 32.1 58.2 

Parrot 18 5 29.9 36.5 35.0 26.6 54.1 

Stonehenge 20 5 35.3 49.3 47.0 32.6 54.6 

Swan 20 3 17.1 18.4 14.3 16.3 46.5 

Thinker 17 4 25.6 34.4 27.6 15.7 68.6 

Average - - 31.3 36.3 32.0 25.1 53.1 

96 
Performance comparison on the MFCFlickr dataset 

class N NCut MNcut Ours 

Bike + person 248 27.3 30.5 40.1 

Boat + person 260 29.3 32.6 44.6 

Bottle + dining table 90 37.8 39.5 47.6 

Bus + car 195 36.3 39.4 49.2 

bus + person 243 38.9 41.3 55.5 

Chair + dining table 134 32.3 30.8 40.3 

Chair + potted plant 115 19.7 19.7 22.3 

Cow + person 263 30.5 33.5 45.0 

Dog + sofa 217 44.6 42.2 49.6 

Horse + person 276 27.3 30.8 42.1 

Potted plant + sofa 119 37.4 37.5 40.7 

Performance comparison on the PASCAL-multi dataset 

class N Joulin’10 Kim’11 Mukherjee’11 Ours 

Bike 30 43.3 29.9 42.8 51.2 

Bird 30 47.7 29.9 - 55.7 

Car 30 59.7 37.1 52.5 72.9 

Cat 24 31.9 24.4 5.6 65.9 

Chair 30 39.6 28.7 39.4 46.5 

Cow 30 52.7 33.5 26.1 68.4 

Dog 30 41.8 33.0 - 55.8 

Face 30 70.0 33.2 40.8 60.9 

Flower 30 51.9 40.2 - 67.2 

House 30 51.0 32.2 66.4 56.6 

Plane 30 21.6 25.1 33.4 52.2 

Sheep 30 66.3 60.8 45.7 72.2 

Sign 30 58.9 43.2 - 59.1 

Tree 30 67.0 61.2 55.9 62.0 
Performance comparison on the MSRC dataset 



Apple + picking 

Baseball + kids 

Butterfly + blossom 

97 



Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pump  

Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.) 

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe  
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Cheetah + Safari 

Cow + pasture 

Dog + park 

Dolphin + aquarium 
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Cheetah + Safari (red: cheetah; yellow: lion; magenta: monkey.) 

Cow + pasture (red: black cow; green: brown cow; blue: man in blue.) 

Dog + park (red: black dog; green: brown dog; blue: white dog.) 

Dolphin + aquarium (red: killer whale; green: dolphin.) 
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Fishing + Alaska 

Gorilla + zoo 

Liberty + statue 

Parrot + zoo 
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Fishing + Alaska (blue: man in white; green: man in gray; magenta: woman in gray; yellow: salmon.  

Gorilla + zoo (blue: gorilla; yellow: brown orangutan) 
 

Liberty + statue (blue: empire state building; green: red boat; yellow: liberty statue.) 

Parrot + zoo (red: hand; green: parrot in green; blue: parrot in red.) 
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Stonehenge 

Swan + zoo 

Thinker + Rodin 
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Stonehenge (blue: cow in white; yellow: person; magenta: stonehenge.) 

Swan + zoo (blue: gray swan; green: black swan.) 

Thinker + Rodin (red: sculpture Thinker; green: sculpture Venus; blue: Van Gogh.) 
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Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pump  

Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.) 

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe  
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Mosaicing or SLAM 
at the Level of Functions 

106 
robotics.ait.kyushu-u.ac.jp 

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/proj4/www/gme/ 



The Network is the Abstraction 

107 

Plato’s cow 



Abstractions Emerge from he 
Network 

(Approximately) Cycle-Consistent Diagram 

F6

F1

F2

F3

F4

F5

X12

X54X24
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Abstraction – Colimit 

Colimits glue parts together to make a whole 

F6

F1

F2

F3

F4

F5

X12

X54X24

lim¡!Fi =
G

i

Fi
Á
»

109 



Abstraction – Approximate Colimit 

Find projections that “play well”  
with maps on network edges, 

 
or 

 
 

F6

F1

F2

F3

F4

F5

X12

X54X24

lim¡!Fi =
G

i

Fi
Á
» YjXij ¼ Yi Xij ¼ Y +

j Yi

Y1

Y2
Y3 Y4 Y5

Y6

110 
“Colimit” = Latent space = Abstraction 



The Network is the Abstraction 

111 

a co-limit 
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Consistent Shape Segmentation 
[Q. Huang, F. Wang, L. Guibas, ’14] 



First Build a Network 

113 

Use the D2 shape 
descriptor and connect 
each shape to its 
nearest neighbors 

distance histogram 



Start From Noisy Shape 
Descriptor Correspondences 

114 

Lift to 
functional form 

Ci Di



Algebraic Dependencies 
Between Maps 

Cycle consistency or closure 

115 consistent cycles inconsistent cycles 



The Pipeline 

116 

Original shapes 
with noisy maps 

Cleaned up maps Consistent basis functions 
extracted 

Step 1 Step 2 



Joint Map Optimization 

Step 1: Convex low-rank recovery using 
robust PCA – we minimize over all X 
 
 
Step 2: Perturb the above X to force the 
factorization 

117 

X? = ¸kXk? + min
X

X

(i;j)2G

kXijCij ¡Dijk2;1

X

1·i;j·N

kX?
ij ¡ Y +

j Yik2F + ¹
NX

i=1

X

1·k<l·L

(yTikyil)
2

kXk? =
P

i ¾i(X)
trace norm 

kAk2;1 =
P

i k~aik

The Yi  give us the desired latent spaces 

Dual ADMM 

Non-linear least squares 
Gauss-Newton descent 



Consistent Shape Segmentation 

118 Via 2nd order MRF on each shape independently  



Networks of Shapes and Images 
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Depth Inference from a Single 
Image 

120 

single image shape network inferred depth 

+ → 
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123 
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Conclusion: Functoriality 
Classical “vertical” view of data analysis: 

Signals to symbols 
from features, to parts, to semantics … 
 
 
 
 

 

A new “horizontal” view based on peer-to-
peer signal relationships 

so that semantics emerge from the network 125 

Functions over 
data 

Maps between 
data 

Networks of 
data sets 
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