AN EVOLUTION OF MOBILE GRAPHICS, V2

Michael C. Shebanow
Vice President, Advanced Processor Lab
Samsung Electronics
DISCLAIMER

- The views herein are my own
- They do not represent Samsung’s vision nor product plans
• Computing History
• The Mobile Market
• Review of GPU Tech
• GPU Efficiency
• User Experience
• Tech Challenges
• Summary
The past and the trajectory into the future…

ON THE HORIZON
WHERE HAVE WE BEEN?

1950

3/31/1951
UNIVAC I Delivered
(vacuum tubes, mag tape)
(1.9 Kops/sec)

1956

6/14/1956
TX-0 Operational
(3.6K Transistors,
256x256 memory)

1960

4/7/1964
IBM 360 Announced

1964

1965

PDP8 Announced
(~800 Kops/sec)

1965

CDC 6600
(~3 Mops/sec)

1970

1976

Cray 1 Delivered
(MECL, 166 MFLOPs)

1978

1/1/1991
Initial 2G (GSM) Cell Phones

1980

Jan 1984
Apple Mac announced

1985

May 1982
Sun-1 Launched
(M68000)

1986

1976

Cray 1 Delivered
(MECL, 166 MFLOPs)

1980

Jan 1984
Apple Mac announced

1990

7/12/1999
RIM 870 Intro

1991

6/1/1991
Initial 2G (GSM) Cell Phones

1995

6/12/2000
AMD Athlon Thunderbird
(1 GHz X86)

2000

8/12/1981
IBM PC Intro

2005

6/29/2007
iPhone released (USA)

2010

6/1/2000
AMD Athlon Thunderbird
(1 GHz X86)

2012

4/12/2012
Google Glass announced

2014

4/12/2012
Google Glass announced

2014

9/19/2014
TODAY
CLIENTS

• Diversity
 • Phones, tablets, laptops
 • Wearables
 • IOT

• Cloud integration
 • The internet at your fingertips
DRIVERS FOR CLIENT COMPUTER ARCHITECTURE?

- PPA (performance, power, area)
- Specialization (fixed function)
 - Phones Phone
 - Phones Interact
 - Cameras camera
 - Refrigerators refrigerate
- Rapid time-to-market
CLOUD

- PPA again the big driver
 - Aka, perf/watt/$
- Virtualization
- Security
- Storage Architecture
 - Flash, cheap disks, IOPs
 - SANs
- Connectivity
 - 5G, WiFi, BlueTooth, NFC
 - Copper, Fiber
A NEW WORLD COMING?

The Rise of the Mobile GPU & Connectivity
DISCRETE GPU MARKET

Graphics shipment 1981 to present (M units)

- Desktop GPUs
- Notebook GPUs
- Desktop PCs
- Notebook PCs
- TOTAL Graphics (M units) 32 Years CAGR 19.72%
- TOTAL PCs (M units) 32 yr. CAGR 18.4%

Tailing Off
In 2013, an estimated 1.2B+ mobile GPUs shipped
- ~200M tablets
- ~1B smart phones
Continues to grow, but saturation on the horizon?

Trend:
- Discrete GPU decreasing
- Mobile is growing

Source: IDC Worldwide Mobile Phone Tracker, January 27, 2014
WW INTERNET TRAFFIC

- Internet traffic growth rate is staggering
 - 2013 total traffic estimated at \(~51.1\) EB per month
 - By 2018, more than double
 - 2014 per person smartphone traffic at \(~8\) GB per month on WiFi and \(~3\) GB per month on broadband
 - 2014 per person tablet traffic less, but still \(~3.2\) GB per month WiFi and \(~0.4\) GB per month broadband
WHERE ARE WE HEADED FROM A HW PERSPECTIVE?…

- Enormous quantity of GPUs
- Large amount of interconnectivity
- Better I/O
The OpenGL ES 2.0 pipeline

GPU Pipelines

A BRIEF REVIEW OF GPU TECH
MOBILE GPU PIPELINE ARCHITECTURES

Tile-based immediate mode rendering (TBIMR)

Tile-based deferred rendering (TBDR)

IA = input assembler
VS = vertex shader
CCV = cull, clip, viewport transform
RS = rasterization, setup
PS = pixel shader
ROP = raster operations (blend)
TBDR W/ HSR

- **HSR** = *hidden surface removal*
 - Sort all objects across each projection ray
 - Use tiling to reduce data set size
 - Only nearest opaque and closer transparent objects need to be drawn
 - Remaining fragments can be killed => not drawn
MOBILE GPU LANDSCAPE

<table>
<thead>
<tr>
<th>Company</th>
<th>Product</th>
<th>Pipeline</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARM</td>
<td>Mali</td>
<td>TBIMR</td>
<td>Unified shader, 2-4 math pipes per core</td>
</tr>
<tr>
<td>Imagination</td>
<td>PowerVR</td>
<td>TBDR/HSR</td>
<td>Latest is Series6XT. Unified shader. DX11 support</td>
</tr>
<tr>
<td>Qualcomm</td>
<td>Adreno</td>
<td>FlexRender</td>
<td>Unified shader. “FlexRender” = automatic switching between direct render (IMR) and tile-based deferred rendering (TBDR).</td>
</tr>
<tr>
<td>NVIDIA</td>
<td>Tegra</td>
<td>TBDR &</td>
<td>Evolution:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TBIMR</td>
<td>• Tegra 1/2/3/4: non-unified TBDR architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Logan: Kepler-based GPU, TBIMR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Parker: Maxwell-based GPU, TBIMR</td>
</tr>
<tr>
<td>Vivante</td>
<td>ScalarMorphic</td>
<td>IMR</td>
<td>Unified Shader.</td>
</tr>
<tr>
<td>Intel</td>
<td>Gen</td>
<td>Atom</td>
<td>IMR</td>
</tr>
<tr>
<td>AMD</td>
<td>Radeon</td>
<td>IMR</td>
<td>Mobile R9 M2xx series (2014)</td>
</tr>
</tbody>
</table>
A PATH TO A BETTER MOBILE GPU?
[PART 1]
WHAT IS IMPORTANT?

- More with less
- Better user experience
PARALLELISM

• Parallel vs. Sequential
 • Parallel \rightarrow independence
 • Sequential \rightarrow dependence

• Three fundamental forms of parallelism
 • Spatial: executing operations between threads at the same time
 • Temporal: executing operations between threads at the same place
 • ILP: executing operations from within the same thread in parallel

• Fundamental differences between ILP-only machines and massive TLP-ILP machines
 • CPUs vs. GPUs
THROUGHPUT VS. LATENCY

- Throughput = rate at which operations complete
- Latency = time it takes to complete an operation or set of operations
- CPUs versus GPUs
 - In CPUs, the primary objective is low latency
 - In GPUs, the primary objective is high throughput
- CPUs versus GPUs
 - In an application suitable for CPUs, we assume a low degree of TLP
 - In an application suitable for GPUs, we assume a high degree of TLP
GPU PERFORMANCE

- Supply and demand:

\[\hat{S} \geq \lambda \hat{D} \]

(“limiter equation”)

- Lambda (\(\lambda\)) is throughput
- Supply examples:
 - FP BW (flops/clock)
 - Texture BW (quads/clock)
 - Memory BW (bytes/clock)
- Demand density examples:
 - FP ops per shader
 - Sample ops per shader
POWER EFFICIENCY

• Performance = power efficiency

• Two types of efficiency:
 • “perf@watts”:
 The ability to deliver maximum performance
 • “watts@perf”:
 The ability to deliver maximum battery life at a minimum required performance
WHAT IS EFFICIENCY?

- **Perf @ Watts**
 - *Maximum performance at some power limit*
 - Limits:
 - electrical (Pidd)
 - die temp (Tj)
 - skin temp (Tcase)
 - battery life (Pbat)

- **Watts @ Perf**
 - *Minimum power at constant performance*
 - Example: deliver 60 frames/sec at lowest power
ENERGY REDUCTION TECHNIQUES

- Work Reduction
- Memory Avoidance
- Memory BW Reduction
- Memory Access Management
WORK REDUCTION

- Pixel shaders in ES games ~95% of the shader load
 - A pixel shader killed is raw power savings
 - HSR can kill 30-50% of the shader threads

- Geometry in DX11 a problem
 - Unigine Heaven ~10M Tri/frame
 - Can be up to 70% of shader workload

- Inter-frame work reduction?
RELATIVE ACCESS ENERGY COSTS

- LPDDR
- WIO1
- SRAM
- Small RF
- SP FMA

- Energy/byte
- Energy/ope
MEMORY AVOIDANCE

• Memory power a problem
 • LPDDR ~100 pJ/byte
 (100 mW @ 1 GB/sec)
 • WIO1 ~24 pJ/byte
 (24 mW @ 1 GB/sec)
 • On-chip SRAM ~0.6 pJ/byte
 (0.6 mW @ 1 GB/sec)

• Reduction in working set for non-essential traffic (i.e., not texture, attribute, command, or render target)
 • Rematerialize? (computation vs. BW)
 • Scheduling to reduce lifetimes?
MEMORY BW REDUCTION

- Texture compression (RD)
 - Better compression?
 - Tessellation use of textures?

- Tile compression (WT)
 - TB-based signature checking
 - Lossless compression

- Attribute compression (RD)
 - Reduce stream BW
MEMORY ACCESS MANAGEMENT

- SOC memory architecture
 - Blood rivals (antagonists)
 - Effect of CPU/GPU traffic on Memory Controller (MC)
 - Intelligent page open/close management
 - Balance latency vs. BW

- Mismanaging DRAM results in both performance loss AND extra energy – double whammy
A better user experience…

A PATH TO A BETTER MOBILE GPU? [PART 2]
ISO 9241-210[1] defines user experience as "a person’s perceptions and responses that result from the use or anticipated use of a product, system or service". - Wikipedia
APPLICATION: NAVIGATION

Hercules
Rises: 6:03 a.m. Sets: 9:25 p.m.
A large constellation representing
the mythological hero

U.S. Capitol complex
0.7 miles
... Construction of the Capitol began in 1793.
When built, it was ...

Sanphan restaurant
★ ★ ★ ★ ★ 41 reviews
Thai $$

Car locator

Eastern Market
580 feet
Turn right on 7th St.

Gas station
550 feet
Unleaded
$3.19

Robbery
270 feet west
18 days ago

CORONA
BOREALIS

HERCULES
APPLICATION: FACE RECOGNITION
APPLICATION: TELEPRESENCE

http://www.youtube.com/watch?feature=player_detailpage&v=Nzi0sm81tP4

APPLICATION: VIRTUAL COMPUTER
THE UX OPPORTUNITY

• Killer apps will be integration of:
 • AR/MR technology
 • Big Data operations

• Subject to:
 • Real-time constraints
 • Parallelization on a massive scale
Making a better UX

FUTURE MOBILE TECH CHALLENGES?
KEY CHALLENGES

• I/O:
 • AR Headsets
 • Environment Imaging
 • IOT integration

• Computational:
 • API Improvements
 • Cloud-device integration
AR HEADSETS

• Google Glass is pretty cool, but…

• Better imaging
 • Stereo/Light field
 • HD → UHD
 • Speed

• More sensors

• Wireless power?

• Fashion/ubiquity
ENVIRONMENT IMAGING

- For telepresence, headset camera is insufficient
- Need “environment cameras”
- Lots of privacy concerns
- Localizing environment to a client?
API IMPROVEMENTS

• Today’s APIs are power inefficient

• Needed:
 • Hints
 • State-less rendering
 • API commands supply state with action
 • Frame-less rendering
 • Compositing deferred and on-demand
 • Hierarchical geometry
 • Deferred detail
CLOUD-DEVICE INTEGRATION

• SW Challenge:
 • Making cloud queries easier
 • Utilizing the parallelism of the cloud

• Ultimate challenge:
 • The “network GPU”
 • Analogously extend the GPU model to network scale
 • 10^9 GPUs $\rightarrow 10^{21}$ FLOPs?
SUMMARY

• Computing has changed our world and will continue to do so
• Mobile computing, in particular graphics, is growing rapidly and becoming ubiquitous
• Tomorrow’s machines:
 • Ever improving efficiency
 • Integrated visual UX
 • Tied to the cloud
• Challenges remain to make this a reality
• Exciting prospects…