
PhongPD: Gradient-continuous Penetration Metric for Polygonal
Models using Phong Projection

(http://graphics.ewha.ac.kr/PhongPD)

Youngeun Lee and Young J. Kim

Abstract— We present a novel algorithm to compute a
gradient-continuous penetration depth (PhongPD) between two
interpenetrated polygonal models. Our penetration depth (PD)
formulation ensures separating the intersected models by trans-
lation, and the amount of such translation is close to an optimal
motion to resolve interpenetration in most cases. In order to
achieve the gradient-continuity in our algorithm, we interpolate
tangent planes continuously over the contact space and then
perform a projection along a normal direction defined by the
interpolated tangent planes; this projection scheme is known
as Phong projection. We have implemented our PhongPD
algorithm and certifies its continuity using three benchmarks
consisting of diverse combinatorial complexities, and show that
our algorithm shows smoother PD results than a conventional
Euclidean-projection-based PD method.

I. INTRODUCTION

Measuring the amount of interpenetration between over-
lapping models is an important problem in robotics. A well-
known distance measure for inter-penetration is penetration
depth (PD), which is defined as a minimum translation to
separate two intersecting models [1], [2]. Also, it is known
that the PD is equivalent to finding the minimum distance
from the origin of a translational configuration space obstacle
(equivalently, Minkowski sums) to its boundary. This PD def-
inition is widely used in robotic and engineering application.
For instance, in optimization-based robot motion planning,
PD is used to formulate non-penetrating constraints [3], [4].
Retraction-based robot motion planning heavily relies on
PD to identify collision-free configurations in the presence
of narrow passages [5]. Furthermore, PD can be used to
determine path existence for robot motion planning [6].

However, the original definition of PD can easily yield
a discontinuity in the direction (or gradient) of PD, which
often causes an instability problem in the aforementioned
robotic applications. Fig. 1(a) illustrates a PD discontinuity
example. In the figure, the PD result (qc) corresponds to an
Euclidean projection, displayed as orange arrows, from the
origin (qo) to the contact space (Ccont), and as qo moves
along the green arrow, qc jumps from one configuration to
another configuration even when qo slightly changes. This
discontinuity can lead to unstable force response in penalty-
based dynamics.

Note that known practical PD algorithms such as
optimization-based PD methods [7], [8] tend to compute

Y. Lee and Y. J. Kim are with the Department of Computer Sci-
ence and Engineering at Ewha Womans University in Seoul, Korea.
youngeunlee@ewhain.net, kimy@ewha.ac.kr

(a) Euclidean projection (b) Phong projection

Fig. 1. The blue rectangle is Ccont and the black doted lines represent
the medial axis of Cobj . The green circles are qo and qo moves along the
green arrow. The orange circles show projection results. (a) qc are computed
by Euclidean projection. Note that the direction of PD is not continuous
when qo crosses the media axis of Ccont. (b) qo is projected by Phong
projection. The projection results are continuous even if qo is on the medial
axis because the projection direction (the orange arrows) also continuously
changes along the corresponding surface normals (or tangents).

discontinuous PD. However, finding a gradient-continuous
PD is a difficult problem to solve since the original PD
definition relies on Euclidean projection and it naturally
incurs a discontinuity as demonstrated in Fig. 1(a). To the
best of our knowledge, [9] is the only known work to
handle this problem. However, this technique can deal with
a configuration space only when it is homeomorphic to a
sphere with no holes, which is not satisfied for general
robotic applications and also is difficult to determine a priori.

Main Results We present a novel algorithm, called
PhongPD, to compute a gradient-continuous penetration
depth between two intersected models. Just like the con-
ventional PD definition, the PhongPD can be computed as
a minimum distance from the relative configuration of two
models to their contact space, but the minimum distance is
determined using Phong projection [10] instead of Euclidean
projection. This guarantees continuous projection results. In
order to perform Phong projection, we define tangent planes
continuously over the boundary of contact space, similarly
to [11], and then project the relative configuration along the
normal direction defined by the correspond tangent plane.
To guarantee the gradient-continuity for a moving model,
we cache the PhongPD result from the previous motion
frame, and use it to find the proper projection direction. As a
result, our algorithm performs Phong projection quickly and
continuously. To demonstrate the efficiency of our PhongPD
algorithm, we tested our algorithm with three benchmarks
generating contact spaces whose complexities range from
440 to 4K triangles. In these cases, the results of our method

are continuous and smoother than the conventional PD.

II. PREVIOUS WORK

We briefly survey various PD algorithms using different
distance metrics and formulations.

A. Translational Penetration Depth

The translational PD (or simply PD) can be computed
using the Minkowski sums and is defined as the shortest
distance from the origin to the boundary of Minkoswksi
sums [1]. It is well known that the complexity of exact
PD computation for convex and non-convex rigid models
are O(n2) and O(n6), respectively, where n is the number
of polygons in the models. For convex models, [2] and
[12] suggested exact computational algorithms but no im-
plementations exist. [13] and [14] approximated PD tightly
and were implemented successfully showing a good runtime
behavior.

For non-convex models, [15] presented an exact PD
computation method using convex decomposition but its
implementation does not exist. Approximate PD algorithms
such as [16], [17] are based on Minkowski sums, but are
rather slow in terms of runtime performance. [8] suggested
a real-time algorithm based on iterative local optimization
on a local contact space.

B. Generalized Penetration Depth

The generalized PD is defined as a minimal rigid motion
to separate overlapping objects [7]. Here, the ”minimality”
is defined under some distance metric in configuration space
such as DISP [18], object norm [7], S or geodesic [19]. The
computational complexity of exact generalized PD compu-
tation can be as high as O(n12), where n is the number
of polygons in the models. These method are rather slow
for real-time applications. More recently, [20] presented an
interactive-rate generalized PD computation method for rigid
and articulated models. Machine learning techniques were
also used to compute PD [21], but they suffer from an
accuracy problem when the penetration depth is small.

C. Other Penetration Measures

The translational and generalized PD’s are not the only
measures of interpenetration for overlapping models. The
growth distance [22], [23] is an alternative measure to
quantify the interpenetration between convex models. It is
defined as a maximum scaling factor of two models in
order to just touch each other. [24], [25] and [26] used
an intersection volume and distance fields, respectively, to
measure the model interpenetration. [27] suggested point-
wise PD which is defined as the Hausdorff distance of the
intersection volume between two overlapping models, and
was applied to physically-based animation. [28] computes
translation to separate intersecting triangle features, and the
result corresponds to a lower bound of PD.

No algorithm exist to compute the gradient-continuous PD
except [9], which they call continuous PD, but this method
works only when the contact space is spherical with no holes.
In our case, we do not have such a restriction.

III. PRELIMINARIES

In this section, we introduce our notations and define the
penetration depth (PD). And we describe our approach to
compute gradient-continuous penetration depth using Phong
projection.

A. Problem Formulation

The configuration space is a set of all possible configura-
tions for a given robot. Suppose that we have two polygonal
models A and B in R3. Then each point or configuration in
configuration space corresponds to a relative configuration of
A with respect to B. Without loss of generality, we assume
that A is a robot movable only by translation and B is a
fixed obstacle. Then the associated configuration space has
three degrees of freedom (DoFs) in our problem.

A configuration space can be further subdivided into two
subsets: collision-free space Cfree = {q|A(q) ∪ B = ∅}
and obstacle space Cobj = {q|A(q) ∪ B 6= ∅} where
A(q) corresponds to A located at the configuration q. The
contact space Ccont is the boundary of the obstacle space,
i.e. Ccont = ∂Cobj , in which A and B just touch each other.
When A and B are polygonal models, Ccont is the boundary
of the Minkowski sums A⊕−B.

The penetration depth is defined as the minimum transla-
tional motion to separate two overlapping models. In other
words, it is a translational motion to move from the current
configuration qo to the closest configuration in Ccont:

qc = argmin
q∈Ccont

δ(qo,q) (1)

where δ is the Euclidean distance function. Finally we get
PD as:

PD(A(qo),B) = qc − qo (2)

Penetration depth is a vector function and has both mag-
nitude and direction. The magnitude of PD is continuous
as long as Ccont is closed and continuous. However the
direction of PD (i.e. its gradient) may not be continuous
for polygonal models due to the Euclidean projection of qo

to Ccont. For instance, as illustrated in Fig. 1(a), when qo

crosses the medial axis [29] of Cobj , qc can jump from one
configuration to another abruptly.

B. Algorithm Overview

The goal of our work is projecting qo onto Ccont to obtain
a gradient-continuous penetration depth like Fig. 1(b). Our
algorithm uses Phong projection [10] instead of conventional
Euclidean projection, where the PD vector between qo and
qc is collinear with the surface normal nc at qc:

(qc − qo)× nc = 0. (3)

Euclidean projection can be considered as a special case of
Phong projection because Eq. (3) is still satisfied in that
case. The main difference between Euclidean and Phong
projections lies in defining surface normals (equivalently, the
projection direction). While all points on the same planar
surface have a same surface normal (or projection direction)
in Euclidean projection, the surface normals (or projection

directions) may vary in Phong projection. In the latter case,
the results of projection are continuous under some condition
[11].

Our PhongPD algorithm has two phases: offline and
online phases. The offline phase interpolates tangent planes
over Ccont. The online query phase corresponds to Phong
projection to yield a gradient-continuous penetration depth.

IV. PHONG PROJECTION

Ccont for two polygonal models in R3 with three DoFs
is also polygonal [17]. In order to perform Phong projec-
tion onto a polygonal surface, the Phong projection for a
polygonal model as well as continuous tangent planes need
to be defined properly. In our case, we rely on a technique
proposed by [11].

A. Projection

The original Phong projection [30] uses normals like
in Eq. (3) and interpolate the normals to get continuous
projection. In our case, however, we use tangents instead
of normals because the normal interpolation can induce
a singular point; the normal is still used eventually for
projection, but derived from a tangent vector. For example,
when the directions of two normal are collinear but have an
opposite direction, then their interpolation is 0. However, a
tangent plane interpolation simply rotates its basis vectors
with no singular interpolation.

Assuming that a polygonal surface is triangulated without
loss of generality, let a triangle 4t ⊂ Ccont consisting of
three vertices {q1,q2,q3} and each vertex has a tangent
plane spanned by two basis vectors Ti ∈ R2×3. In order to
define a surface normal for a vertex, we set the vertex normal
as an average of the surface normals of adjacent triangles
and compute a tangent plane orthogonal to the normal. Let
us denote a point in 4t as q = λ1q1 + λ2q2 + λ3q3, λi ≥
0,

∑
λi = 1 using the Barycentric coordinate (λ1, λ2, λ3).

Let Ψ(λ1, λ2, λ3) ∈ R2×3 be a continuous interpolation of
tangent planes over the interior of 4t. The Phong projection
from a point onto a triangle is defined as follows:

Definition 1 A point qc = (λ1, λ2, λ3) on a triangle
4t(q1,q2,q3) is a Phong projection of qo on t if:

Ψ(λ1, λ2, λ3)(λ1q1 + λ2q2 + λ3q3 − qo) = 0 (4)
λ1 + λ2 + λ3 = 1 (5)

λi ≥ 0 (6)

Eq. (4) means that the tangent plane of qc is perpendicular
to qc − qo, and it equivalent to Eq. (3).

The Phong projection onto a triangulated surface is equiv-
alent to the closest Phong projection from qo to all triangles
comprising the surface. Note that Phong projection may
not exist in some cases. For instance, Fig. 2 illustrates
different results of Phong projections using different normal
assignments. Thus, defining normals or tangents properly is
crucial for valid Phong projection.

Fig. 2. Phong projection for rectangles using different normal assignments.
The black doted lines denote normals, and the color-coded areas are a set
of points that are Phong-projected to the edges with the same color. Phong
projection is undefined for the gray area.

B. Continuous Tangent Computation

We first define the distance between two tangent planes,
T and K, before defining Ψ as follows:

d(T,K) = min
A∈O(2)

‖Ort(T)−AOrt(K)‖ (7)

where Ort(·) denotes the nearest orthonormal basis using
Frobenius norm as in Eq. (8), which can be computed using
polar decomposition.

Ort(T) = argmin
B∈R2×3:BBT=I

‖T −B‖F (8)

We use tangent planes defined as in Definition 2 [11].
The interpolation here is continuous under some condition
and independent of choosing bases representing the tangent
planes.

Definition 2 Continuous tangent planes for a point
(λ1, λ2, λ3) in 4(q1,q2,q3) is computed as below:

Ψ(λ1, λ2, λ3) =
λ1λ2λ3

λ1λ2 + λ2λ3 + λ3λ1
(

1

λ3
Ψ12(λ1, λ2, λ3)

+
1

λ1
Ψ23(λ1, λ2, λ3) +

1

λ2
Ψ31(λ1, λ2, λ3))

(9)

where

Ψ12(λ1, λ2, λ3) = λ1E12R12T1 + λ2E12T2 (10)

+ λ3
1

2
(E23 + E31R31)T3

Here, Ψij is a interpolation function of the tangent plane for
edge qiqj . Ψ23 and Ψ31 are computed by cyclic permutation
of indices. Rij = Ort(TjTT

i) is an orthogonal matrix to
minimize the difference between the bases Ti and Tj . Eij ∈
R2×2 is computed as follows:

E12, E23, E31 = argmin
E12,E23,E31∈O(2)

∑
1≤i<j≤6

‖Ai −Aj‖2F

(11)

where A1 = E12R12T1, A2 = E12T2, A3 = E23R23T2,
A4 = E23T3, A5 = E31R31T3, and A6 = E31T1. The
Eij is iteratively optimized by fixing two values in Eij

and solving the Procrustes problem for unfixed ones. For
a well-tessellated model, the existence of Phong projection
is guaranteed for a point close to the surface of a model [11].

V. CONTINUOUS PHONG PROJECTION ON CONTACT
SPACE

In the previous section, we explained how to interpolate
tangent planes, and now we explain how to perform Phong
projection to the contact space efficiently and robustly, which
in turn corresponds to the PD result.

A. Phong Projection on a Triangle
The Phong projection for a triangle is equivalent to finding

λi in Definition 1. λi is computed using Newton’s method
starting from (1

3 ,
1
3 ,

1
3) until Eqs. (4) and (5) are satisfied. If

no result is found to satisfy Eq. (6), we conclude that Phong
projection does not exist for this triangle.

B. Phong Penetration Depth
A Phong projection on a triangulated surface is equivalent

to the shortest Phong projection with respect to every triangle
in the surface. As illustrated in Fig. 3(a), however, the result
of Phong projection may not be unique. In other words,
Def. 1 may have multiple solutions. In this case, we choose
the one closest from the previous computation result, and this
projection operator (i.e. PhongPD) shows reliable results.

(a) Phong Projection (b) Phong PD

Fig. 3. The blue rectangle denotes Ccont. The black solid arrows show
vertex normals. As qo moves along the green curve, (a) has four Phong-
projected results (the two vertical and two horizontal orange arrows) when
qo is located at the center of Ccont, but (b) has a unique PD (the upper
arrow), which is closest to the previous result.

C. Efficient Projection
Repeating projection qo for all triangles to find the best

projection is inefficient. Panozzo et al. [11] project a point
based on the result of Euclidean projection because the
Euclidean projection is a special case of Phong projection
and their results could be similar. However, in our case,
to make this process run more efficiently and reliably, we
start to project from the triangle which was obtained from
the previous frame of motion like Fig. 4. This ”warm-start”
searching method reduces the search space. To effectively
implement this, we construct K-ring neighbors for each
triangle as a list like in Fig. 4 before the projection starts,
and this search starts using this list. In case that, results from
the previous frame are not available (e.g. the first frame),
we simply return the shortest Phong projection from qo.
Moreover, sometimes Phong projection does not exist as
illustrated in Fig. 2. This can happen when qo is located
deeply inside Ccont.

Algorithm 1 PhongPD
Input: Input collision configuration qo, a triangle containing the
result from the previous frame 4tp, contact space Ccont, k-ring
neighbor Neighbor
Output: Result of Phong projection qc

1: if !4tp then
2: {There is no previous result}
3: MinLength := Maximum value;
4: for i = 1 to Number of Triangles in Ccont do
5: 4t :=Ccont.(i);
6: (λ1, λ2, λ3) := PhongProjection(qo, 4t);
7: if (λi ≥ 0, i = 1, 2, 3)&MinLength >

‖4t.barycentric(λ1, λ2, λ3)− qo‖ then
8: {Phong Projection exists by Eq.(6)}
9: MinLength := ‖4t.barycentric(λ1, λ2, λ3)− qo‖;

10: qc := 4t.barycentric(λ1, λ2, λ3);
11: end if
12: end for
13: if MinLength 6= Maximum value then
14: return qc;
15: end if
16: else
17: {Store neighbors of 4tp to N}
18: N := Neighbor(4tp);
19: for i = 0 to length of N do
20: 4t :=N(i);
21: (λ1, λ2, λ3) := PhongProjection(qo, 4t);
22: if (λi ≥ 0, i = 1, 2, 3) then
23: {Phong Projection exists by Eq.(6)}
24: qc := 4t.barycentric(λ1, λ2, λ3);
25: return qc

26: end if
27: end for
28: end if
29: return NO RESULT

0

Fig. 4. The blue triangles shows a subset of Ccont. The yellow triangle
is the result of Phong projection from the previous frame. Thus, we begin
performing Phong-projection from the yellow triangle. The orange arrows
denote the sequence of triangle-search. First, we perform Phong projection
for the yellow triangle, and then move to the green triangles (i.e. 1-ring
neighbors) which neighbor the yellow triangle, and then the gray triangles
(i.e. 2-ring neighbors).

VI. RESULTS AND DISCUSSION

We now show our implementation results under various
benchmarking scenarios and analyze the results

A. Implementation and Benchmarks

We have implemented our PhongPD algorithm using C++
programming language (Visual Studio 2012) under Windows
7, 32 bit operating system equipped with an Intel Core i7
2.67Ghz CPU and 3GB of main memory. We use the m+3d

(a) Ball and cone (b) Minkowski sum

PD
 P

oi
nt

 V
al

ue

Frame Number

(c) PhongPD direction

PD
 P

oi
nt

 V
al

ue

Frame Number

(d) Euclidean PD direction

M
ag

ni
tu

de
 o

f P
D

Frame Number

(e) PD magnitude

Fig. 5. Benchmark1: ball and cone. (a) The ball moves from the red to the blue position. And the ball collides with the yellow cone. (b) Minkowski
sums of the ball and the cone (i.e. contact space). (c) x,y, and z components of PhongPD (d) x,y, and z components of Euclidean PD (e) PD magnitudes
of PhongPD (i.e.

√
x2 + y2 + z2)

(a) Cone and axes (b) Minkowski sum
PD

 P
oi

nt
 V

al
ue

Frame Number

(c) PhongPD direction

PD
 P

oi
nt

 V
al

ue

Frame Number

(d) Euclidean PD direction

M
ag

ni
tu

de
 o

f P
D

Frame Number

(e) PD magnitude

Fig. 6. Benchmark2: cone and axes. The cone moves along the green arrow in (a). The conventions in (b), (c), (d), (e) are identical to Benchmark1

(a) Ball and wrench (b) Minkowski sum

PD
 P

oi
nt

 V
al

ue

Frame Number

(c) PhongPD direction

PD
 P

oi
nt

 V
al

ue
Frame Number

(d) Euclidean PD direction

M
ag

ni
tu

de
 o

f P
D

Frame Number

(e) PD magnitude

Fig. 7. Benchmark3: ball and wrench. The ball moves along the green arrow in (a). The conventions in (b), (c), (d), (e) are identical to Benchmark1

library [17] to get Ccont of the general polygonal models
and use [11] to perform Phong projection.

Our PhongPD algorithm was tested using three sets of
benchmarks using different types of Minkowski sums whose
complexity ranges from 440 to 4K triangles, as shown in
Figs. 5, 6, and 7. We place two models A, B in R3 and only
A translates from the red-colored position to the blue one
along the green arrow. And we track the history of the x, y,
z components of PhongPD results. The Euclidean projection
results (i.e. conventional PD) are also presented to compare
with our algorithm. In these graphs, the x-axis denotes the
frame number during the motion, and the y-axis denotes the
magnitude of PhongPD .

• Ball and Cone (Fig. 5) The combinational complexity
of the ball (movable) and the cone (fixed) are 1K and
78 triangles, respectively. And their Minkowski sums
consist of 1035 triangles. The magnitude of PhongPD
is similar to that of conventional PD, in this case.

• Cone and Axes (Fig. 6) The axes model (fixed) has 35
triangles. The Minkowski sums of the cone (movable)
and the axes have 440 triangles. The half of the cone
is penetrated into the axes. The magnitude of PhongPD
is slightly greater than that of conventional PD, in this
case.

• Ball and Wrench (Fig. 7) The wrench model (fixed)
consists of 772 and the Minkowski sums with the
ball (movable) has 4K triangles. The direction and

magnitude of PhongPD are both similar to those of
conventional PD.

B. Discussion

All the benchmarks in Figs. 5, 6, and 7 show that our
PhongPD algorithms generates a smoother PD result than
the Euclidean projection, and its PD direction is guaranteed
to be continuous. Moreover, the magnitude of PhongPD is
nearly the same as that of conventional PD for the ball/cone
and ball/wrench benchmarks (Figs. 5(e) and 7(e)). However,
it is not the case with the cone/axes benchmark (Figs. 6(e)),
since the curvature of the Minkowski sums in this case is
higher than others; in this case, the Phong-projected result
traces out the high-curvature region to guarantee the gradient-
continuity, while the Euclidean projection simply chooses
the shortest one. For instance, Fig. 8 shows quite different
Euclidean PD and PhongPD results.

Our algorithm has a few limitations. We assume that the
orientation of A does not change and has only translational
motion, which was also case with [9]. But unlike [9], our
PhongPD can handle any type of translational configura-
tion space. Our method does not always show gradient-
continuous results when qo is deep inside of Ccont, where
Phong projection is undefined.

VII. CONCLUSION

We have presented a new algorithm for computing
gradient-continuous penetration depth, called PhongPD.

Fig. 8. A snapshot of the cone/axes benchmark. The red cone is initially
located at a given configuration qo, and moves along the green arrow. The
green cone is the result of conventional PD (Euclidean projection) while the
cyan cone is that of PhongPD. Initially the green cone coincides with the
cyan cone (left). However, as the red cone moves along the green arrow, the
green cone jumps over the vertical bar and the cyan cone stays the same to
guarantee the gradient-continuity (right).

Given a Ccont, we interpolate continuous tangent planes over
Ccont and perform Phong projection to yield a gradient-
continuous PD. We have also applied our algorithm to
various benchmarks, and the experimental results show that
PhongPD generates a smoother result than Euclidean PD. For
future work, we would like to compute PhongPD that can
handle deep penetration, as well as an orientation change
of a model. Extending PhongPD to 6DoF will be also a
challenging and interesting task. We also would like to apply
our smooth PD results to penalty-based robot dynamics and
haptic rendering to generate reliable simulation results.

ACKNOWLEDGMENT

This work was supported in part by NRF in Ko-
rea (2012R1A2A2A01046246, 2012R1A2A2A06047007,
2014K1A3A1A17073365) and MCST/KOCCA in the CT
R&D program 2014 (R2014060011).

REFERENCES

[1] S. Cameron and R. Culley, “Determining the minimum translational
distance between two convex polyhedra,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 3, Apr
1986, pp. 591–596.

[2] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, “Computing
the intersection-depth of polyhedra,” Algorithmica, vol. 9, pp. 518–
533, 1993.

[3] Y. Lee, S. Lengagne, A. Kheddar, and Y. J. Kim, “Accurate evaluation
of a distance function for optimization-based motion planning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012.

[4] S. Lengagne, J. Vaillant, E. Yoshida, and A. Kheddar, “Generation of
whole-body optimal dynamic multi-contact motions,” Int. J. Rob. Res.,
vol. 32, no. 9-10, pp. 1104–1119, Aug. 2013.

[5] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, and S. Sorkin, “On
finding narrow passages with probabilistic roadmap planners,” Natick,
MA, USA, pp. 141–153, 1998.

[6] L. Zhang and D. Manocha, “An efficient retraction-based rrt planner,”
in In Proceedings IEEE International Conference on Robotics and
Automation, May 2008, pp. 3743–3750.

[7] L. Zhang, Y. J. Kim, and D. Manocha, “A fast and practical algorithm
for generalized penetration depth computation,” in In Proceedings of
Robotics: Science and Systems Conference, 2007.

[8] C. Je, M. Tang, Y. Lee, M. Lee, and Y. J. Kim, “Polydepth: Real-
time penetration depth computation using iterative contact-space pro-
jection,” ACM Transaction on Graphics, vol. 31, no. 1, pp. 5:1–5:14,
Feb. 2012.

[9] X. Zhang, Y. J. Kim, and D. Manocha, “Continuous penetration depth,”
SIAM Geometric and Physics Modeling, 2013.

[10] B. T. Phong, “Illumination for computer generated pictures,” Commu-
nications of the ACM, vol. 18, no. 6, pp. 311–317, 1975.

[11] D. Panozzo, I. Baran, O. Diamanti, and O. Sorkine-Hornung,
“Weighted averages on surfaces,” ACM Transactions on Graphics
(proceedings of ACM SIGGRAPH), vol. 32, no. 4, pp. 60:1–60:12,
2013.

[12] P. K. Agarwal, L. J. Guibas, S. Har-peled, A. Rabinovitch, and
M. Sharir, “Penetration depth of two convex polytopes in 3d,” Nordic
J. Computing, vol. 7, pp. 227–240, 2000.

[13] G. Bergen, “Proximity queries and penetration depth computation on
3d game objects,” Game Developers Conference, 2001.

[14] Y. J. Kim, M. C. Lin, and D. Manocha, “DEEP: an incremental
algorithm for penetration depth computation between convex poly-
topes,” Proceedings of IEEE International Conference on Robotics
and Automation, pp. 921–926, 2002.

[15] P. Hachenberger, “Exact minkowksi sums of polyhedra and exact and
efficient decomposition of polyhedra into convex pieces,” Algorith-
mica, vol. 55, no. 2, pp. 329–345, 2009.

[16] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha, “Fast penetration
depth computation for physically-based animation,” in Proceedings
of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. New York, NY, USA: ACM, 2002, pp. 23–31.

[17] J.-M. Lien, “A simple method for computing minkowski sum boundary
in 3d using collision detection,” in Algorithmic Foundation of Robotics
VIII, ser. Springer Tracts in Advanced Robotics, G. Chirikjian,
H. Choset, M. Morales, and T. Murphey, Eds. Springer Berlin /
Heidelberg, 2009, vol. 57, pp. 401–415.

[18] L. Zhang, Y. J. Kim, and D. Manocha, “C-dist: Efficient distance
computation for rigid and articulated models in configuration space,”
in Proceedings of ACM symposium on Solid and physical modeling.
ACM, 2007, pp. 159–169.

[19] G. Nawratil, H. Pottmann, and B. Ravani, “Generalized penetration
depth computation based on kinematical geometry,” Computer Aided
Geometric Design, vol. 26, no. 4, pp. 425–443, May 2009.

[20] M. Tang and Y. J. Kim, “Interactive generalized penetration depth
computation for rigid and articulated models using object norm,” ACM
Transactions on Graphics, vol. 33, no. 1, pp. 1:1–1:15, Feb. 2014.

[21] J. Pan, X. Zhang, and D. Manocha, “Efficient penetration depth
approximation using active learning,” ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia 2013), vol. 32, no. 6, pp. 191:1–
191:12, Nov. 2013.

[22] E. Gilbert and C.-J. Ong, “New distances for the separation and pen-
etration of objects,” in In Proceedings IEEE International Conference
on Robotics and Automation, May 1994, pp. 579–586.

[23] C.-J. Ong and E. Gilbert, “Growth distances: new measures for
object separation and penetration,” IEEE Transactions on Robotics
and Automation, vol. 12, no. 6, pp. 888–903, Dec 1996.

[24] R. Weller and G. Zachmann, “Inner sphere trees for proximity and
penetration queries.” in Robotics: Science and Systems, vol. 2, 2009.

[25] J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, and
P. G. Kry, “Volume contact constraints at arbitrary resolution,” ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2010), vol. 29,
no. 3, Aug. 2010.

[26] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha,
“Fast proximity computation among deformable models using discrete
voronoi diagrams,” ACM Transactions on Graphics (Proceedings of
SIGGRAPH 2006), vol. 25, pp. 1144–1153, 2006.

[27] M. Tang, M. Lee, and Y. J. Kim, “Interactive hausdorff distance
computation for general polygonal models,” ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2009), vol. 28, no. 3, 2009.

[28] S. Redon and M. C. Lin, “A fast method for local penetration depth
computation,” Journal of graphics tools, vol. 11, no. 2, pp. 37–50,
2006.

[29] D. Attali, J.-D. Boissonnat, and H. Edelsbrunner, “Stability and
computation of medial axes - a state-of-the-art report,” in Mathe-
matical Foundations of Scientific Visualization, Computer Graphics,
and Massive Data Exploration, ser. Mathematics and Visualization.
Springer Berlin Heidelberg, 2009, pp. 109–125.

[30] L. Kobbelt, J. Vorsatz, and H.-P. Seidel, “Multiresolution hierarchies
on unstructured triangle meshes,” Computational Geometry: Theory
and Applications (Special issue on multi-resolution modelling and 3D
geometry compression), vol. 14, no. 1-3, pp. 5–24, Nov. 1999.

