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Simple Culling Methods for Continuous
Collision Detection of Deforming Triangles
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Abstract—We present a simple and efficient approach for continuous collision detection of deforming triangles based on
conservative advancement. The efficiency of our approach is due to a sequence of simple collision-free conditions for deforming
triangles. In our experiment, we show that our CCD algorithm achieves 2 ∼ 30 times performance improvement over existing
algorithms for triangle primitives.
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1 INTRODUCTION

The goal of continuous collision detection (CCD) is to
calculate the earliest time instance when two moving
objects come into contact. Recently, CCD between
deformable objects has drawn much attention in com-
puter graphics and computer animation [1]. To accel-
erate the CCD performance, existing CCD algorithms
focus on minimizing the number of elementary CCD
tests using bounding volume hierarchies (BVHs) or
topological information available in the models. How-
ever, these algorithms finally boil down to performing
elementary CCD tests between triangle primitives.
There are two known elementary CCD approaches for
deforming triangles: algebraic equation solvers and
conservative advancement. Compared to the BVH-
level CCD acceleration techniques, elementary CCD
has been relatively poorly studied and deserves more
research efforts.

Conservative advancement (CA) is an efficient
method to perform CCD and has been applied to con-
vex [2], non-convex [3], articulated [4] and deformable
objects [5] in the past. For a pair of deforming trian-
gles, CA can be carried out in two manners: feature-
level and triangle-level CA queries. The feature-level
CA query includes six face-vertex and nine edge-edge
CA queries, and the time of contact can be obtained
as a minimum of the 15 CA queries. On the other
hand, CA can be directly applied to a triangle pair
(i.e. triangle-level CA), which is also known as local
advancement [6].

Main Results: In this paper, we present a simple and
efficient culling algorithm to perform an elementary
CCD query for a pair of deforming triangles. Our
algorithm uses feature-level queries, and reduces the
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number of feature-wise distance computations, the
known computational bottleneck in CA-based ap-
proaches [3], by using a sequence of conservative
culling tests. In our experiments, when the deform-
ing triangles do not collide, on average, we observe
more than 30 times performance improvement over
a straightforward feature-level CA and 5∼6 times
performance improvement over a triangle-level CA
based on [6]. In a more practical setting [7] where
the chances of triangle collisions are 5% or lower,
we observe 6∼7 and 2 times performance improve-
ment over a straightforward feature-level CA and
triangle-level CA test respectively. We also measure
the performance of our algorithm on the well-known
UNC dynamic benchmark consisting of three highly
complicated simulations and observe, on average,
1.3∼8.8 times performance improvements over that
of other existing algorithms, including the straight-
forward feature-level CA, triangle-level CA and cubic
solver.

Organization: We organize the rest of this paper as
follows. We present the main idea of our collision
culling approach in Section 3. We derive our culling
conditions for a face-vertex case in Section 4 and
for an edge-edge case in Section 5. In Section 6, we
present triangle-level culling tests utilizing the culling
results from the face-vertex and edge-edge cases. The
entire algorithm based on the culling techniques is
explained in Section 7. We show our implementation
results and comparative studies in Section 8. Finally,
we conclude this paper and propose possible future
work in Section 9.

2 RELATED WORK

2.1 CCD for Rigid and Articulated Objects

CCD algorithms for rigid and articulated models
can be classified into: algebraic equation solvers [8],
[9], [10], [11], swept volume formulations [12], [13],
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adaptive bisection approaches [14], [15], kinetic data
structures [16], [17], [18], Minkowski sum-based ap-
proaches [19], conservative advancement [2], [3], [4],
[5] and hardware-assisted approaches [20]. For more
extensive survey on these algorithms, we refer readers
to see [21].

2.2 CCD for Deformable Objects
2.2.1 Elementary CCD Tests
An approach based on algebraic equation solvers was
first introduced by Moore and Wilhelms [22] using
fifth-order algebraic equations. These equations were
further reduced to cubic by considering co-planar
constraints, in which detecting collisions between de-
forming triangles corresponds to performing pairwise
six face-vertex and nine edge-edge elementary tests
and each elementary test requires solving a cubic
algebraic equation [23], [24]. The first work of using
CA for deforming objects was reported by Tang et al.
[6], which was extended from [3], [4], [5]. The CA-
based algorithms are able to avoid solving high-order
algebraic equations since these solvers are known
relatively expensive to evaluate for time-demanding
applications.

2.2.2 CCD Acceleration Techniques
In order to reduce the number of redundant ele-
mentary CCD tests, connectivity (i.e. adjacency) or
coplanarity was utilized in [7], [25], [26], [27], [28],
[29].

Recently, Barbic and James [30] presented a self-
collision culling algorithm for reduced deformable
models. Schvartzman et al. [31] presented a star-
contour test as a sufficient condition to determine
whether the contour of a projected surface patch is
collision-free or not. These approaches are designed
for to reduce the number of elementary tests. Other
high-level culling techniques for collision detection
include the approaches utilizing hardware-supported
visibility queries [32], [33] and chromatic decomposi-
tion [28].

3 OVERVIEW

Given two successive configurations at t = 0 and 1
of a deforming triangle, the CCD problem typically
requires a motion that continuously interpolates the
two configurations. Like many other existing CCD
algorithms such as [23], [6], [24], we linearly inter-
polate the corresponding positions at t = 0 and 1.
In other words, any point on the given deforming
triangle undergoes a motion with a constant velocity
over the entire time interval.

For such a linearly interpolating motion, CCD for
deforming triangles is relatively straightforward to
perform using CA. For feature-level CA, elementary
tests need two computational components: closest

distance d between a feature pair (face-vertex or edge-
edge), and their relative motion bound µ. Then, the
two features can safely advance by the step size
∆t = d

µ without creating a collision. This procedure is
repeated until d becomes less than a user-provided
threshold. Note that the distance computation be-
tween a pair of features can be rather complicated and
expensive, because, for example, in the face-vertex
case, the vertex could be closest to the interior, an
edge or a vertex of the triangle. Moreover, in case of
triangle-level CA, d and µ should be calculated for the
entire triangle.

We now present some propositions on which our
culling approach is based. Let us first consider the
face-vertex CA test. Obviously, if a point (or a vertex)
and a triangle (or a face) collide, the point collides
with the plane containing the triangle. The contrapos-
itive of this statement is true as well:

Proposition 3.1 : (FV Non-Colliding Proposition A) If a
point does not collide with the plane containing a triangle
during the motion, the point and the triangle do not collide.

If the above proposition is not satisfied, the collision
test for face-vertex is inconclusive, and it is further
checked if the point’s projection onto the plane col-
lides with a circle circumscribing the triangle. Thus,
its contrapositive is:

Proposition 3.2 : (FV Non-Colliding Proposition B) If a
point’s projection on the plane containing a triangle lies
outside a bounding circle of the triangle and does not collide
with it during the motion, the point and the triangle do not
collide.

We attain similar propositions for the edge-edge CA
test as follows:

Proposition 3.3 : (EE Non-Colliding Proposition A) If
the lines containing two edges do not collide during the
motion, the two edges do not collide.

Proposition 3.4 : (EE Non-Colliding Proposition B) If
bounding circles of two edges do not collide during the
motion on the plane spanned by the two edges, the two
edges do not collide.

As we will see in the next two sections, distance
computation involved in these propositions is com-
putationally much cheaper than that for EE or FV
feature pairs. For example, Proposition 3.1 involves
distance computation for a point against a plane,
which requires merely one dot product operation once
the normal of the plane was obtained (also see Eq. 1).
We also refer readers to Section 8 for experimental
validations on these observations.

Based on the aforementioned propositions, we de-
rive our culling conditions for face-vertex CA tests in
Section 4 and for edge-edge CA tests in Section 5.
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4 FACE-VERTEX CULLING

For the face-vertex case, we first check if the vertex
collides with the plane containing the face. Based on
Proposition 3.1, we present a culling condition which,
if satisfied, guarantees that the deforming face does
not collide with the vertex. If the condition is still not
satisfied, we present another culling condition based
on Proposition 3.2. Using this condition, we further
check if the vertex’s projection onto the plane collides
with a bounding circle of the triangle.

We first explain how to compute the two essential
components needed for conservative advancement:
closest distance (Section 4.1) and relative motion (Sec-
tions 4.2 and 4.3), then present our culling conditions
in Section 4.4.

4.1 Closest Distance

As depicted in Fig. 1, let ~x1~x2~x3 be a deforming
triangle and let ~x4 be a vertex. ~nP denotes the normal
of the plane containing the triangle ~x1~x2~x3 and ~nFV
denotes the vector that realizes the closest distance
dFV from the triangle ~x1~x2~x3 to the vertex ~x4. Let dP
be the distance between the vertex ~x4 and the plane
containing the triangle ~x1~x2~x3 and then dP and ~nP
can be calculated as

dP = ~x41 · ~nP , where ~nP =
~x21 × ~x31
|~x21 × ~x31|

(1)

where we use the shorthand ~xij to denote the vector
~xi− ~xj . Note that dP is a signed distance and its sign
indicates where ~x4 lies relative to the plane containing
~x1~x2~x3:

1) if dP > 0, ~x4 lies on the positive side of the
plane1;

2) if dP = 0, ~x4 lies on the plane;
3) if dP < 0, ~x4 lies on the negative side of the

plane.
From our experimental statistics (see Fig. 5), comput-
ing dP is much cheaper than dFV . While computing
dFV requires handling difference cases, computing dP
requires merely one dot product.

As depicted in Fig. 1-(left), the closest distance from
the vertex ~x4 to the plane containing ~x1~x2~x3 is realized
by ~x4 and its projection ~xp4 onto the plane. As shown
in Fig. 1-(right), we display a bounding circle of the
triangle with a dotted line and we denote its center
and radius by ~c and r, respectively. Then, the distance
dC from the center ~c to ~xp4 is calculated as

dC = |~xp4 − ~c| where ~xp4 = ~x4 − dP~nP (2)

Note that in contrast to dP , dC is an unsigned
distance.

1. The positive side of the plane is the half space to which the
plane normal points.
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Fig. 1. Face-Vertex Case. First check if the vertex ~x4
collides with the plane containing the triangle ~x1~x2~x3
and then check if the vertex ~xp4 collides with a bounding
circle of the triangle ~x1~x2~x3.

4.2 Relative Face-Vertex Motion
We now describe how we formulate relative face-
vertex motion, which will be used to evaluate the
motion bound (see Section 4.3) and eventually used
to deduce our culling conditions (see Section 4.4).

Let ~x be a point interior to the triangle ~x1~x2~x3.
With barycentric coordinates ω1, ω2 and ω3, ~x can be
expressed as

~x = ω1~x1 + ω2~x2 + ω3~x3 (3)

where ω1, ω2, ω3 ∈ [0, 1] and ω1 + ω2 + ω3 = 1. We as-
sume that, for any point ~x, its barycentric coordinates
ω1, ω2, ω3 are constant during the deformable motion.
Then, by taking the derivatives on the both sides, the
above formula results in

~v = ω1~v1 + ω2~v2 + ω3~v3 (4)

where ~v is ~x’s velocity. Thus, the relative velocity
between the point ~x and the vertex ~x4 is

~v − ~v4 = ω1~v1 + ω2~v2 + ω3~v3 − ~v4 (5)

Since ω1 + ω2 + ω3 = 1, the above formula can be
represented as

~v − ~v4 = (1− ω2 − ω3)~v1 + ω2~v2 + ω3~v3 − ~v4
= ω2(~v2 − ~v1) + ω3(~v3 − ~v1) + ~v1 − ~v4
= ω2~v21 + ω3~v31 + ~v14 (6)

where we use the shorthand ~vij to denote the vector
~vi − ~vj . During the time interval [0, 1], the relative
motion ~v − ~v4 along a given direction ~n is

(~v − ~v4) · ~n = ω2~v21 · ~n+ ω3~v31 · ~n+ ~v14 · ~n (7)

Then, for any point ~x interior to a triangle, we have
the following observation if ~v4 lies on the positive side
of the triangle.

Observation 4.1 :

1) (~v − ~v4) · ~n > 0, if and only if the relative motion
makes the triangle move towards the vertex along the
direction ~n;
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2) (~v − ~v4) · ~n = 0, if and only if the triangle and the
vertex have zero relative motion along the direction
~n;

3) (~v − ~v4) · ~n < 0, if and only if the relative motion
makes the triangle move away from the vertex along
the direction ~n.

For any ~v4 within the negative half space, we have
the opposite results.

Pn

Fig. 2. ~x4’s (red solid circle) position and motion along
~nP relative to the triangle ~x1~x2~x3 (green line).

If we refer to Fig. 2-(top row), it is clear from the
first statement of Observation 4.1 that the triangle
~x1~x2~x3 has no chance to collide with the vertex ~x4
if ~x4 lies on one side of the plane and ~x1~x2~x3 moves
to the other side of the plane. Thus, we obtain the
second observation:

Observation 4.2 :
A deforming triangle ~x1~x2~x3 does not move close to a
moving vertex ~x4 during the time interval [0, 1] if

1) dP > 0 and (~v − ~v4) · ~nP ≤ 0 or
2) dP < 0 and (~v − ~v4) · ~nP ≥ 0

where ~nP is the normal of the plane containing the triangle
~x1~x2~x3.

This observation implicitly gives us a sufficient con-
dition in which a deforming triangle does not collide
with a moving vertex.

In addition, as shown in Fig. 2-(bottom row), if
dP > 0 and (~v−~v4)·~nP > 0, or dP < 0 and (~v−~v4)·~nP <
0, the deforming triangle ~x1~x2~x3 moves close to the
vertex ~x4. However, conservative advancement states
that the relative motion in the given direction ~nP
must cover the distance dP in order to bring the two
features into contact. Otherwise, the features remain
collision-free. Thus, we obtain the third observation
based on conservative advancement:

Observation 4.3 :
A deforming triangle ~x1~x2~x3 moves close to a moving
vertex ~x4, but does not come into contact if

1) dP > 0 and 0 < (~v − ~v4) · ~nP < dP or
2) dP < 0 and dP < (~v − ~v4) · ~nP < 0

4.3 Bounds of Relative Motion

We now describe how we compute the bounds of
relative motion (Eq. 7) in order to derive our culling
conditions. As the relative motion (~v − ~v4) · ~n varies
with barycentric coordinates ω2 and ω3, we intro-
duce a function f~n(ω2, ω3) that determines the motion
bound as follows

f~n(ω2, ω3) = (~v − ~v4) · ~n
= ω2~v21 · ~n+ ω3~v31 · ~n+ ~v14 · ~n (8)

Recall that each vertex undergoes a linear motion, i.e.
~xi has constant velocity ~vi [22], [23], [24]. We intend
to maximize and minimize f~n(ω2, ω3) subject to the
constraints shown in Fig. 3(left)

0 ≤ ω2 ≤ 1

0 ≤ ω3 ≤ 1

0 ≤ 1− ω2 − ω3 ≤ 1
2ω

3ω

feasible region

1

1

o
Fig. 3. Bounded Feasible Region of f~n(ω2, ω3)

TABLE 1
f~n(ω2, ω3) Extreme Values

Extreme Points (ω2, ω3) f~n(ω2, ω3)
(0,0) (~v1 − ~v4) · ~n
(1,0) (~v2 − ~v4) · ~n
(0,1) (~v3 − ~v4) · ~n

This problem can be solved by linear programming,
which states that an objective function attains a max-
imum and a minimum value at extreme points of the
feasible region [34]. In our case, the feasible region
and extreme points are shown in Fig. 3(right). We
calculate the objective function f~n(ω2, ω3) at each of
these extreme points and tabulate the results as Table
1.

We see that the objective function f~n(ω2, ω3) attains
a maximum and a minimum at

fmax~n = max
i=1,2,3

(~vi − ~v4) · ~n (9)

and
fmin~n = min

i=1,2,3
(~vi − ~v4) · ~n (10)

Thus we have the bounds of relative motion

fmin~n ≤ (~v − ~v4) · ~n ≤ fmax~n (11)

Intuitively speaking, Eq. 11 implies that no other
points on the given triangle ~x1~x2~x3 move faster (or
slower) towards the vertex ~v4 than the vertex that real-
izes the upper bound (or the lower bound) of relative
motion. Moreover, we note that Eq. 9 is equivalent to
the one in [6].
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4.4 Non-Colliding Conditions
We now derive our culling conditions for the face-
vertex CA test. By considering Observation 4.2 and
the relative motion bounds as obtained above, we
have:

Lemma 4.1 A deforming triangle ~x1~x2~x3 will not collide
with a moving vertex during the time interval [0,1] if

1) dP > 0 and fmax~nP
≤ 0 or

2) dP < 0 and fmin~nP
≥ 0

where ~nP is the normal of the plane containing the triangle
~x1~x2~x3.

Proof: Since (~v − ~v4) · ~nP ≤ fmax~nP
≤ 0 and dP > 0,

based on the first statement of Observation 4.2, it
immediately yields to the first condition. Similarly,
since (~v − ~v4) · ~nP ≥ fmin~nP

≥ 0 and dP < 0, it yields to
the second condition based on the second statement
of Observation 4.2. 2

Failure of the conditions in Lemma 4.1 indicates
that the triangle and the vertex move close to each
other in the given direction (see Fig. 2-(bottom row)).
Using the claim of conservative advancement (Obser-
vation 4.3), if the motion along the given direction
does not exceed the distance dP , they have no chance
to collide. Thus, we have the following lemma:

Lemma 4.2 A deforming triangle ~x1~x2~x3 will not collide
with a moving vertex during the time interval [0,1] if

1) dP > 0, fmin~nP
> 0 and fmax~nP

< dP or
2) dP < 0, fmax~nP

< 0 and fmin~nP
> dP

Proof: This directly follows from the definition of
conservative advancement (see Observation 4.3). 2

From Lemmas 4.1 and 4.2, we have the following
corollary:

Corollary 4.3 A deforming triangle ~x1~x2~x3 will not col-
lide with a moving vertex during the time interval [0,1]
if

1) dP > 0 and fmax~nP
< dP or

2) dP < 0 and fmin~nP
> dP

This is our first culling condition for the face-vertex
CA test, which if satisfied, proves that there exists
no collision between the face and vertex during the
motion. Otherwise, it is inconclusive and we then
check if the projection ~xp4 collides with a bounding
circle of the triangle ~x1~x2~x3 (see Fig. 1). Here, we have
our second culling condition for face-vertex CA tests.

Lemma 4.4 A deforming triangle ~x1~x2~x3 will not collide
with a moving vertex ~x4 during the time interval [0,1], if
fmax~nC

< (dC − r), where ~nC denotes the vector from ~c to
~xp4 and dC is the closest distance between ~c and ~xp4.

Proof: It directly follows from Proposition 3.2. Please
refer to Fig. 1 and Eq. (2) for notation. Here, fmax~nC

is an

upper bound of relative motion along the horizontal
direction (~nC). 2

If none of the conditions are satisfied, we perform
the face-vertex CA to find the time of contact as
suggested in [6].

5 EDGE-EDGE CULLING

For the edge-edge case, we first check if the lines con-
taining the two edges collide with each other. Based
on Proposition 3.3, we present a culling condition
which, if satisfied, proves that the two deforming
edges does not collide during the motion. Otherwise,
we check if the bounding circles of the two edges’
projection overlap based on Proposition 3.4. Similar
to the case of face-vertex culling, we present some
preliminaries first.

5.1 Closest Distance
As depicted in Fig. 4-(left), let ~x1~x2 and ~x3~x4 be two
deforming edges. ~nP denotes the vector perpendicular
to both ~x1~x2 and ~x3~x4, and ~nEE denotes the vector
that realizes the minimum distance dEE from the edge
~x1~x2 to the edge ~x3~x4. Let dP be the distance between
the two lines containing ~x1~x2 and ~x3~x4; then dP and
~nP between the two lines can be calculated as

dP = ~x41 · ~nP , where ~nP =
~x21 × ~x43
|~x21 × ~x43|

(12)

Similar to the Face-Vertex case, dP is a signed distance
and its sign indicates where ~x3~x4 lies relative to ~x1~x2:

1) if dP > 0, ~x3~x4 lies within the half space to which
~nP points;

2) if dP = 0, ~x1~x2 and ~x3~x4 lies on the same plane;
3) if dP < 0, ~x3~x4 lies within the other half space.

3x

1x

2x
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4
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2
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3

px

Fig. 4. Edge-Edge Case. First check if the lines
containing two edges collide and then check if the two
bounding circles collide on the same plane.

As depicted in Fig. 4-(right), when we project the
edge ~x3~x4 onto the plane containing the edge ~x1~x2,
we obtain a projected edge ~xp3~x

p
4. Let ~c1 be the middle

point of ~x1~x2 and let ~cp2 be the middle point of ~xp3~x
p
4.

Then the distance between the two middle points can
be calculated as

dC = |~cp2 − ~c1| where ~cp2 = ~c2 − dP~nP (13)

where ~c2 is the middle point of ~x3~x4.
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5.2 Relative Edge-Edge Motion and Bounds

Similarly to the face-vertex case, each edge is assumed
to undergo a linear motion. The relative velocity
between ~x on the edge ~x1~x2 and ~x′ on the edge ~x3~x4
is

~v − ~v′ = ω1~v1 + (1− ω1)~v2 − ω2~v3 − (1− ω2)~v4

= ω1~v12 + ω2~v43 + ~v24

Like before, we introduce a function g~n(ω1, ω2) to
be the relative motion ~v − ~v′ along a given direction
~n

g~n(ω1, ω2) = ω1~v12 · ~n+ ω2~v43 · ~n+ ~v24 · ~n (14)

Similarly to the face-vertex case (see Section 4.3), a
maximum and a minimum can be attained as:

gmax~n = max
i,j=1,2

(~vi − ~vj) · ~n (15)

and
gmin~n = min

i,j=1,2
(~vi − ~vj) · ~n (16)

Intuitively speaking, Eqs. 15 and 16 imply that no
other pairs of points on the two edges ~x1~x2 and ~x3~x4
move towards each other faster (or slower) than the
vertex pair that realizes the upper bound (or the lower
bound) of relative motion. We note that Eq. 15 yields
a result equivalent to [6].

5.3 Non-Colliding Conditions

We now give our culling conditions for the edge-edge
CA tests analogous to the ones in Section 4.4.

Lemma 5.1 A deforming edge ~x1~x2 will not collide with
another deforming edge ~x3~x4 during the time interval [0,1]
if

1) dP > 0 and gmax~nP
< dP or

2) dP < 0 and gmin~nP
> dP

If any condition in Lemma 5.1 is satisfied, it proves
that there exists no collision between the feature pair
(i.e. edge-edge) during the motion. Otherwise, we
may check the next condition below:

Lemma 5.2 A deforming edge ~x1~x2 will not collide with
another deforming edge ~x3~x4 during the time interval [0,1],
if gmax~nC

< (dC−r1−r2), where ~nC denotes the vector from
~c1 to ~cp2, dC is the closest distance between ~c1 and ~cp2, and
ri is the radius of a bounding circle of the edge at t = 0.

If none of the conditions are satisfied, we perform
the edge-edge CA to find the time of contact as
suggested in [6]. We can prove Lemmas 5.1 and 5.2
similarly to Lemmas and Corollaries 4.1 ∼ 4.4, and
here we omit their proofs.

6 TRIANGLE-LEVEL CULLING

To perform CCD between two deforming triangles,
in principle, we need 6 face-vertex and 9 edge-edge
elementary CCD tests. However, the following corol-
laries will state that it is not even necessary to consider
all these 15 elementary tests. By reusing the culling
results from the face-vertex and edge-edge tests ex-
plain in the earlier sections, our algorithm avoids
unnecessary elementary tests and even can terminate
as soon as some conditions are satisfied.

6.1 Cullings based on Face-Vertex Tests

The following corollary states if the two vertices of an
edge satisfy the same condition (either statement 1 or
2) of Corollary 4.3, the edge proves to be collision-free
from a triangle.

Corollary 6.1 An edge ~x1~x2 out of a deforming triangle
will not collide with another deforming triangle during the
time interval [0,1] if

1) dP,~x1
> 0, fmax~nP ,~x1

≤ dP,~x1

dP,~x2
> 0, fmax~nP ,~x2

≤ dP,~x2

or

2) dP,~x1
< 0, fmin~nP ,~x1

≥ dP,~x1

dP,~x2
< 0, fmin~nP ,~x2

≥ dP,~x2

where ~nP is the normal of the second triangle; dP,~x1
and

dP,~x2
are the distances from ~x1 and ~x2 to the plane,

respectively.

Proof: see [35].
This corollary implies that we can cull three edge-

edge tests (i.e. ~x1~x2 vs. three edges out of the second
triangle). Based on Corollary 6.1, we now have Corol-
lary 6.2:

Corollary 6.2 A deforming triangle ~x1~x2~x3 will not col-
lide with another deforming triangle during the time inter-
val [0,1], if

1) dP,~x1
> 0, fmax~nP ,~x1

≤ dP,~x1

dP,~x2
> 0, fmax~nP ,~x2

≤ dP,~x2

dP,~x3
> 0, fmax~nP ,~x3

≤ dP,~x3

or

2) dP,~x1
< 0, fmin~nP ,~x1

≥ dP,~x1

dP,~x2
< 0, fmin~nP ,~x2

≥ dP,~x2

dP,~x3
< 0, fmin~nP ,~x3

≥ dP,~x3

where ~nP is the normal of the second triangle; dP,~x1
dP,~x2

and dP,~x3
are the distances from ~x1, ~x2 and ~x3 to the plane

containing the second triangle, respectively.
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6.2 Cullings based on Edge-Edge Tests
Based on the result of the edge-edge test, we can
use Corollary 6.3 to cull two additional edge-edge
pairs (i.e. ~x1~x2 against the other two edges out of the
second triangle ~x′2~x

′
3 and ~x′3~x

′
1) and two face-vertex

pairs (i.e. ~x1 and ~x2 against the second triangle if they
are survived from the previous culling stages).

Under the assumption that the edge ~x′1~x′2 and the
vertex ~x′3 lie on the same side of a plane containing
~x1~x2 at t = 0 (i.e. dP dP,~x′

3
> 0), the following corollary

states that if ~x1~x2 and ~x′1~x
′
2 are collision-free due to

Lemma 5.1 , and ~x′3 and the plane containing ~x1~x2 are
also collision-free due to Corollary 4.3, then ~x1~x2 will
not collide with a triangle ~x′1~x′2~x′3.

Corollary 6.3 Given an edge ~x1~x2 of a deforming triangle
and an edge ~x′1~x′2 of another deforming triangle, ~x1~x2 will
not collide with the second triangle if

1) dP > 0 and gmax~nP
≤ dP

dP,~x′
3
> 0 and fmax~nP ,~x′

3
≤ dP,~x′

3

or

2) dP < 0 and gmin~nP
≥ dP

dP,~x′
3
< 0 and fmin~nP ,~x′

3
≥ dP,~x′

3

where ~nP is the normal of the plane spanned by the two
edges, dP is the distances between two lines containing the
two edges, gmax~nP

and gmin~nP
are the motion bounds of ~x1~x2

against ~x′1~x′2 along the direction ~nP , dP,~x′
3

is the distance
from ~x′3 to the plane, and fmax~nP ,~x′

3
and fmin~nP ,~x′

3
are the motion

bounds of ~x′3 against the plane along the direction ~nP .

Proof: see [35].

7 PUTTING ALL TOGETHER
We have described different culling tests, and now
discuss the sequence in which these culling tests
should be executed.

Given two deforming triangles, we first perform
face-vertex culling tests for the vertex out of the first
triangle against the second triangle using Corollary
4.3. If satisfied, it proves that there does not exist any
collision between the vertex and the triangle, and at
the same time we report the sign of dP of the vertex
with respect to the triangle.

sign(dP ) =


1 dP > 0 and fmax~nP

< dP
−1 dP < 0 and fmin~nP

> dP
0 otherwise

With these signs, we can perform further culling tests
based on Corollary 6.2. If three vertices have the same
sign, we terminate the whole algorithm and report
the absence of collision between the two deforming
triangles. Otherwise, we perform the same culling test
for each vertex out of the second triangle against the
first triangle using Corollary 4.3 and do the further
culling with Corollary 6.2.

Second, using Corollary 6.1, we check if both the
end vertices of an edge out of the first triangle have
the same sign, which, if satisfied, prove there does
not exist any collision between the edge and the
second triangle. Thus, we can cull three more edge-
edge pairs. We then perform the same sign checking
for an edge out of the second triangle against the first
triangle.

Third, for the edge-edge pairs survived from the
previous culling stages, we perform the edge-edge
culling test using Lemma 5.1. If the condition is
satisfied, there is no collision between the two edges
and the sign of dP is reported. For a parallel case,
we simply let dP = 0 and leave it to the next test.
Followed by every edge-edge culling test, we perform
the face-vertex culling test for the vertex opposite to
the second edge on the same triangle against the face
containing the first edge. If the sign reported by the
edge-edge culling test is the same as the one reported
by the face-vertex culling test, we can additionally cull
two more edge-edge pairs and two face-vertex pairs
based on Corollary 6.3.

Fourth, we may optionally perform face-vertex
culling tests using Lemma 4.4 and edge-edge culling
tests using Lemma 5.2.

Finally, we perform the conservative advancement
for those face-vertex and edge-edge pairs that sur-
vived all the culling stages explained so far.

We summarize the sequence of all the culling tests
and their priorities used in our culling pipeline (see
Table 2). In [35], we provide the pseudocodes of some
important culling steps such as sequences 1-4.

TABLE 2
Culling Sequence and Priority

Sequence Culling steps Priority
1 Corollary 4.3 necessary
2 Corollary 6.2 necessary
3 Corollary 6.1 necessary
4 Lemma 5.1 necessary
5 Corollary 6.3 optional
6 Lemma 4.4 optional
7 Lemma 5.2 optional

8 IMPLEMENTATION RESULTS
We have implemented our algorithm using C++ lan-
guage under Windows XP. The pseudocodes are also
given in Appendix. Though efficient, our implemen-
tation is very simple.

We now present some comparative statistics and ex-
perimental results. We first provide the performance
comparison of distance calculation for different cases.
Then we show the performance improvement of our
approach against existing algorithms.

8.1 Comparisons on Distance Computation
We randomly generate a triangle and a point, and
measure the timings when computing distance be-
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tween 1) the plane containing the triangle and the
point (plane-vertex); 2) the triangle and the point
(face-vertex). We use the code provided in [36] for
computing the distance between a triangle and a
point.

Similarly, we randomly generate two line segments,
and measure the timings when computing distance
between 1) the two lines containing the line segments
(line-line); 2) the two line segments (edge-edge). We
use the code provided in SWIFT++ [37] for computing
the distance between two line segments.

We repeat the random procedure for 1000 times and
show the costs of distance computation in Fig. 5 and
Fig. 6. The timings were measured on a desktop PC
with 2.67Hz Intel Core i7 CPU and 3.0G memory. As
shown in Fig. 5, the cost of computing the distance
between a face and a vertex is about 9.6 times higher
than that between a plane and a vertex. Meanwhile,
as shown in Fig. 6, the cost of computing the distance
between two line segments about 1.7 ∼ 3.0 times
higher than that between two lines. Naturally, the cost
of computing the distance between two line segments
varies depending on the configuration of two lines.
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Fig. 5. Distance Computation Costs: Plane-Vertex vs
Face-Vertex.
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Fig. 6. Distance Computation Costs: Line-Line vs
Edge-Edge.

Such experimental statistics and comparison pro-
vide further insight to the effectiveness of our culling

approach - utilizing computationally cheaper opera-
tions as much as possible prior to performing rela-
tively expensive full conservative advancement. These
results also indicate the sequence in which the culling
procedures should be executed. Since distance com-
putation in the case of plane-vertex is cheaper than
the case of line-line, we first perform the culling
procedures associated with the former (see Section 7).

8.2 Comparisons on CCD Performance
We now show the performance improvement of our
culling approach over existing algorithms. In our first
experiment, we randomly generate a thousand pairs
of non-colliding deforming triangles and measure the
performance of our CA algorithm. We also compare
it with other methods including a straighforward
feature-level CA algorithm, a triangle-level CA al-
gorithm [6], and an algebraic approach using cubics
[20], [27] (see Fig. 7). Here, the straighforward feature-
level CA test includes 15 elementary CA tests: six
face-vertex and nine edge-edge CA tests. Moreover,
to reduce the number of CA iterations for the straigh-
forward algorithm, temporal culling [4] has been inte-
grated. In this experiment, our approach can provide
up to 30 times speedup compared to the straighfor-
ward algorithm, since most face-vertex and edge-edge
pairs can be culled in the early stage (i.e. face-vertex
culling test). In addition, our approach can provide
up to 5 ∼ 6 times speedup in comparison with the
triangle-level CA. We also show the performance of a
cubic solver implemented in OpenCCD [20] as shown
in pink in Fig. 7, and our approach outperforms it by
a factor of 20.
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Fig. 7. Performance comparisons using different
primitive-level CCD methods for non-colliding deform-
ing triangles. We observe 30 times speedup over a
straighforward feature-level CA, 5 ∼ 6 times speedup
over a triangle-level CA and 20 times speedup over a
cubic solver.

In our second experiment, we randomly generate
a pair of deforming triangles which can be, however,
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Fig. 8. Computational costs with respect to false
positive rates.

either colliding or non-colliding. We repeat this for
thousands times and measure the rates of false pos-
itive collision results. Then, we measure the average
timings of the different primitive-level CCD methods
in terms of these false positive rates, as shown in
Fig. 8. Existing BVH-based CCD algorithms typically
result in a high number of false positives, and as
reported in [7], the false positive rates can be as high
as, or even higher than 95%. In this case, as high-
lighted with a box in Fig. 8, our approach outperforms
the straightforward feature-level CA by 7 times, the
triangle-level CA by 2 times and the OpenCCD cubic
solver by 6 times in the range of 95% false positive
rates.

8.3 Comparisons using Complicated Models

We have tested our algorithm using the well-known
UNC dynamics benchmark2 consisting of cloth sim-
ulation, exploding dragon and N-body deformable
simulation. We have integrated our algorithm into
OpenCCD3 to test its performance on these compli-
cated simulation scenes. OpenCCD performs BVH-
based collision culling as well as selective BVH re-
structuring [20] to cope with model deformation, and
our algorithm replaces the elementary CCD test in
OpenCCD, the cubic solver. Fig. 9 shows snapshots
during the cloth simulation. Fig. 10 shows the explod-
ing dragon benchmark, in which a bunny model is
dropped onto a dragon model and the dragon model
breaks into a large number of smaller pieces. Fig. 11
shows an N-body deformable simulation, in which
each ball undergoes a rigid or deformable motion and
the balls collide with each other and the obstacles.

In addition, in Figs. 9 ∼ 11, we compare the per-
formance of our algorithm against that of other exist-
ing algorithms, including the straightforward feature-
level CA, triangle-level CA and cubic solver. We

2. http://gamma.cs.unc.edu/DYNAMICB
3. http://sglab.kaist.ac.kr/OpenCCD

show only the timings of elementary CCD tests to
highlight them. For the cloth simulation, on average,
we observe 5.4, 3.2 and 3.8 times speedups over the
straightforward feature-level CA, the triangle-level
CA and the cubic solver, respectively. We also break
down the whole simulation into a few stages that
show different performance patterns of decreasing
false positive rates. For the exploding dragon, on av-
erage, we observe 1.8, 1.3 and 1.5 times speedups over
the straightforward feature-level CA, the triangle-
level CA and the cubic solver, respectively. In such an
exploding scenario, known as a very challenging case
for collision detection, the performance improvement
is less distinct because of the lack of motion coherence
and because of a large number of deep penetration
cases. For the N-body deformable simulation, on av-
erage, we observe 8.8, 4.3 and 6.3 times speedups over
the straightforward feature-level CA, the triangle-
level CA and the cubic solver, respectively. We ob-
serve that our algorithm is particularly suitable for the
scenarios that have high motion coherence and few
deep penetration cases. This is because such scenarios
are more like to satisfy Propositions 3.1∼3.4.

9 CONCLUSION AND DISCUSSION

We have presented a simple, yet efficient culling
approach to CA-based continuous collision detection
for deforming triangles. Our approach is based on
simple culling conditions that prove that there does
not exist any collision between a pair of features or
triangles. Our culling approach can be incorporated
into any CCD algorithms for deformable models that
eventually needs elementary CCD tests, including the
one based on algebraic equation solvers. For example,
before solving 15 cubic equations, one may use our
algorithm to cull non-colliding features so as to reduce
the number of cubic equations.

In our work, we have assumed that a deformable
model has a constant velocity for each vertex, since
an interpolating motion with a constant velocity is
most widely used in the literature. Nevertheless, the
basic culling ideas (i.e. Propositions 3.1∼3.4) can be
extended to any non-constant motion, as long as the
upper bound of relative motion can be calculated.
For example, upper bounds of vertex velocities can
be determined using functional analysis or numerical
methods, and then an upper bound of relative motion
for the features can be computed with these bounds
of vertex velocities. We leave this problem as future
work.
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Fig. 9. Cloth Benchmark. Top: a piece of cloth is dropped onto the top of a ball and the ball is twisted to generate
complex folds and wrinkles on the cloth. This model consists of 46,598 vertices and 92,230 triangles and the
simulation results in a high number of self-collisions and close contacts. Middle: performance comparisons using
different primitive-level CCD methods. Bottom: Zoom-in views.
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Fig. 10. Top: Exploding dragon: a bunny is dropped
onto a dragon and the dragon breaks into a large
number of smaller pieces. Bottom: Performance com-
parisons using different primitive-level CCD methods.
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Fig. 11. Top: N-Body Simulation. Each ball undergoes
a rigid or deformable motion. Bottom: Performance
comparisons using different primitive-level CCD meth-
ods.


