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Abstract— We present a semi-autonomous robotic pen-
drawing system that is capable of creating pen art on an arbi-
trary surface with varying thickness of pen strokes but without
reconstructing the surface explicitly. Our robotic system relies
on an industrial, seven-degree-of-freedom (7DoF) manipulator
that can be both position- and impedance-controlled. We use
a vector-graphics engine to take an artist’s pen drawing as
input and generate Bézier spline curves with varying offsets.
In order to estimate geometric details of the target, unknown
surface, during drawing, we rely on incremental and adaptive
sampling on the surface using a combination of position and
impedance control. Then, our control algorithm physically
replicates this drawing on any arbitrary, continuous surface by
impedance-controlling the manipulator. We demonstrate that
our system can create visually-pleasing and complicated artistic
pen drawings on general surfaces without explicit surface-
reconstruction nor visual feedback.

I. INTRODUCTION

Pen and ink drawings are ancient fine art traced back to

Greek art in 300 CE. They are also a convenient, afford-

able, diverse medium of art, which makes them universal

across the time, region and styles, ranging from the Baroque

to the Neoclassical art movement, regionally from Islamic

to Chinese art, and methodologically from Calligraphy to

contemporary digital, graphics art [1].

Due to the recent impressive development of robotic

technology, artistic application of robots drew a lot of

attention from the robotic and art community. In particu-

lar, fully- or semi-autonomous robotic drawing is one of

such movements that sparked the recent robot art compe-

tition (http://robotart.org). However, creating an

autonomous robotic drawing system is hard, as it requires

robust components of control, sensing, planning, and man-

robot interfacing. What makes matters more challenging is

that the artistic nature of robotic art requires the interdis-

ciplinary participation of, for instance, art and computer

graphics technology such as non-photo realistic rendering

(NPR).

Robotic pen drawing requires contact-based manipulation,

a challenging problem in robot manipulation and control,

with respect to the target drawing surface. In general,

contact-based manipulation makes up a large proportion of

robotic tasks both in industrial and service robotic settings
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where the robot grasps or pushes objects while maintaining

contact with objects [2]. As a result, many approaches have

been developed to enable robotic manipulation based on the

contact. In this context, impedance control has become a

popular choice to deal with contact tasks. However, existing

industrial robots, e.g. spray-painting robot, are often not

allowed to touch the workpiece due to the uncertainty

present in sensing and modeling the workpiece. Our drawing

robot has a similar issue and we attempt to address this

uncertainty problem with surface sampling and impedance

control techniques.

Main Results: In this paper, we add another complexity

to the already challenging problem of robot drawing by

proposing artistic pen drawing on an arbitrary, non-planar

surface. Our semi-autonomous robotic pen-drawing system

is capable of creating pen art on an arbitrary surface with

varying thickness of pen strokes, but without reconstructing

the surface explicitly nor with any vision support. This can be

realized by using a seven-degree-of-freedom (7DoF) manip-

ulator that can be both position- and impedance-controlled,

equipped with torque sensors for every joint. The software

and algorithmic side of our drawing system are based on

two main components: efficient and intuitive vector-graphics

engine, and impedance-controlled drawing algorithm. Our

novel vector graphics engine takes an artist’s pen drawing as

input and generates a set of quadratic Bézier spline curves

with varying offsets. Our vector graphics is able to render

spline curves in a resolution-independent manner so that

robotic drawing system can physically realize the drawing

on an arbitrary, continuous surface in any scale with no

discontinuity. Specifically, our robot drawing algorithm repli-

cates the digital drawing on a continuous surface by using a

combination of position- and impedance-control. In order to

estimate the geometry of the unknown, target surface using

only joint-torque sensors, our robot incrementally samples

the surface before and during drawing and builds an adaptive

and implicit representation of the surface using a quadtree.

We demonstrate that our system can create visually-pleasing

and complicated artistic pen drawings on general, non-flat

surfaces such as a water tank or a cone.

The rest of this paper is organized as follows. We survey

works relevant to robotic drawing in Sec.II. In Sec.III,

we propose our new vector graphics method and explains

robotic incarnation of this technique using a combination of

position- and impedance-control techniques in Sec.IV. We

show our implementation results and discuss them in Sec.V,

and conclude the paper in Sec.VI.



II. PREVIOUS WORK

A. Robotic Drawing

An early history of creating drawing machines can be at-

tributed to artistic work by Jean Tinguely and Harold Cohens

Aaron [3]. In computer graphics and robotics community,

an earlier attempt to create drawing robots is largely based

on a plotter-type, special-purposed machine. More recently,

research efforts have been put into to use a high-DoF, general

robot or manipulator for robotic drawing that can span a wide

spectrum of artistic expressions.

The Pumapaint project [4] is a telerobotic painting robot

that allows online users to draw paintings remotely using

a PUMA robot. Calinon et al. [5] used the HOAP2 hu-

manoid robot to draw human portraits, that follow human-

characteristic styles. Paul the robot [6] is a robotic installa-

tion that creates observational portrait drawing, mimicking

artist’s stylistic signatures. eDavid [7] is a modified, indus-

trial robot that can create a wide variety of painting styles

from an image input. It relies on visual feedback to generate

NPR-type painterly results. Recently, Galea et al. used an

aerial robot (drone) to create stippling effects from an image

input [8]. However, none of the existing works dealt with

creating a pen drawing on a non-planar, general surface.

B. Vector Graphics

For robotic drawing system, vector graphics suits better

than raster graphics as vector graphics can generate contin-

uous and smooth pen strokes that can be mapped well to

smooth robotic motions. Vector graphics typically fill pixels

inside implicitly-defined curves with a certain width using

CPU-based scanline methods [9], [10], [11]. Since vector

graphics techniques need to render implicit curves every

frame, the performance of CPU-based rendering methods

is slow on dense screen resolution used by modern display

devices.

Loop and Blinn suggested a GPU-based fast resolution-

independent rendering method which can render paths and

bounded regions [12]. Kilgard and Bolz [13] introduced a fast

GPU-based, two-step approach, namely stencil-and-cover

approach. The stencil step determines the stroked path’s filled

coverage and the cover step fills the area determined by

the stencil step. There exist no vector-graphics method that

can adequately reproduce human drawing consisting of free-

form lines and curve, even though smooth curve rendering or

retrieving methods such as [12], [14], [15], [16] may handle

human drawings to some degree.

C. Impedance-controlled Robot

The idea of using impedance control for controlling the

interaction between a manipulator and the surrounding en-

vironment was first proposed by Hogan et al. [17]. Since

then, studies on impedance control-based robot interaction

techniques have been done [18], [19]. Such a wide interest

is motivated by the need for robotic systems with an ability

to interact with unstructured environments beyond industrial

environments. More recently, impedance-controlled collabo-

rative robots have been introduced from both industry and

academia, which are capable of sensitive object handling;

e.g. LBR IIWA from KUKA Robotics, Baxter and Sawyer

from Rethink Robotics, and Justin from DLR. On the robotic

application side of using impedance-control, the work by

[20] used two anthropomorphic dual arms of the Justin robot

to unscrew a can. Lee et al. used impedance control for a

dual-arm system using the relative Jacobian, which maps the

joint velocities of the two arms to the relative motion between

their end-effectors [21].

(a) Input points (b) Filtered points

(c) Mid-points generation (red) (d) Offset points generation for pen
thickness

Fig. 1. Four steps to generate triangle polygon from input points for GPU-
based vector graphics rendering.

III. VECTOR GRAPHICS ENGINE

Raster graphics may perform poorly with robot manipula-

tors, as it requires a stream of discrete, stop-and-go motions

for a robot that would act jerky. On the other hand, vector

graphics generates a sequence of continuous vectors that can

be mapped to manipulators’ continuous motion.

Our system receives input points from pen-ready devices

such as tablet devices or mobile phones. The stylus pen gen-

erates two-dimensional points along with the corresponding

pen-pressure. We convert these input points and pressures

into vector graphics output, preview them by rendering them

and provide them to a robotic manipulator to physically

recreate the drawing on an arbitrary surface.

1) We filter out useless input points to reduce data size,

as illustrated in Figure 1(b). Existing tablet-based pen-

input devices typically produce sixty points per second,

and these points can contain lots of useless and noisy

points; e.g. many co-linear points on a straight line.

During filtering, we also need to consider input pressure

values to keep the variation of thickness. To do this,

we apply the median filter with a narrow range, say

five points per one filtering step, to filter out redundant

points on a straight line. In this step, lots of co-linear

points will be eliminated. Then, we apply the bilateral

filter to the filtered result. Due to the nature of the

bilateral filtering method, points located near the crest

of successive input points survive as shown in Figure

1(b).



2) We calculate the mid-points of all successive input

points.

3) We choose an input point as well as its two adjacent

mid-points, calculated from the first step, to constitute

three control points to define a single Bézier curve. This

construction yields C1 continuity of the entire spline

curve.

4) To render a curve with varying thickness (or offset),

determined by the pen pressure, we triangulate the

bounded areas, as illustrated in Figure 1(d). We classify

the bounded area into four cases as shown in Figure 2,

and then triangulate them.
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(h) Tri0, Tri1, and Tri5 are
boundary triangles

Fig. 2. Four cases of input-point sequences (a), (c), (e), (g) and their
bounding polygons (blue lines) and triangulations (gray-shaded region) (b),
(d), (f), (h). The red/black dots and lines on the first column represent the
control points and offsetting lines connecting them, respectively. The black
and red empty circles are offset from the red and black solid dots depending
on the corresponding pen pressure (i.e. offset amount). Boundary triangles
are rendered using [12], and the rest are rendered in solid color.

(a) Convex boundary triangle (b) Concave boundary triangle

Fig. 3. Resolution-independent methods such as [12] can fill a curve inside
a triangle in both convex and concave manners.

The robotic curve drawing requires the results of step 3, a

set of quadratic Bézier curves with C1 continuity and pres-

sures. Optionally, to preview curve rendering before sending

the input to the robot, we use the triangles of step 4 and

render them using resolution-independent curve rendering

such as [12]. To render the curves, we also categorize the

triangles into three types: convex boundary triangle, concave

boundary triangle, and inner triangle (see Figures 3). For

example, in Figure 2(b), Tri0 is a convex boundary triangle

and Tri4 is a concave boundary triangle and Tri1, Tri2, and

Tri3 are inner triangles. All boundary triangles are rendered

using [12] and inner triangles are rendered with solid color.

IV. ROBOTIC CURVE RENDERING

Impedance-controlled robots interact with the environment

by employing a mass-spring-damper-like system with active

control on the robots [2]. Such a system is well suited for

the tasks in which contact forces should be kept small, while

their accurate regulation is not mandatory. Thus, impedance

control serves nicely for pen drawing tasks.

Robotic curve rendering in our system reproduces drawing

on an arbitrary surface without explicitly reconstructing the

target surface. However, the system still needs to estimate

the geometry of the target surface for better drawing per-

formance, and our impedance-controlled robot incrementally

samples the surface before and during the drawing and builds

an adaptive and implicit representation of the surface in a

quadtree data structure.

Specifically, the robot begins by sampling an extent of

drawing canvas space before kicking off actual drawing

and keeps adding the control points of every stroke as

new samples during drawing. The resulting sampling points

constitute a 2.5D height field and are represented as a

quadtree data structure Q as shown in Figure 4. During

robotic drawing, for each stroke, the positions of the control

points projected to the target surface are estimated using bi-

linear interpolation using the quadtree. Although the esti-

mated, projected position is rough, we use a combination of

position- and impedance-based control to enable the robot

to accurately reproduce the drawing on the target surface.

Algorithm 1 summarizes an overview of our robotic curve

rendering process.

A. SURFACE ESTIMATION

The control points c for drawing strokes, generated by

the vector rendering engine, are defined in R
2, and need to

be projected onto the target, unknown surface D in R
3; i.e.



Algorithm 1: Robotic Curve Rendering

Input : S , a set of strokes in Bézier curves in R
2; D,

target drawing surface in R
3

Output: Robotic curve rendering on D

1 Scale S to fit the 2D workspace of D;

2 Initialize the quadtree Q with a 2D extent of D;

3 foreach stroke s ∈ S do

4 foreach control point c ∈ s do

5 Search four nearest points p1..4 of c from Q;

6 Estimate the height c̃z of c on D using bi-linear

interpolation on p1..4;

7 Use impedance control to find an actual value

of cz starting from c̃z;

8 Add c to Q with a height value of cz;

9 end

10 Draw s on D using position control;

11 end

its height value cz needs to be determined. To estimate the

height c̃z of c projected on the surface, we first search the

four nearest points of c from the quadtree Q, which forms a

quad that includes c (e.g. the gray quad in Figure 4(b)). From

the quad annotated with height values, bi-linear interpolation

is performed to yield c̃z . Since this quad is not always

rectangular, we map the quad to a unit square to facilitate

the bi-linear interpolation.

Figure 4 illustrates a quadtree that our system uses for

nearest neighbor search (NNS) [22]. Each quadtree node

stores a single sampling point (i.e. the control point c)

containing its x-y coordinate and the height value (cz). When

a new sampling point is inserted into a node, the node is split

into four children if it already contains a sampling point.

Note that our quadtree only grows but never shrinks, and

thus does not require sophisticated tree re-fitting mechanism.

Once the targeted position of c̃z is calculated, we slightly

reduce the value to underestimate the height, in order to

apply pressure to pen, used by the computed deviation in

the next section (Eq. 1). The more strokes are drawn to the

surface, the more sampled points are being collected; i.e.

the quadtree is expanded. As a result, by the time of the

completion of drawing, an estimation of interpolated values

would be more reliable, resulting in intended pen pressure

during drawing.

B. IMPEDANCE-CONTROLLED DRAWING

Once the positions of control points on the target surface

are determined, the robotic manipulator performs curve ren-

dering in a combined manner of position- and impedance-

control. Specifically, the manipulator moves to the exact x-

y position of the control points, while giving itself a bit

of margin in the normal direction of the contact surface,

exerting a spring-mass force. For each drawing stroke, un-

derestimated target drawing positions define a virtual spline

curve, which is placed slightly under the physical surface

as shown in Figure 5. The deviation δx between the target

0
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(a) Before a new point is inserted

0

0 2

2

(b) After a new point is inserted

Fig. 4. Quadtree data structure for sampled points. The gray points
represent the initial points covering the extent and the center of the drawing
surface. The blue points represent the points incrementally sampled during
the drawing, and the red solid point is a new point being inserted. The four
nearest neighbor points are also highlighted in red and form a gray quad.

position, determined by the bi-linear interpolation, and the

physical position of the pen tip results in a compliant force

in Cartesian space:

f = kδx, (1)

where k is the spring stiffness. The Cartesian impedance con-

troller is configured in such a way that the robot is compliant

only in the normal direction of the surface. Moreover, we still

maintain the tangential motion of the target position using

a position-based control. Then, given a set of pen strokes

with beginning and end points, we draw each of the strokes

independently. Furthermore, in order to avoid self-collision

and kinematic limits of the robot, we pre-compute the robot’s

free configuration space beforehand and use it as a starting

configuration for every stroke.

Our impedance control computes joint accelerations using

the position and orientation feedback as well as the force

and moment measurements. Then, the inverse dynamics

computes torques for the actuators. This control scheme, in

the absence of interaction, guarantees that the end-effector

frame asymptotically follows the desired frame [23]. In

the presence of contact with the environment, a compliant

dynamic behavior is imposed on the end-effector according

to the impedance using Eq. 1, but the torque due to the

environmental contact forces is bounded as the position and

orientation displacement between the reference and target

frames is bounded.

Fig. 5. Force (f ) is generated by the impedance-controlled manipulator.
The black line represents an expected physical spline curve with its set of
control points (blue dots), and the white dotted line represents a virtual
spline curve, consists of the set of underestimated target positions (yellow
dots).



(a) Robotic setup (b) 3D-printed pen-gripper (c) Vector graphics engine

Fig. 6. Robotic Drawing Setup

TABLE I

DRAWING STATISTICS

Drawings (c) (d) (e), (f)

# of Strokes 1520 1942 523
# of Control points 66,910 159,895 72,845

Drawing Surface Size (mm) 252×491 252×491 126×262
Execution Time (min.) 221 317 216

V. RESULTS AND DISCUSSIONS

In this section, we show our implementation results and

discuss robotic drawing results using our system.

A. IMPLEMENTATION DETAILS

In Figure 6, we show our experimental drawing system

setup. In our experiments, we use KUKA LBR IIWA 7 R800

as a manipulator, which has seven DoFs and can be position-

and force-controlled (Figure 6(a)). A 3D-printed gripper,

designed to hold up to two different types and colors of pens,

is attached to the end-effector (Figure 6(b)). The drawing tool

can be any type of pointed pen that can resist gentle forces

in order to perform impedance-controlled drawing.

We use Java programming language under Windows 10

64bit operating system along with Sunrise OS for interfacing

the IIWA. We also use a Samsung Galaxy Tablet PC for

running vector graphics under the Android operating system

(Figure 6(c)). The number of initial sampling points before

the drawing task is set to 9. However, this number could be

either increased or decreased. A degree elevation technique

based on de Casteljauś algorithm is used to match the higher-

degree polynomials of spline blocks provided by Sunrise OS.

We raise the quadratic Bézier spline curve with three control

points to a quadratic spline curve with five control points.

The algorithm 1 presented in Sec. IV can be further opti-

mized by sampling only the first control point of every stroke.

The rest of control points are simply bi-linear interpolated

using the quadtree.

B. EXPERIMENTAL RESULTS

Figure 7 shows examples of pen drawings on arbitrary

surfaces, compared to the digital drawings created from

vector graphics engine. We have been able to physically

reproduce digital drawings on arbitrary surfaces. The ex-

perimented surfaces included not only a simple algebraic

surface, such as a transparent half-sphere (Figure 7-(e)) but

also unpredictable curved ones (Figure 7-(c), (d), (f)), such

as a bumpy circular wall column, a water tank, a cone, a

bucket, etc. The statistics of our experimental drawing results

including the number of pen strokes, control points, size of

drawing surface (i.e. canvas size), robot execution time and

digital drawing time are provided in Table I. The execution

time is nearly proportional to the number of control points

and size rather than to the number of strokes, since the length

of strokes may differ by the drawings. Also, note that the

drawings can be reproduced on target surfaces of various

sizes. Performance optimization has not been considered yet

in this work, even though there may exist a few acceleration

techniques possible to achieve it - for instance, varying robot

execution speed depending on the surface curvature.

We have split the drawing tasks into two different colored

sets, capable of reproducing pen drawing with two colors of

pen. As shown in Figure 7-(b), (d), the brush color from

vector graphics engine is also distinguishable from each

other. We fix the approaching direction of the manipulator to

be aligned to the initial stroke position, which may make the

reproduction of the same digital drawing differ depending

on a surface. Even though the original digital drawings take

pen pressure into account resulting in varying thickness of

pen strokes, our robotic drawing currently does not consider

the pen pressure. However, the lack of stroke thickness may

be implemented by adaptively changing the pen height from

the pen pressure data of the vector graphics engine.

C. DISCUSSIONS

Pen drawing on an arbitrary surface is not an easy task

even for humans, who can visually determine the shape of

the surface to draw on. Our system, however, reproduces

artists’ digital drawings on a physical surface without any

vision support. Our system can perform the drawing task on

any surface and is not limited to specific surfaces as long

as the surfaces are monotonic along the height direction (z-

direction) (i.e. representable in 2.5D).

There are a few limitations in our current system, which

is also our immediate future work. Currently, our system

can create only a limited style of pen drawings. Our system

uses only up to two colors, which can be held firmly by

the gripper. The drawing tool needs to be firm enough in

order to perform impedance-controlled drawing; otherwise,

the perceived forces would be too small to be sensed. For



(a) (b) (c) (d) (e) (f)

Fig. 7. Robot Drawing results

instance, we can not have a brush-type pen as a drawing tool,

which can easily bend.

Another problem is that our robot has a limited workspace,

even though our vector graphics engine allows us to scale the

drawing arbitrarily. However, we want to address this issue

in future by making use of a mobile robot.

We decided to avoid using robot vision in our system, as

robot-vision integration is not very robust with respect to

noise and lighting condition, and it also has an occlusion

problem, which could make our system limited. However,

we still consider having a vision support in our system as

future work, where vision can help surface-estimation.

VI. CONCLUSION

We presented a robotic pen-drawing system that can create

pen art on an arbitrary surface using an impedance-controlled

manipulator with vector graphics engine. Our vector-graphics

engine takes an artist’s pen drawing as input and generates

Bézier spline curves. Our impedance-controlled drawing

mechanism is used without any vision support to physically

replicate digital drawing on an arbitrary, unknown surface.

To do so, we implicitly and adaptively reconstruct the

surface by incrementally sampling points during the drawing

sequence. The proposed robotic drawing system still relies on

human creativity while robot realizes a creation process and

produces physical artworks on an arbitrary surface, which

is quite challenging to achieve by human efforts. It goes

beyond simulating human drawing and proceeds to explore

a novel style of robotic drawing. As future work, we want

to develop artist-machine collaborative art setup, for which

our IIWA manipulator is designed originally.
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