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Abstract— We present a robotic pen-drawing system that is
capable of faithfully reproducing pen art on an unknown sur-
face. Our robotic system relies on an industrial, seven-degree-of-
freedom manipulator that can be both position- and impedance-
controlled. In order to estimate a rough geometry of the target,
continuous surface, we first generate a point cloud of the surface
using an RGB-D camera, which is filtered to remove outliers
and calibrated to the physical canvas surface. Then, our control
algorithm physically reproduces digital drawing on the surface
by impedance-controlling the manipulator. Our impedance-
controlled drawing algorithm compensates for the uncertainty
and incompleteness inherent to a point-cloud estimation of the
drawing surface. Moreover, since drawing 2D vector pen art
on a 3D surface requires surface parameterization that does
not destroy the original 2D drawing, we rely on the least
squares conformal mapping. Specifically, the conformal map
reduces angle distortion during surface parameterization. As a
result, our system can create distortion-free and complicated
pen drawings on general surfaces with many unpredictable
bumps robustly and faithfully.

I. INTRODUCTION

In the early twentieth century, contemporary art challenged
conventional approaches by experimenting and exploring
new techniques. Since then, numerous new attempts have
emerged to fuse science and technology into an art form.
Along the way, mechanical machines also have become
means and subjects of these art forms adopted by a few artists
[1],[2],[3],[4]. Robots are now operating in our daily lives
and become a subject of art. Due to the recent impressive
development of robotic technology, the artistic roles of robots
become more diverse, and possibilities to express artists’
intention through robotic mechanism and interaction with it
is expanding [5].

In this paper, we present our new research work on a
robotic pen-drawing system that relies on human’s creativity
but produces a new creation of artwork. In our previous
work [6], we introduced an artistic robotic drawing system
that can create visually-pleasing and complicated artistic
pen drawings on general surfaces without explicit surface-
reconstruction nor visual feedback. In order to expand our
system to be scalable in terms of canvas size and drawing
time, now we employ an RGB-D camera to estimate the
shape of the canvas surface geometry.

Simply adding the vision capability to our system, how-
ever, may not only complicate the drawing pipeline but also
even worsen the robotic drawing results, as the sensor would
introduce different sources of noises from depth estimation
and calibration. Moreover, in our previous work, we ignored
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a mapping artifact from a 2D vector graphic drawing to a 3D
robotic drawing, that can introduce serious image distortion
for an arbitrary, bumpy surface.

Robotic surface drawing without inducing bad visual
artifacts is not just limited to artistic drawing, but also
applicable to more practical tasks. For instance, in a robotic
cleaning application, a robot needs to follow a trajectory
(or a cleaning pattern) while making contact with the target
cleaning surface [7]. In this case, the cleaning pattern is
pre-determined in 2D space (e.g., a space-filling curve in
2D), and the cleaning surface will not be known a priori
and can be also defined in 3D (e.g., a window-cleaning
robot). The task objective here would be to sweep the 3D
surface as closely following the given patterned trajectory as
it would on the 2D surface - i.e., the pre-determined cleaning
pattern in 2D should be faithfully reproduced in 3D without
distorting the patterns. A similar scenario is possible for
a surface-probing robot where the robot needs to evaluate
and reconstruct an unknown surface by following a pre-
determined trajectory, also known as manifold learning [8],
[9].

Main Results: In contrast to our previous work [6], now
we use minimal vision support using an RGB-D camera to
estimate the unknown target canvas-surface and represent it
as a point cloud. However, since this estimation is often too
noisy for an arbitrarily bumpy surface to draw pen art on it,
we rely on an impedance-control technique to counteract the
potential uncertainties caused by the sensor noise as well
as the numerical noise in surface estimation. Moreover, in
order to map the original vector drawing in 2D to a general
surface in 3D while minimizing mapping distortion, we use
an idea of conformal mapping to mitigate the distortion.
Since conventional conformal mapping techniques developed
in raster-based computer graphics are not directly applicable
to our problem, as our input drawing is not rasterized but
piecewise continuous curves, we employ bi-linear interpola-
tion to compute proper conformal parameterization. Finally,
we successfully demonstrate that our robotic drawing system
can generate visually-pleasing pen drawings on real-world
surfaces with minimal distortion.

The rest of this paper is organized as follows. We survey
works relevant to robotic surface drawing in Sec. II. We
propose our surface estimation method in Sec. IV and the
robotic surface drawing method with minimal distortion in
Sec. V. We explain the robotic incarnation of this technique
using an impedance-control technique in Sec. VI. We show
our implementation results and discuss them in Sec. VII, and
conclude the paper in Sec. VIII.



(a) Robotic setup (b) Coordinate system setup (c) Tool frame setup

Fig. 1. Robotic Surface-drawing System Setup

II. PREVIOUS WORK

A. Robotic Surface Drawing
A good application of robotic surface drawing is an artistic

robotic drawing. Tinguely and Aaron [10] pioneered this
area by creating a drawing machine in the 1990s. An earlier
prototype of drawing robots is mostly based on a special-
purpose plotter robot, and the recent trend is to use a high-
DoF robotic manipulator for robotic drawing that can is more
versatile in terms of artistic expressions.

A telerobotic work such as the Pumapaint project [11] al-
lows remote users to draw paintings using a classical PUMA
robot. The HOAP2 humanoid robot was also employed to
draw human portraits in human-characteristic styles [2]. They
also rely on speech recognition and synthesis to create an
interactive system. Paul the robot [4] is a robotic installation
that creates observational portrait drawing, mimicking an
artist’s stylistic signatures. The robot itself is a planar robotic
arm using a pen as end-effector with a tilt webcam for visual
feedback. This robot was also publicly displayed during the
ICRA 2018 conference. eDavid [3] is a response to robotic
art from the computer graphics community and can draw
non-photorealistic paintings from an image input using an
industrial robot. A drone-type robot was introduced to create
stippling effects from an image input [12]. The drone is
equipped with an ink-soaked sponge and uses a centroidal
Voronoi diagram to generate stippling effects and minimizes
its motion by approximating the traveling salesman problem.
Song et al. [6] used a collaborate robot to draw artistic pen-
drawing on an unknown surface using impedance-control, but
ignored other sensory information including robotic vision
and is unable to generate a distortion-free rendering of
drawings on an unknown surface.

B. Distortion-free Surface Parameterization
Automatic parameterization of a non-parametric surface

like polygonal or point-set surfaces is a non-trivial problem
and has been extensively studied in geometric modeling and
processing [13], [14]. Typical applications of parameteri-
zation include texture mapping in computer graphics, and
mesh editing and re-meshing in geometry processing. In
particular, the former application is closely related to our
problem, where a curved drawing in 2D should be faithfully
reproduced on curved or bump surfaces in 3D.

For a polygonal surface with disk-like topology and a
convex boundary, Barycentric mapping [15] is the most
popular method in the literature. However, this method can
induce serious distortion in parameterization if the boundary
is highly non-convex. Coping with this problem, conformal
mapping has been introduced based on a complex analysis.
At a high level, conformal mapping can be classified into
analytic and geometric methods [14]. The former is relatively
easy to implement using energy minimization [16] but can
suffer from unbalanced distortion if the underlying surface
has high Gaussian curvature while the latter can resolve this
issue [17].

C. Impedance-controlled Robot

Hogan et al. [18] first suggested an idea of using
impedance control for controlling the interaction between a
manipulator and the surrounding environment. Since then,
robot interaction techniques using impedance control have
been explored in the robotics community [19], [20]. A
popularity of the use of impedance control is partly due to the
demand for robotic systems with an ability to interact with
uncertain environments in practical applications. Thus, many
collaborative robots based on impedance-control have been
introduced from both industry and academia, for instance,
LBR IIWA from KUKA Robotics, Baxter and Sawyer from
Rethink Robotics, and Justin from DLR. These robots are
able to handle classically challenging robotic manipulation
such as peg-in-hole assembly. Impedance control can be also
used for unscrewing a can for a humanoid robot Justin [21]
as well as bimanual tasks [22]. The use of impedance control
for drawing is very new, and Song et al.’s work [6] is the
only known work to the best of our knowledge.

III. SYSTEM OVERVIEW

As illustrated in Fig. 1-(a), we show the setup of our
robotic drawing system consisting of a robotic manipulator
equipped with a 3D-printed pen-gripper to hold a pen,
a non-planar target surface S and an RGB-D camera. In
Fig. 1-(b), we also show different frames used for system
implementation where the robot base’s frame B coincides
with the inertial frame W in our system. The input drawing
of our system consists of a sequence of control points C in
2D, defining quadratic Bézier curves, which are drawn by an



artist using tablet-like pen interfaces such as [6]. To project
this drawing on to the target surface S, we obtain a point
cloud data P representing the surface S using an RGB-D
camera. After calibrating P with S with respect to W , we
estimate the normal vector for each point in P , later used for
conformal mapping as well as for orienting the robot’s pen
frame. Then, the surface S is parameterized into 2D domain
Ω by first approximating it using mesh reconstruction from
P and then performing conformal mapping on it.

The original input drawing defined by C is made to fit
in the domain of Ω, and their corresponding parameters are
found by inverse-mapping Ω to P and performing bi-linear
interpolation on it. Finally, the robot performs drawing with
impedance control to compensate for possible mapping and
estimation errors.

IV. SURFACE ESTIMATION

In order to reproduce the drawing originally provided as a
sequence of 2D vectors on a target surface, we first acquire
depth information of the target surface. Various types of
RGB-D cameras, such as stereo vision, time-of-flight, can
reconstruct the depth information of a 3D surface with an
accuracy range of ±5% with a resolution less than 1mm.

Using this depth data, we generate a point cloud of the
scene and calibrate it with the target surface by defining a
local frame, called calibration frame, attached to the target
surface using three non-degenerate points on it. Further, we
also estimate the surface normals for the calibrated points
to orient the robot’s tool frame with respect to the robot
base frame. This enables the robot’s pen tip aligned toward
the surface normal of the target surface and also to exert
proper forces on to the pen tip to draw. However, since
these estimated results may not be precise due to sensor
noise, we use impedance-based control to compensate for
the estimation error that will be explained in Sec. VI.

A. Point Cloud Calibration

Calibrating the captured point cloud P data with the source
surface S is crucial for distortion-free robotic drawing. How-
ever, common calibration methods based on planar markers
or mounting a camera on the robot arm is not suitable for
our purpose because our target surfaces are often non-planar,
and they are placed very close to the robot manipulator that
it violates the RGB-D camera’s required minimum distance.
So we devise our own approach as follows. With a captured
point cloud CP relative to the camera frame C, we transform
it relative to the robot’s base frame B, which also corresponds
to the inertial frame W in our approach.

To calibrate, we define a local calibration frame L attached
to the surface S using three non-degenerate position-markers
{p,q, r} on the surface (Fig. 1-(b)). We define −→pq as the
x-axis and the normal vector n of the 4pqr as the z-
axis of L. By registering the position markers in the point
cloud P , the frame L is defined with respect to C. Similarly,
by picking p,q, r using the robot’s end-effector and using
inverse kinematics, L with respect to B is redefined. Then,
the relative transformations from C or B to L are defined

respectively. Finally, B
CT, the transformation from C to B is

obtained and applied to the point cloud data.
B
CT =B

L T(CLT)−1 (1)
BP =B

C T CP. (2)

Fig. 2 illustrates a dense point cloud captured from a
camera frame C, transformed into the robot base frame B.

B. Normal Estimation

To perform robotic surface drawing on an arbitrary sur-
face, the robot needs to decide both the position p and
orientation r of its end-effector. In particular, to calculate the
orientation r that ensures the robot to make stable contact
on a surface point, we calculate the surface normals n of a
point cloud and make it parallel to the approaching direction
(i.e., z-axis) of the end-effector (i.e., pen).

One can consider two options to estimate the normals of a
point set P . A rather straightforward way is to use a surface
meshing technique to obtain a mesh representation of P and
then extract the per-vertex normals. Alternatively, one can
infer per-point normal directly from P by performing least-
squared plane-fitting [23]. This is reduced to the principal
component analysis for a local neighborhood of points. Even
though either way would work in our case, the surface
parameterization method we have chosen in Sec. V requires
surface meshing, and thus opt for the meshing technique.

Fig. 2. Calibrated Dense Point Cloud

V. DRAWING FROM 2D TO 3D

To reproduce a 2D drawing on an arbitrary surface in 3D
without severe image distortion, one can employ conformal
texture mapping. In other words, we can preserve the quality
of the original 2D drawing during mapping from a 2D digital
vector-drawing to a robotic drawing on a 3D surface by
minimizing the angle distortion of local geometry. As a
result, we can get a distortion-free drawing result regardless
of whether the drawing is executed on a large or small, a
stretched or shrunken surface. However, conventional con-
formal texture mapping methods used in rasterization-based
computer graphics is not directly applicable to our problem



as our input drawing data is composed of a sequence of spline
curves in 2D using a set of control points C, corresponding
to pen strokes. Moreover, our target surface is a set of 3D
points with estimated normals, but without explicit surface
parameterization.

Fig. 3. Conformal Mapping

A. Conformal Mapping

Before explaining our idea of conformal mapping, we
first introduce some theoretical background of conformal
mapping. Given two surfaces with similar topology, it is
possible to compute a one-to-one correspondence between
them [13]. The problem of computing such a mapping is
referred to as surface parameterization.

Conformal mapping is one of the surface parameteriza-
tion techniques that preserves both angles and shapes.Let
a continuous surface S in 3D space be parameterized into
a parametric domain Ω ⊂ R2. As illustrated in Fig. 3, a
function f mapping from the Ω domain in 2D to a 3D surface
S is said to be conformal if for each (u, v) ∈ Ω, the tangent
vectors along the horizontal ∇u and vertical lines ∇v (the
red and blue lines in Fig. 3), forming a regular grid, are
orthogonal on S and have the same norm [14]:

∇v = n×∇u, (3)

where n denotes the unit normal to the surface S. In
other words, a conformal mapping locally corresponds to
a similarity transform - i.e., transforms an elementary circle
of the (u, v) domain to an elementary circle on the surface.

B. Surface Drawing with Minimal Distortion

To realize conformal mapping in our work, we adopted
the least squares conformal mapping (LSCM) [16] to pa-
rameterize the target surface, that is based on energy mini-
mization on the non-conformality of the mapping function.
Once we unfold the target surface into 2D parameter space
(u, v) ∈ Ω, we search for proper parameter values of the
2D drawing data in the parameter space, and refold the
surface into 3D space. As mentioned in Sec. IV-B, surface
normals could be estimated in different ways. Accordingly,
conformal mapping could be done differently as well. We
choose to compute gradients with a local orthonormal basis
of triangles, which needs the surface to be reconstructed as
a triangular mesh. Alternatively, one could use a meshless
technique for conformal mapping of a point cloud without
surface reconstruction using Laplace-Beltrami (LB) operator

[24]. Both results would yield a set of coordinates (ui, vi) ∈
Ω associated with each point in P that satisfies Eq. 3. In our
implementation, we have chosen the meshing technique, as
robust surface meshing implementations are readily available
for use [25] and it is easier to implement this way.

After the surface parameterization is done, we need to
decide the proper parameter coordinates for the control points
set C, which will then be mapped back to 3D using the
parameterization. Since our captured point cloud set P is
an unorganized point set and does not necessarily form a
uniform grid, in order to parameterize every control point
to a corresponding (u, v) coordinate, we need to solve an
inverse mapping/parameterization problem. Note that this is
not a big issue for raster-based texture mapping, as one can
have a clear idea of which rasterized point on the surface
needs to be parameterized. On the other hand, in our case,
the control points are originally defined in 2D, and we have
no idea where these points will be mapped to the 3D surface.
To solve this inverse mapping problem, we simply perform
bi-linear interpolation in the parametric domain to estimate
(u, v)’s for C as follows.

Given a desired drawing space W in 3D along with the
desired drawing scale, we can compute the parametric scale
in Ω and fit the 2D drawing to Ω. Then, for each control
point ci ∈ C, we search for the four-nearest points in P that
form a quadrilateral in Ω that contains ci. By performing bi-
linear interpolation on this quadrilateral using our previous
work [6], we can parameterize ci that is mapped to both
the position pi and the surface normal ni on P . Note that
we calculate the surface orientation ri only for the control
points of drawing, not for all the points on the surface,
which is more dense than the set of control points. Finally,
a set of control points mapped to the target surface with the
corresponding surface orientations, C ′ = {c′i = (pi, ri)|pi ∈
R3, ri ∈ SO(3)}, is generated.

Fig. 4. Compliant force (f ) is generated by the impedance-controlled
manipulator. The thick black line represents spline curves on the physical
surface that need to be drawn with a set of black dots for control points, also
corresponding to the origin of the pen frame P . Meanwhile, the thin line
with a set of circular dots represents the target spline curves on the virtual
surface, located slightly under the physical surface by δz, corresponding to
the origin of the virtual frame V . The orientations of P and V are identical
but their z-axes are offset by δz.



(a) Grid with Hilbert space-filling curve (b) Sierpiński arrowhead curve (c) Koch snowflake curve

Fig. 5. Drawing Results on a Bumpy, Circular Column Wall. The first row shows the original fractal curves in 2D including Hilbert space-filling curve,
Sierpiński arrowhead curve, and Koch snowflake curve from left to right. The second row shows the robotic drawing results, the black lines using our
method, and orange lines using projection mapping. Note that the orange lines are distorted compared to the original2D drawings.

VI. IMPEDANCE-CONTROLLED DRAWING

Using surface estimation and mapping, our drawing robot
is now fully provided with a set of Bézier curves in 3D that
can be drawn on the target surface. However, to exert a proper
compliant force at a pen-tip (the end-effector) as well as
to compensate for possible depth-estimation and calibration
errors, we adopted an impedance control method. Impedance
control is one of the hybrid, position- and force- controlled
method that was proposed to interact with an unstructured
environment [18]. By employing a mass-spring-damper-like
system, the impedance control allows a robot to react in a
compliant manner to external obstacles. By considering a
certain offset value (i.e., impedance) for each control point,
corresponding to the estimation errors, the impedance control
results in continuous contact motions with the surface during
the entire drawing session.

We configured the impedance controller in such a way
that the robot is compliant only in the normal direction of
the surface, as the pen tip attached to the robot manipulator
is oriented oppositely toward the estimated surface normal.
Additionally, in order to exert an appropriate amount of
compliant force at a pen-tip, a small deviation between the
target position and the physical position of the pen-tip needs
to be provided to the impedance controller.

Simply having the control points set C ′ = {c′i = (pi, ri)}
define the target drawing frames can result in lack of suffi-
cient pen pressure and will be very sensitive to the surface
estimation error. Therefore, the target position pi of c′i is
modified to:

p′i = pi + δzni, (4)

where δz is a user-defined gain value that controls the pen
pressure and ni is parallel to the z-axis Pz of the pen frame
P . This deviation results in a compliant force fz = kδz along
Pz , where k is the spring stiffness. To be more efficient,
instead of calculating new positions for every c′i, we attach

a virtual frame V , as shown in Fig. 1-(c), to the physical
pen aligned with the pen-tip frame P attached to the end of
the pen except that V is slightly offset by δz from P along
z-direction, which has the same effect of moving P to p′i.

As a result, the pen-type end-effector traces out the
position of spline curves while maintaining the contact with
the surface, exerting an almost uniform amount of compliant
forces regardless of the shape of the surface.

VII. RESULTS AND DISCUSSIONS

A. Implementation Details

As shown in Fig. 1-(a), our robotic surface drawing
system consists of a KUKA LBR IIWA 7 R800 manipulator
equipped with a 3D-printed gripper as an end-effector to
hold various types of pens that is solid enough to exert a
force. We use an Intel RealSense ZR300 RGB-D camera to
capture 3D point cloud of the target surface. It is a stereotype
camera that is augmented with an infrared projection system
to detect mono-colored objects more precisely.

We use C++, Java and MATLAB with a PC equipped
with 6 cores Intel Xeon E5 CPU and a 16-GB RAM
under Windows 10 64bit and Ubuntu 16.04 64-bit operating
systems. We also use Point Cloud Library (PCL) [25] to
generate point cloud data and to reconstruct a triangular mesh
from the point cloud.

To benchmark our robotic drawing system, we used two
types of input drawings: patterned drawings and artistic
drawings to effectively show both distortion-free and compli-
cated pen drawing results. For patterned drawings, we gen-
erated several fractal curves including a Hilbert space-filling
curve, a Sierpiński arrowhead curve, and Koch snowflake
curves that form uniform squares, triangles, and hexagonal
shapes. Artistic drawing data sets in Fig. 6 are acquired by
using the vector graphics engine proposed in our previous
system [6].



B. Experimental Results

Fig. 5 shows examples of the robotic pen drawing results
using our system on a bumpy circular column wall with
patterned data sets in black compared to a simple projection
mapping used in [6] in orange. Compared to the results using
projection mapping, our method reproduces the original
drawing faithfully on the surface. On the other hand, the
projection mapping method does not preserve the original
length and it gradually increases as it moves away from the
center of projection. As can be seen from the grid pattern
results shown in Fig. 5-(a), our method preserves the side
lengths of the grid, but in projection mapping, the length
has increased by more than 20% in the worst case.

The point cloud of the target surface is generated in
480 × 360 resolution, generating over 172K points for a
typical scene. The statistics of our experimental results
including the number of control points, the size of the
mapping surface (i.e., canvas size), the mapping calculation
time and the robot drawing-execution time are provided in
Table I. The drawings can be stretched into any smaller,
or bigger sizes only if it is within the robot’s workspace.
Even though we parallelize some of the mapping tasks,
the drawing time can be further reduced by adopting a
few acceleration techniques - for instance, a more efficient
neighborhood search method with an efficient data structure
such as Delaunay triangulation.

TABLE I
EXPERIMENTAL STATISTICS

Drawings (a) (b) (c)

# of Control points 6,930 2,360 4,128
Mapping Surface Size (mm) 384×216 432×216 384×192

Mapping Time (sec.) 635 308 523
Execution Time (min.) 54 14 19

We also show experimental results of artistic drawings in
Fig. 6, drawn using vector graphics engine. The drawings
contain over 90K control points, and the robotic drawing on
a circular column wall took about 5 hours for each drawing.

C. Discussion

Maintaining continuous contact with an arbitrary surface
with an intended amount of contact force is not an easy
robotic task. Our system, however, is able to perform robotic
surface drawing with nearly constant compliant forces, while
minimizing the distortion of the original input vector draw-
ings.

Currently, we rely on the depth information captured using
an RGB-D camera so that our system is not suitable for a
transparent or a reflective surface, such as on a window and
on a mirror. Additionally, the depth and normal estimation
process can be greatly accelerated by adopting a more
efficient nearest neighborhood searching method, such as
ANN [26]. Another problem is that our robot has a limited
workspace, even though the input drawing consisting of a
sequence of vectors could be scaled indefinitely. We want
to address this issue in the future by adding mobility to our
current manipulator.

Fig. 6. Artistic Drawing Results

VIII. CONCLUSION

We presented a robotic surface drawing system that can
generate pen drawings on physical surfaces with minimal
drawing distortion, realized by conformal mapping and ef-
fective surface parameterization. Our distortion-free mapping
method successfully maps a sequence of 2D vectors to 3D
real-world space. With impedance control, we compensate
for possible estimation or calibration error and generate
continuous contact motions. The experimental results show
that our system has the potential to be extended into other
robotic applications than drawing that requires a robot to
follow a given trajectory while maintaining contact with the
underlying surface.
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mesh processing. AK Peters/CRC Press, 2010.

[15] W. T. Tutte, “Convex representation of graphs,” in London Mathemat-
ical Society, 1960.
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