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Abstract

Wang Tiles are constructed from four texture samples, arranged so they can always match

a choice of other tiles at two edges. Because they are precomputed, Wang Tiles are a very

efficient way to generate textures on the fly. But matching problems occur within tiles and

at the corners of adjacent tiles. By replacing the edge-matching texture samples with a

new sample in the center of the tile, and using the graph cut path-finding algorithm, we

overcome these problems and introduce additional texture diversity. Our s-Wang Tiles are

a stricter interpretation of the original Wang Tile design, and our tile set is also smaller than

that required by ω-Tiles: only eight different tiles are required for a non-repetitive titling.
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1 Introduction

Example-based texture synthesis uses a given example image to create large images

with similar visual characteristics. It is used in video games, flight simulators and

scientific computations which require rapid high-resolution texturing of surfaces

and at a less cost in texture memory in the graphics processors (GPUs). There are

a number of algorithms for example-based texture synthesis. In general, they can

be divided into three categories: pixel-based methods, patch-based methods and

tiling-based methods. Pixel-based methods use neighborhood information for each

pixel in the example image to identify the most likely value for neighboring pixels

during synthesis. Patch-based methods look iteratively for optimized sub-images in

the example image and create a synthesized image by minimizing the overlap error

in overlapping regions. Tiling-based methods precompute a set of small tiles with

boundary pixels colored in such a way that no seam is apparent between abutting

tiles. Tiles allow textures to be synthesized very quickly.

In this paper, we present a new tiling-based method which is directly motivated

by Wang Tiles [1] and ω-Tiles [2]. The first successful tiling-based algorithm for

texture synthesis, Wang Tiles use a set of small precomputed tiles to synthesize a

large texture on the fly. It has proved to be very efficient in memory-constrained

applications which require real-time texture synthesis. However, there are some

intrinsic limitations in Wang Tiles: the corner problem, the joint problem and the

sampling problem, which will all be analyzed in Section 2.2. They compromise the

efficiency of the algorithm in some respects such as precomputed tile quality and

tile set size. The recently introduced ω-Tiles are efficient, with a higher quality of

precomputed tiles and smaller tile sets. Experimental results [2] show that ω-Tiles

are able to generate synthesized textures of reasonable quality while using only
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sixteen tiles, as against to the set of sixty-four tiles by Wang Tiles. However, to

maintain a non-periodic synthesized pattern, the minimum size of a set of ω-Tiles

should be thirty-two. In contrast, the theoretical minimum size of a set of Wang

tiles is eight, although it has to be increased to sixty-four in practice because of

intrinsic limitations. For further information how the number of tiles is determined

in Wang Tiles and ω-Tiles, refer to Cohen et al. [1] and Ng et al. [2].

Main Results

We have looked for insight into the intrinsic limitations of Wang Tiles. Based on

our observations and analysis, we proposed strict Wang Tiles (or s-Wang Tiles).

Our new algorithm is able to create a smaller set of tiles while improving their

quality significantly. In brief, we combine four diamond-shaped sub-images sam-

pled from the example texture, like Wang Tiles, but without overlapping region be-

tween neighboring tiles. We cut out the central portion to obtain an initial tile and

then introduce a supplementary square-shaped sub-image which is also cut from

the example texture. Using the graph cut technique, we construct a weighted graph

relating the initial tile and the supplementary square-shaped sub-image and then

find a minimum-cost path in the graph. The portion surrounded by all the paths is

then replaced by the supplementary sub-image.

Our approach addresses the following three problems that arise in generating a set

of Wang Tiles:

• Tile Quality: Eliminating the corner problem and joint problem reduces the promi-

nence of seams while generating Wang Tiles. A large search space between two

overlapping sub-images guarantees more chances of finding a good cutting path.

Our approach also uses graph cut, which is more efficient than dynamic pro-

gramming.
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• Tile Set Size: From a reappraisal of the corner problem, we reduce the size of

tile set from sixty-four to eight not just in theory, but in practice. Even so, our

approach manages to reduce the amount of repetition during texture synthesis.

• Synthesis Quality: Our approach achieves a more varied pattern, because the set

of tiles is not restricted to the four sub-images, which is the case with Wang

Tiles, and because our synthesized textures embed more of the example texture.

Overcoming the sampling problem that occurs with Wang Tiles also increases

the texture diversity to some extent.

Organization

The rest of this paper is organized as follows. Section 2 addresses the intrinsic

problems of Wang Tiles [1]: the corner problem (Section 2.2.1), the joint problem

(Section 2.2.2) and the sampling problem (Section 2.2.3). Section 3 gives details

of tile design in our strict Wang Tile scheme. Section 4 compares our approach

with related work: Wang Tiles [1] and also ω-Tiles [2]. Section 5 presents our

experimental results, and Section 6 concludes the paper, conceding limitations of

our approach and suggesting future work.

2 Previous Work and Problems

2.1 Previous Work

There have been many approaches to the synthesis of large textured areas from

small example images.

Pixel-Based Algorithms. The synthesized texture is generated pixel by pixel. Each

pixel is the result of a search of the given example, using the neighborhood already
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synthesized. The main advantage of pixel-based methods [3–13] is the ability to

control textures at pixel level. However, these methods are sensitive to the size of

the window during the search for pixels in the example images, and when deciding

a pixel’s neighbors in the synthesized texture. More recent work [14] provides a

controllable parallel method at pixel level that can utilize modern GPUs.

Patch-Based Algorithms. The texture is generated patch by patch and cutting

paths are sought which minimize overlap errors between patches. Specific algo-

rithms include image quilting using dynamic programming [15], graphcut texture

[16], iterative optimization based on Markov Random Fields [17] and the earlier

lapped textures technique [18]. Patch-based algorithms tend to preserve the global

structure, but they sometimes introduce local artifacts in the regions of overlap

between neighboring patches. Patch-based texture synthesis has been shown to

produce high-quality textures faster than pixel-based approaches. The search for

a good neighboring patch and a satisfactory cutting path is not simple and usually

requires iterative optimization.

Tiling-Based Algorithms. A set of tiles are precomputed and laid out seamlessly

over the area to be textured. Synthesizing a large texture is simple and fast. These

algorithms include aperiodic tiling on surfaces [19], triangular pattern-based tiling

[20], hierarchical pattern mapping [21], Wang Tiles [1], parallel rendering of Wang

Tiles in GPUs [22], procedural textures based on pattern [23], extracting tiles for

near-regular textures [24,25] and, most recently, ω-Tiles [2]. Wang Tiles was the

first successful tiling-based method, and has shown its advantages in real-time ap-

plications. The main drawback of Wang Tiles is its limited variety, due to the fixed

number of sub-images (four sub-images for a set of eight tiles) captured from the

given example texture, and the serious corner, joint and sampling problems. In ω-

Tiles, each edge is identified by two colors, so a set of thirty-two tiles is needed to
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synthesize textures which are strictly non-periodic.

2.2 Wang Tiles and Intrinsic Problems

In Cohen et al.’s Wang Tiles [1], each tile has the structure shown in Figure 1-(b).

The square central portion is cut out of a diamond-shaped image and becomes a

Wang Tile. To construct each tile, four sub-images, identified by four colors- yel-

low, red, blue and green, are randomly cut out of the example texture, shown in

Figure 1-(a), and arranged so that they overlap each other, following the pattern in

Figure 1-(b). Four cutting paths are found to combine the four sub-images seam-

lessly, greatly reducing the visibility of the boundaries between them. An image

quilting optimization algorithm [15] is used to find these cutting paths in overlap-

ping regions. For convenience in later assembly, each edge is identified with the

color of the sub-image to which it belongs. Because the same image sample is used

to generate all the tiles that share an edge color, these tiles will always match each

other. For example, if the east edge of a tile is colored green, a tile with a green

west edge can be laid next to it.

(a) (b)

Fig. 1. Wang Tile. (a) The example texture out of which the four sub-images are cut; (b)

Wang Tile structure presented by Cohen et al.

Wang Tiles represent a novel approach to real-time texturing applications and have
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outperformed most existing algorithms. But they have serious problems, which we

address in this paper. We will describe these problems in the following sub-sections,

and then present our solutions in Section 3.

2.2.1 Corner Problem

We will analyze the corner problem by considering two Wang Tiles laid side by

side. We will use r,g,b and y to identify four colors: red, green, blue and yellow.

Then let Tabcd represents a Wang Tile with four colors [a,b,c,d] where a,b,c,d ∈

{r,g,b,y}. The four elements of a 4-tuple are used to enumerate the four edges,

anticlockwise from the top. In Figure 2-(a), a Wang Tile Tyrbg with a right green

edge can match a Wang Tile Tbgyr with a left green edge in the horizontal direction

because of the way in which the tiles were created. The central segment of the

green edge of Tyrbg is the former neighbor of the central segment of the green edge

of Tbgyr in the original green sub-image. Therefore, the tiles fit - except the corners.

Tyrbg Tbgyr

(b)

(c)(a)

Fig. 2. Corner problem. (a) Two neighboring Wang Tiles with the corner problem high-

lighted by rectangle boxes; (b) the top corner, where the yellow segment of Tyrbg does not

match the green segment of Tbgyr; (c) the bottom corner, where the blue segment of Tyrbg

does not match the yellow segment of Tbgyr.

The corner problem is caused by the use of Efros’ image quilting algorithm [15]

7



during tile creation. Because it does not generate cutting paths that pass through the

corners exactly, the edges near the corners may not be colored correctly, as shown

in 2. A mismatch can be expected at almost every corner, because the probability

that a cutting passes through the corner point is very low. Therefore most tile com-

binations will cause distortions at corners. To overcome this corner problem, Cohen

et al. suggested expanding the set of eight Wang Tiles to a set of 24 ×8 tiles. This

large set of 128 tiles could then be condensed to a set of sixty-four Wang Tiles with

matching corners. But this approach requires more texture memory during render-

ing. Furthermore, a set of sixty-four Wang Tiles (the base set has eight tiles) is still

too small to synthesize a non-periodic texture, so a set of at least 144 tiles (eighteen

tiles in the base set) was used by Cohen et al. [1]

The human visual system is sensitive to corners and lines [26]. Corners in particular

are second-order features. So overcoming the corner problem should significantly

reduce the number of visible artifacts.

2.2.2 Joint Problem

In addition to the corner problem, Wang Tiles have a serious joint problem, which

occurs at the center of each Wang Tile, and is also caused by Efros’ image quilting

algorithm [15] which is not really suited to the Wang Tile application. In each

step of Efros’ original application, the example texture is searched for the best

matching sub-image. Thus the algorithm can always find a good cutting path in

the overlapping region. However, Cohen et al. use a restrict number of sub-images

(four for a set of eight tiles), selected at random, and overlap them. Using such a

small selection of sub-images, it is difficult to obtain good paths for all overlapping

regions.
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(b)

(a)

(d)

(c)

(f)

(e)

Fig. 3. Joint problem. (a)(b) The first cutting path is found between the yellow sub-image

and the red one; (c)(d) the second cutting path between the image in (b) and the blue

sub-image; (e)(f) the third and the fourth cutting paths between the image in (d) and the

green sub-image.

Moreover, errors accumulate at the joints where all the sub-images overlap. Figure

3 shows the generation of four cutting paths by means of image quilting during

the creation of a Wang Tile. Usually, finding the first cutting path is relatively easy

(Figure 3-(a) and -(b)). But finding subsequent paths is more difficult because the

overlap at the joint is distorted by the previous path. So the search for the second,

the third and the fourth path is based on distorted sub-images. The distortion is very

serious, particularly for the last cutting path (Figure 3-(e) and -(f)).

2.2.3 Sampling Problem

The third problem with Wang Tiles is that the resulting synthetic texture is based on

samples of a small fixed number of sub-images (for example, the four sub-images

which are all that are theoretically required for a set of eight tiles) from the example

texture. The problem has two factors, relating to the sampling position where each

sub-image is sampled, and to the number of those sub-images.

9



• Sampling Position: Since the creation of a Wang Tile requires the selection of

a diamond-shaped sub-image from the example texture (see Figure 1), the four

corners of the example texture will never be sampled. That means the features

lying in these regions have no chance to appear in the final synthesized texture,

which may therefore deviate from the underlying global pattern of the exam-

ple any more, especially if important features happen to be located near to the

corners of the example texture.

• Sample Number: In theory, Wang Tiles require only four sub-images to construct

a set of eight tiles, so the resulting synthetic texture will only contain texture

patterns from these four sub-images. That may cause repetition in the resulting

texture, particularly if these Wang Tiles are used to synthesize a large area.

3 Our Strict Wang Tile Scheme

Our tile design scheme strictly follows the definition of Wang Tiles. A Wang Tile

set consists of square tiles with color-coded edges. The tiles can not be rotated. A

valid tiling of the plane consists of any number of copies from the set laid down

such that all contiguous edges have matching colors [1]. A stochastic tiling pattern

can be laid out with theoretical minimum set of eight Wang Tiles. The tiling scheme

guarantees that two tile choices available for each tiling step. However, Cohen et

al.’s implementation of the Wang Tile design fails to incorporate this sound prop-

erty, leading to the intrinsic problems described in the previous section. We now

present a novel Wang Tile design scheme which strictly follows the definition of

Wang Tiles and is represented by strict Wang Tile or s-Wang Tile for an abbrevia-

tion.
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3.1 Tile Design

From a given example texture, we randomly sample four diamond-shaped sub-

images, like Cohen et al. We combine these four sub-images into a composite

image, using the structure shown in Figure 4-(a). The four diamond-shaped sub-

images are represented by four colors which correspond to the edge colors of a tile.

For example, the structure in Figure 4-(a) corresponds to the tile Tyrbg.

(a) (b) (c)

Fig. 4. The strict Wang Tile. (a) Wang Tile structure with four sub-images sampled from

the example texture; (b) an initial Wang Tile cut out of (a); (c) the final Wang Tile after

graph cut and replacement.

The combination rule is also the one used by Cohen et al. [1], but without any of

overlapping regions between neighboring tiles. Then the central square portion of

the diamond-shaped composite image is cut out to obtain an initial Wang Tile (Fig-

ure 4-(b)), with the characteristic colored edges. But this Wang Tile can not be used

to create a larger texture, because there are mismatches on the interior boundaries

between sub-images. Figure 6-(a) shows a set of eight of these initial Wang Tiles.

In order to eliminate the mismatches, a supplementary square-shaped sub-image is

cut out of the example texture and used to cover these mismatches. Using the graph

cut technique, we can now construct a weighted graph between the initial Wang
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Tile and the supplementary sub-image, and then find a closed minimum-cost path

in that graph. The region inside the path is then replaced with the supplementary

sub-image, while the region outside the path contains the pixels of the initial Wang

Tile. The schematic of Figure 4-(c) shows the cutting path determined by graph

cut, while the shadowed area shows the pixels replaced by pixels from the supple-

mentary sub-image. In Section 3.2, we will illustrate how graph cutting works in

detail.

Figure 5-(a) is a schematic description of the generation of a set of eight Wang Tiles

using our tile design scheme. Each supplementary sub-image has its own color.

In total there are 4+8 sub-images sampled from the example texture. Because the

construction of each Wang Tile now involves a sub-image based on the whole of

the example texture, any pixel in the example texture may now be sampled. Figure

6 shows a set of eight Wang Tiles, based on an example texture which is widely

used in the graphics community.

(a) (b)

Fig. 5. Our Wang Tile pattern and tiling example. (a) A set of eight s-Wang Tiles enough to

tile with a non-periodic pattern; (b) an example 2×2 tiling.

Synthesizing a texture as a tiling, using a set of our s-Wang Tiles, is quite easy.

Suppose the plane is to be tiled from West to East and from North to South. Each

new tile must have N and W edges that match the E and S edges already placed. The

set of eight tiles shown in Figure 5-(a) can be used to tile the plane non-periodically,

since there are always two choices of tile. Figure 5-(b) shows a small example tiling.
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In this case, when we get to the bottom-right tile, we have a choice of two tiles, Tbgbg

and Tbgyr, that will match the existing edges both vertically and horizontally.

(a)

(b)

(c)

(d)

Fig. 6. A set of eight s-Wang Tiles generated by our approach. (a)Initial Wang Tiles gen-

erated from four sampled sub-images with overlap; (b) supplementary sub-images taken

from the given example texture; (c) minimum-cost paths between the initial Wang Tiles (a)

and the supplementary sub-images (b); (d) final Wang Tiles, in which the portion inside the

minimum cost paths are replaced by the supplementary sub-images.

3.2 Graph Cut

A minimum-cost path between the initial Wang Tile and the supplementary sub-

image can be located as a cutting path between two overlapping images. We use

the graph cut technique, which was originally used [16] to find a minimum cut-
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ting path and has since been extended to other applications in image and geometry

processing, especially in texturing and video synthesis [16,2,27,28], foreground re-

moval [29], image blending [30] and geometric processing [31,32].

Cutting path
Internal node

Graph edge

Cutting path

Boundary node A

Boundary node B
Patch A Patch B 

Fig. 7. Schematic graph formulation of the region of overlap between two patches: the

minimum-cost graph cut is shown as a red line.

The schematic diagram in Figure 7 shows a region of overlap between two image

patches A and B. Each pixel in the overlap is represented by a node in graph. Each

edge of the graph is assigned a weight W which is the sum of the transition overlap

error of the two nodes, divided by the sum of their gradients:

W (s, t,A,B) =
‖A(s)−B(s)‖+‖A(t)−B(t)‖

‖Gd
A(s)‖+‖Gd

A(t)‖+‖Gd
B(s)‖+‖Gd

B(t)‖
,

where s, t are neighboring pixels in the overlapping patches A and B, Gd
A(s) denotes

the gradient of pixel s in patch A along d (gradient direction from s to t), and Gd
A(t),

Gd
B(s) and Gd

B(t) are similarly defined. This formulation is also used by Ng et al.

[2]

To find a cutting path using the graph cut technique, the value of all the pixels in the

border surrounding the overlapping region are constrained to come from existing

pixels [16]. In Figure 7, we select the three leftmost boundary nodes (highlighted in

blue) to come from patch A, and the three rightmost boundary nodes (highlighted

in dark red) to come from patch B. The search for a cutting path will be bounded by
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these two constraints. A boundary of any shape can be used to guide a graph cut.

(a) (b) (c)

Fig. 8. Construction of a weighted graph. (a) An initial Wang Tile; (b) boundaries of a

graph cut: the four edges of the square are taken from the initial Wang Tile and the two

dotted diagonals are taken from the supplementary sub-image; (c) a typical graph cut after

searching.

We use the constraints shown in Figure 8. For an initial Wang Tile (Figure 8-(a)),

and a square supplementary sub-image, we construct a weighted graph as described

above. To bound the central portion to be replaced by the supplementary sub-image,

we constrain the nodes along the dotted line (Figure 8-(b)) to come from the sup-

plementary sub-image, and the boundary nodes on the four edges of the square to

come from the initial Wang Tile. Using this weighted graph and the constraints

represented by the boundary nodes, a continuous closed graph cut can be found

that visits each corner of the square in turn (Figure 8-(c)). This graph cut is the

path through the graph edges that corresponds to the minimum sum of weights.

We use the supplementary sub-image to cover the area delineated by this cut. The

mismatches between sub-images in the initial Wang Tile disappear. In Figure 6, we

show how a set of eight Wang Tiles is created using this method.
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4 Comparisons

For the sake of completeness, here we briefly describe the concept of ω-Tiles. ω-

Tiles starts with randomly obtaining a set F of four small square patches from the

input texture. With these, it forms a square block to construct eventually an ω-

tile. Each block is a non-overlapping arrangement of four (not necessarily distinct)

patches of F (Figure 9-(a)). Then an intermediate tile is cut from the center of

the arrangement (Figure 9-(b)). The seams in the intermediate tile are removed by

replacing the interior of the tile with other pattern from the input texture to generate

an ω-tile (Figure 9-(c)). We refer readers to see [2] for more details.

(b)

(a)

(c)

Fig. 9. Construction of ω-Tiles

Figure 10 and Table 1 summarize and contrast the way in which Wang Tiles, ω-

Tiles and our s-Wang Tiles are designed.

(a) (b) (c)

Fig. 10. Design schemes of three types of tiles. (a) Wang Tiles; (b) ω-Tiles; (c) our s-Wang

Tiles
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All these methods use a fixed number of sub-images sampled from the example tex-

ture to make a tile which can be assembled seamlessly into a large texture. The per-

centage of the final tile occupied by these four sub-images determines the amount

of repetition that occurs in the final synthesized texture. For example, the original

Wang Tiles [1] used only four sub-images to generate a set of tiles, and these four

sub-images extend over the whole of each tile (see Figure 10-(a)). With a set of

only eight Wang Tiles, some repetition is unavoidable. Cohen et al. use a minimum

set of eighteen tiles and in practice they used 144 to overcome the corner prob-

lem and synthesize a reasonable texture. In ω-Tile [2], the four sub-images extend

over nearly 50% of each tile (see Figure 10-(b)). Therefore, compared with original

Wang Tiles, fewer tiles are needed to achieve the same quality of texture. In the-

ory, a set of at least 32 ω-Tiles is required to maintain non-periodicity, although 16

tiles seem sufficient in practice [2]. In our s-Wang Tiles, the four sub-images only

extend over 25-30% of each tile, as illustrated schematically in Figure 10-(c). The

effect of the four original sub-images is localized to the edges of the tile, and their

contribution is to avoid seams in the final texture. The supplementary sub-image

increase the diversity of texture in the tile. Thus our s-Wang Tiles can synthesize

good textures with a smaller set of tiles.

In Figure 11, we give some samples generated using these three types of tiles. We

refer readers to see http://www.heroicsalmonleap.net/mle/wang/ for an implemen-

tation of Wang Tiles and http://www.comp.nus.edu.sg/ tants/w-tile/ for more results

on ω-Tiles. As shown in Table 1, our approach has the following advantages com-

pared with the original Wang Tiles and with ω-Tiles.

• No corner problem. Unlike the original Wang Tiles, our s-Wang Tiles join cor-

rectly all along their edges, and at corners. As a result, we do not need to increase

the tile set by encoding for corner type.
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(a) (b) (c)

Fig. 11. Tile Construction and Synthesized texture using Three types of Tiles: (a) Wang

Tiles; (b) ω-Tiles; (c) Our S-Wang Tiles. In each picture, the top two images show the

cutting path searched in a tile (left) and the resulting tile (right). The lower image is a 2×2

synthesized texture.

• No joint problem. Our scheme introduces a supplementary sub-image sampled

from the example texture to replace the central portion of the initial Tiles. This

makes the final pixel information more diverse. We also use graph cut, instead

of dynamic programming, to eliminate the boundary mismatches between sub-

images. Because the graph cut takes place in a large area, the quality of the

resulting path is good.

• No sampling problem. Our scheme is not restricted to four sub-images unlike the

original Wang Tiles. And the supplementary sub-images sampled from the ex-

ample texture are not diamond-shaped, but square, which means that any portion

of the example texture may be sampled.

• Compared with ω-Tiles, our approach can synthesize less repetitive texture pat-

tern, because the four sub-images needed to avoid seams between tiles occupy a

smaller area. In addition, our tile combination rule is simper than that for ω-Tiles
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[2].

• Our approach can reduce the number of tiles from 144 Wang Tiles or 32 ω-Tiles

to eight, without compromising the quality of the final texture.

• In addition, our approach has the advantages compared with the non-tiling meth-

ods. The tile set can be generated at a precomputation stage. Tiling can be per-

formed on the fly, and can be supported by modern GPUs [22,14].

Wang Tiles ω-Tiles Ours

Corner Problem Yes No No

Joint Problem Yes No No

Sampling Problem Yes No No

Tile Quality Fair Good Good

Number of Tiles 64 32 8

Percentage by four tiles 100% 50% 25-30%

Synthesis Quality Fair Good Good

Combination Rule Simple Complex Simple

Table 1

Comparison between Wang Tiles, ω-Tiles and s-Wang Tiles.

19



5 Experimental Results and Discussion

5.1 Experimental Results

Figures 12, 13 and 14 demonstrate texturing examples synthesized by using our ap-

proach. The first column of each figure shows the input textures including stochas-

tic (Figure 12), semi-structured (Figure 13) and structured textures (Figure 14).

The second and third columns show the resulting textures synthesized using our

approach and ω-Tiles, respectively. Finally, Figure 15 demonstrates the examples

of large textures synthesized by our approach for stochastic, semi-structured and

structured input textures. All the example textures have a resolution of 128×128

and all the s-Wang Tiles have a resolution of 100×100. All the tiled textures are

synthesized with a set of eight s-Wang Tiles. Precomputing a set of tiles takes 6-7

seconds and synthesizing any large texture can be done on the fly. Our algorithm

was implemented using C++ under MS Windows. All results are obtained on an

Intel Xeon 2.8GHz PC.

5.2 Discussion

Smoothing: A few postprocessing techniques have been reported to reduce the

seam along a cutting path. [16] utilizes blending operations to make the cutting

path smooth. Our preliminary work on ω-Tiles [2] uses the poisson approach [33]

to smooth the prominent seams in ω-Tiles. We have noticed that these techniques

can remove seams to a certain extent, but new artifacts, for example, blur effect,

can be introduced. This phenomenon may result in destroying the global visual

appearance. For example, refer to Figure 10-(b-vi) in [2]. As a result, we did not
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employ smoothing techniques in our s-Wang Tiles.

Tile Resolution: The maximum resolution of each tile can be determined by the

resolution of input textures. In general, the higher the tile resolution becomes, the

better global synthesis quality the resulting textures can generate, because the low

tile resolution induces a small search region for finding a cutting path, i.e., less op-

portunities for finding a good cutting path. On the other hand, the low tile resolution

can generate more texture diversity and requires less precomputation time to gen-

erate tiles. In order to compensate for these requirements, in our case, we choose

100×100 as a tile resolution for 128×128 input textures throughout our experi-

ments. As a result, we can preserve the global synthesis quality while maintaining

the texturing diversity.

6 Conclusion and Future Work

We have presented an improved technique to create a smaller set of more efficient

and stricter Wang Tiles for synthesizing large textures without the problems as-

sociated with the original Wang Tiles. Using graph cut and sampling more than

four sub-images from the given example texture, both tile and texture quality are

improved, while the size of the tile set is reduced. We have demonstrated our ap-

proach on a wide range of texture examples.

One limitation of our approach is the requirement for more precomputation time,

because it is necessary to traverse the whole example texture to find the most suit-

able sub-images using graph cut which is a time-consuming algorithm. However,

once a set of tiles are generated as precomputation, the synthesis procedure now

becomes quite fast. Moreover, mipmapping can be easily dealt with by generating
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a series of pre-synthesized textures at different resolutions.

The experimental results have shown that s-Wang Tiles are very suitable for syn-

thesizing stochastic and semi-structured textures. We also have demonstrated syn-

thesizing structured textures and their final results show reasonable quality. But for

those textures with obvious structural features or near-regular patterns, the global

pattern may not be well preserved. For example, some noticeable artifacts, as shown

in the second row of Figure 13 and second and fourth rows of Figure 14, can be

recognized. Thus, for future work, we plan to take into account pattern structures

existing in the given example textures. We would also like to integrate pattern de-

tection into the search for finding good cutting paths using graph cut. Another area

for future research direction is incorporation of user control mechanism into tiling-

based texturing methods.
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Fig. 12. Stochastic textures. From left to right: input textures, our s-Wang Tiles, ω-Tiles.
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Fig. 13. Semi-structured textures. From left to right: input textures, our s-Wang Tiles,

ω-Tiles.
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Fig. 14. Structured textures. From left to right: input textures, our s-Wang Tiles, ω-Tiles.
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(a) Stochastic texture

(b) Semi-structured texture

(c) Structured texture

Fig. 15. 3×6 large textures synthesized using s-Wang Tiles.
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