
IEEE TVCG 1

Interactive Collision Detection for
Deformable Models using Streaming AABBs

Xinyu Zhang and Young J. Kim

Abstract—We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the

streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely

deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding

boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise,

overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that

can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At run-time,

as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB

streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire

output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining

overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as

CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA

GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our

algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions,

and the timings were obtained as 30∼100 FPS depending on the complexity of models and their relative configurations. Finally, we

made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times

performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and

observed about two times improvement.

Index Terms—Collision Detection, Deformable Models, Programmable Graphics Hardware, Streaming Computations, AABB.

◆

1 Introduction

The goal of collision detection is to determine whether
one or more geometric objects overlap in space and, if they
do, identify overlapping features, also known as collision
witness features. Collision detection has been used for a
wide variety of applications that attempt to mimic the
physical presence of real world objects. The types of these
applications include physically-based animation, geometric
modelling, 6DOF haptic rendering, robotic path planning,
medical imaging, interactive computer games, etc. As a
result, many researchers have extensively studied the col-
lision detection problems over the past two decades. An
excellent survey of the filed is available in the work by Lin
and Manocha [1].

At a broad level, the field of collision detection can be
categorized differently depending on the nature of input
models (rigid vs. deformable, linear vs. curved, or surface
vs. volumetric), the existence of motion (static vs. dy-
namic), the type of collision query (discrete or continuous),
and the type of computing resources that collision query
utilizes(CPUs vs. GPUs). In principle, it is well known
that the worst case computational complexity of any col-
lision detection algorithm can be as high as quadratic in
terms of the number of primitives contained in the input
models. In practice, however, the actual number of col-
liding primitives tends to be a relatively small number.

• The authors are with the department of computer science and
engineering at Ewha womans university in Seoul, Korea. Email:
{zhangxy, kimy}@ewha.ac.kr

Therefore, the major efforts in most of existing collision
detection algorithms have been focused on reducing the
number of collision checkings between colliding primitives
(e.g., triangles). Often, this goal is achieved through the
use of bounding volume hierarchies (BVHs) such as axis
aligned bounding box (AABB) trees, sphere trees, oriented
bounding box (OBB) trees, discrete orientation polytopes
(DOPs) or convex hull trees, or through the use of modern
rasterization hardware.

Even though some researchers believe that collision de-
tection is a solved problem, there are still quite a few chal-
lenges left. In particular, collision detection of deformable
bodies is one of the remaining yet difficult challenges. The
major difficulty of devising an efficient solution for de-
formable models lies in the fact that it is quite expensive
to update the auxiliary collision querying structure such
as BVH as the underlying model deforms over time. In or-
der to address this issue, researchers have suggested a lazy
update of BVHs [2], reduced deformation of models [3], or
the use of GPUs based on image space computations [4],
[5], [6], [7], [8]. However, the accuracy or the performance
of the first three techniques are governed by image-space
resolution and viewing directions. The efficiency of the
GPU-based technique depends on the resolution of image
space and it may not work well for highly deforming models
that have many overlapping primitives and it often misses
many colliding pairwise primitives. In-depth discussion of
these challenges for collision detection of deformable ob-
jects can be also found in Teschner et al.’s work [9].

2 IEEE TVCG

(a) Intersecting bunny models (b) AABB streams of bunny models (c) Intersected AABBs

Fig. 1. Collision Detection using Streaming AABBs. (a) shows intersecting two bunny models (blue and cyan); (b) two bounding AABB streams
(white and light blue boxes) are superimposed on the bunny models that they bound respectively; (c) highlights intersecting AABBs (shown as
orange and yellow boxes). Using commodity graphics processors, our algorithm is able to find all the intersecting AABBs in the object space;
using CPUs, the algorithm reports actually colliding triangles contained in the intersecting AABBs.

Recently, the streaming computation model has drawn
much attention from different areas like computer graphics,
image processing, geometric modelling, and even database
[10]. The concept of a streaming model is not novel but
it has been around for more than four decades. However,
the recent introduction of powerful streaming architecture
like GPUs revitalize the new era of streaming computa-
tions. This research trend is expected to continue and grow
thanks to other emerging, new streaming processors like
CELL processors[11], [12]. In contrast to the traditional,
serial computation model like CPUs, a streaming compu-
tation model represents all data as one or more streams,
which are defined as one or more ordered sets of the same
data type. Allowed operations on streams include copying
them, deriving sub-streams from them, indexing into them
with a separate index stream, and performing computation
on them with kernels. A kernel operates on entire streams,
taking one or more streams as inputs and producing one or
more streams as outputs. Moreover, computations on one
stream element are never dependent on computations on
another element [13], [14], [15], and thus can be performed
in parallel with the same instructions.

1.1 Main Results

In this paper, based on the powerful concept of stream-
ing computations, we present a novel collision detection
algorithm for severely deforming objects. At a high level,
the streaming computations in our algorithm can be split
into three stages:

1. Stream Setup: As preprocess, for each deformable
object, we calculate a set of axis aligned bounding
boxes (AABBs) that bounds the object, and consider
each set as an input stream to our collision detection
algorithm.

2. Stream Calculation: At run-time, we perform
massively-parallel pairwise, overlapping tests onto the
incoming streams. Moreover, we use a streaming
en/decoding strategy to get only the computed re-
sult (i.e., collisions between AABBs) without actually
reading back the entire output streams

3. Stream Update: As the underlying models deform
over time, we employ a novel, streaming algorithm to

update the geometric changes in the AABB streams.
After determining overlapping AABBs at the stream cal-

culation stage (step 2), we perform a primitive-level (e.g.,
triangle) intersection checking on a serial computational
model, implemented using CPUs. The entire streaming
computations are implemented using one of the highly suc-
cessful streaming architecture of modern era, graphics pro-
cessing units (GPUs).

One of the major distinctions between our algorithm and
other GPU-based algorithms is that the entire pipeline of
our approach performs collision detection in object space
and never misses any pairwise, colliding primitives. More
specifically, the main advantages of our approach include:

• Streaming computations: our algorithm performs
massively parallel overlap tests on streaming AABBs
by utilizing the high floating bandwidth of modern
GPUs.

• Tile-based rendering: To cope with the limited
memory (i.e., texture) size available in modern GPUs,
our algorithm uses a tile-based rendering technique to
handle a large AABB stream.

• Hierarchical stream readback: As a remedy for
slow downstream bandwidth from GPUs to CPUs, the
algorithm fetches minimal stream data from GPUs to
CPUs using a hierarchical en/decoding stream read-
back strategy.

• Generality of input models: The algorithm can
handle general polyhedral models and makes no as-
sumptions about their topology and connectivity.

• Accurate results: The entire pipeline of our algo-
rithm is performed in object space and can report all
colliding primitives within a floating point precision of
the underlying CPUs and GPUs.

• Interactive performance: Our extensive experi-
ments show that the algorithm is robust and is able to
report collision results of deformable models at highly
interactive rates.

1.2 Organization

The rest of the paper is organized in the following man-
ner. Section 2 surveys related work on collision detection
of deformable objects. Section 3 gives a brief overview

STREAMING COLLISION DETECTION 3

of our approach. Section 4 describes the precomputation
stage of our algorithm and section 5 presents our stream-
ing collision detection algorithm. Section 6 provides our
streaming update scheme and section 7 highlights our algo-
rithm’s performance on different benchmarks and analyzes
its efficiency compared to other algorithms. In section 8,
we conclude the paper and discuss a few limitations of the
algorithm and suggest possible future work.

2 Previous Work

In this section, we give a brief overview of related work
in collision detection for deformable objects. A more thor-
ough, recent survey on collision detection for deformable
models is available in [9].

2.1 CPU-based Algorithms

At a high level, collision detection (CD) algorithms can
be classified into two categories: broad phase object-level
CD and narrow phase primitive-level CD. For the broad
phase CD, algorithms based on sweep-and-prune have
been proposed in I-COLLIDE [16], V-COLLIDE [17] and
SWIFT/SWIFT++ [18]. However, these techniques are
designed mainly for rigid models. It is not clear whether
they can handle large deformable models at interactive up-
date rates.

For the narrow phase of CD algorithms, a variety of
techniques have been presented such as the use of BVHs,
geometry reasoning, algebraic formulations, space parti-
tions, parse methods and optimization techniques [1], [19].
In particular, BVHs have been proven efficient and suc-
cessful in collision detection. Examples of typical bound-
ing volumes used in the literature are AABBs [2], [20],
[21], spheres [22], [23], OBBs [24], DOPs [25]. By intro-
ducing AABB trees, the accurate algorithm suggested in
[2] for deformable models has special advantages for slight
deformations, because refitting AABB trees is much faster
than rebuilding them. Recently, by combining BVHs with
a cache-oblivious layout, the query time of collision detec-
tion for rigid bodies can be reduced significantly [26].

2.2 GPU-based Algorithms

CD algorithms based on GPUs can be classified into two
different categories: image space- and object space-based
approaches. The former approach exploits the powerful
rasterization capability available in modern GPUs to per-
form intersection tests between object primitives in image
space. The effectiveness of the approach is often limited
by the image space resolution. The latter approach utilizes
the high floating point bandwidth and programmability of
GPUs and all the computations are performed in object
space and thus are limited by the floating point precision
of GPUs.

2.2.1 Image Space-based Techniques

The pioneering work of image-based collision detection
has been introduced by [27] for convex objects. In this
method, two depth layers of convex objects are rendered
into two depth buffers and an interval between the smaller

depth value and the larger depth value at each pixel is used
for interference checking [9]. The work by [28] is able to
detect collision for arbitrary-shaped objects, but the max-
imum depth complexity is limited and object primitives
must be pre-sorted.

For cloth simulation, the first image-based collision de-
tection algorithm has been presented in [29]. The al-
gorithm generates an approximate representation of an
avatar by rendering it from front to back and reports pen-
etrating cloth particles. [8] uses a voxel-based AABB hi-
erarchical method for highly compressed models.

The algorithm for virtual surgery operations [30] has
been introduced to detect intersections between a surgi-
cal tool and deformable tissues by rendering the interior
of the tool based on the selection and feedback mechanism
available in OpenGL. However, selection and feedback can
cause stalls in the graphics pipeline because it relies on
the use of expensive picking matrices, thus resulting in a
worse performance. The algorithms based on distance field
computations [31] can report various proximity informa-
tion such as interference detection, separation distance and
penetration depth. In [32], they have presented a method
to detect an edge/surface intersection in multi-object en-
vironments.

Layered Depth Images (LDIs) is used in [33] to approxi-
mately represent objects’ volume and perform CD for mod-
els with closed surfaces. A method using GPUs-assisted
voxelization is introduced in [34]. The approaches utiliz-
ing hardware-supported visibility queries [4], [6] have been
proposed to significantly improve the efficiency of colli-
sion culling. However, the accuracy is governed by the
image-space resolution and viewing directions. The issue
of accuracy has been resolved by their improved algorithm,
R-CULLIDE [5], but its performance is still governed by
the resolution and viewing directions. A more recent al-
gorithm [35] precomputes a chromatic decomposition of a
model into non-adjacent primitives using an extended-dual
graph. However, it requires a fixed connectivity for a model
and can not be applicable to models with an arbitrary con-
nectivity.

2.2.2 Object Space-based Techniques

Utilizing the high floating point bandwidth and pro-
grammability of modern GPUs, a hierarchical collision de-
tection method for rigid bodies using balanced AABB trees
has been devised in [36]. The algorithm maps AABB trees
onto GPUs and performs a breadth-first search on the
trees. During the traversal of hierarchy, occlusion query
is used to count the number of overlapping AABB pairs
and recursive AABB overlapping tests in object space is
implemented using GPUs. However, traversing hierarchi-
cal structure on GPUs turns out to be a huge overhead
for GPUs and this algorithm does not work at interactive
rates. Moreover, the algorithm is designed only for rigid
models, not for deformable models. A similar work using
filtering operation has been suggested by [37]. [38] has pro-
posed a GPU-based method to perform self-intersections
between deformable objects. This method also fully uti-

4 IEEE TVCG

I. Stream Setup

1. AABB tree building
2. AABB texture preparation

III. Stream Update

1. Texture Download
2. Stream update

II. Stream Calculation

1. Global AABB overlap test
2. Streaming AABB overlap test
3. Stream reduction
4. Primitive-level intersection test

Deformation Simulation

Fig. 2. The Streaming Collision Detection Pipeline. Stage I performs AABB stream setups. Stage II executes massively-parallel overlap test between
AABB streams. Stage III updates the AABB streams as the underlying model deforms. The steps associated with streaming computations are
italicized.

lizes the floating point bandwidth and programmability of
modern GPUs but the input models are limited to around
1K triangles.

3 Algorithm Overview

The pipeline of our algorithm involves the following three
steps to perform streaming collision detection between two
deformable objects. The first step is performed as prepro-
cess whereas the last two steps at run-time.

1. Stream Setup: (also see Section 4)
(a) As preprocess, the 1D stream, SX , of AABBs is

pre-built by building an AABB tree of a given model
X in a top down manner such that each leaf node
in the tree respectively corresponds to a unique el-
ement, �X

i , in SX (i.e., SX = ∪�X
i). �X

i may
contain more than one triangle but each triangle
belongs to a unique �X

i in SX .
(b) On GPUs, each �X

i requires two texels to repre-
sent the bound (min/max) of an AABB and, as a
result, SX is stored at two floating point 1D tex-
tures {T X

min, T X
max}.

2. Stream Calculation: (also see Section 5)
(a) Global AABB Overlap Test: We check for an

intersection between the global AABB pairs of mod-
els. We further continue the following steps only
if there occurs an intersection between the global
bounding boxes.

(b) Streaming AABB Test: All possible pairwise
combinations between �X

i and �Y
j from models

X, Y are examined for their possible overlap. This
process is enabled by rendering a two dimensional
rectangle onto an off-screen buffer while invoking a
fragment shader to actually perform an AABB over-
lap test. More specifically, the rectangle is textured
periodically with two 1D textures {T X

min, T X
max} in

vertical direction and two 1D textures {T Y
min, T Y

max}
in horizontal direction. The Boolean results of
the above computation are stored at the off-screen
buffer.

(c) Stream Reduction: Our algorithm encodes the
Boolean results into a packed representation to
speed up the reading performance from GPUs back
to CPUs. Based on a multi-pass rendering tech-
nique on off-screen buffers, we employ a hierarchi-

cal readback strategy that is a variant of [38]. The
hierarchical readback structure is constructed in a
bottom-up manner such that a single pixel in a
higher level off-screen buffer encodes the Boolean re-
sults of a group of neighboring pixels in a lower level
off-screen buffer. When we decode the Boolean re-
sults, we traverse the hierarchy in a top-down man-
ner.

(d) Primitive-level Intersection Test: Exact
primitive-level intersection tests are performed on
CPUs only for overlapping �X

i ,�Y
j pairs. We use a

standard triangle/triangle intersection test such as
[39]. This test does not rely on streaming compu-
tations.

3. Stream Update: (also see Section 6)
As the underlying models X, Y deform, their associ-
ated AABB streams SX ,SY should be updated. In
our case, each of SX ,SY is stored at two 1D min/max
textures (e.g., T X

min, T X
max for SX). Each texel in

T X
min (or T X

max) represents the lower bound (or up-
per bound) of associated geometry. We update T X

min

(or T X
max) by rendering a single 1D line and invoking

a simple fragment program that performs pixel-wise
min and max operations.

4 Stream Setup

An input stream SX to our CD algorithm consists of an
ordered set of AABBs �X

i ’s that bound a given deformable
model X. In this section, we explain how we initially create
SX and later describe in Section 6 how we update SX as
X deforms.

4.1 AABB Stream Construction

We start building an AABB tree using the method sug-
gested in [2]. An AABB tree is built by recursively sub-
dividing the given model in a top down manner. Each
leaf AABB node in the tree contains no more than a user-
provided, number of triangles and each triangle belongs
to only one leaf AABB node. Fig. 3-(a) illustrates the
structure of a typical AABB tree for a model X. Parts
of actual model geometry (e.g., triangle list) are kept in
each leaf node. Then, each leaf node produces one AABB,
�X

i , and we collect these �X
i ’s to form an AABB stream

SX . Note that ∪�X
i bounds X, but �X

i is not necessarily

STREAMING COLLISION DETECTION 5

disjoint to each other; i.e., �X
i ∩ �X

j may not be empty.
Besides, we also maintain a vertex list for all the vertices
contained in �X

i . As we will see in Sections 4.2.2 and 6,
these vertex lists are used to accelerate updating AABB
textures on GPUs.

Virtual Leaf Internal nodesLeaf
(a) (b)

Pull Down

Fig. 3. Pulling Down Operation. (a) An original AABB tree before
adjustment; (b) A complete binary AABB tree after adjustment by
adding virtual leaves using pulling down operations.

In order to adequately map SX to modern GPUs’ ar-
chitecture, however, we adjust each AABB tree to form
a complete binary tree by generating extraneous, virtual
nodes for a leaf level AABB node that does not exist in
the original tree. Although latest GPUs support textures
in non-power-of-two, power-of-two texture is still required
for the stream reduction technique, described in Section
5.3. We illustrate the adjustment scheme in Fig. 3. To
generate virtual leaves, we pull down a leaf node that is
not located at a bottom level and create its virtual chil-
dren. The values of the virtual children nodes are copied
from their parent. We simply call these virtual children
nodes, virtual nodes.

After the adjustment, at each level in the hierarchy, a
complete binary tree has 2d nodes including virtual ones,
where d is the depth of the given level. The leaf level
node of such a complete binary AABB tree corresponds to
�X

i and their union forms an AABB stream SX . SX is
represented as textures on GPUs.

4.2 Mapping AABB Streams to GPUs

The target streaming architecture on which we wish to
implement our CD algorithms is the most successful and
popular streaming architecture of all time, GPUs. Com-
pared to CPUs, the floating point performance of GPUs
has increased dramatically over the last four years. It has
been reported that GPUs’ performance doubles every six
month. Moreover, GPUs has a full programmability that
supports vectorized floating point operations at a quasi
full IEEE single precision. The raw speed, increased preci-
sion, and rapidly expanding programmability make GPUs
attractive platform for general purpose computation. On
GPUs, stream data are subject to be bound to textures
[40]. Now we explain how to prepare such textures on
GPUs to represent AABB streams.

4.2.1 1D AABB Textures

Modern GPUs can support four color channels RGBA
for textures where each color channel can be a floating
point number. As a result, in order to store the bound

(min/max) of each AABB element �X
i contained in a

AABB stream SX at textures, we require two 1D textures
T X

min, T X
max; let us call these textures T X

min, T X
max AABB

textures. More precisely, for each �X
i , its lower bound

(xmin, ymin, zmin) is stored at one texel in T X
min and its

upper bound (xmax, ymax, zmax) at one texel in T X
max. Fig.

4-(a) illustrates a brief description of this procedure.
Meanwhile, for each AABB stream SX , we also prepare

its corresponding 1D stencil array whose dimension is the
same as the associated AABB texture, T X

min or T X
max. Each

element in the stencil array indicates whether correspond-
ing AABB node (i.e., �X

i) is real or virtual: following the
common OpenGL convention, zero denotes a virtual node
such that the pairs with zeroed �X

i will not be further
considered being update in frame buffer after the AABB
overlap test. However, notice that for a pair of virtual
AABB nodes (say �X

i ,�X
i+1) that share a common real

AABB parent node, at least one of them should be con-
sidered for an overlapping test, but not necessarily both
since they contain the same AABB value. Therefore, we
mark the first virtual AABB node as one while keeping the
second one as zero. For example, in Fig. 4-(a), the third
and fourth nodes are virtual nodes sharing the same, real
parent node in Fig. 3-(a). In this case, the third node will
be marked as one while the fourth will be as zero. The
created 1D stencil array fills up the stencil buffer that will
be used to prevent the frame buffer from unnecessary up-
date after the fragment processing in GPUs which actually
performs an AABB overlapping test (see Section 5.2).

Stencil 1 1 1 0 1 0 1 1

……

(a) (b)

Fig. 4. Preparation of AABB Textures. (a) 1D AABB textures storing
the upper and lower bounds of AABBs and a stencil array; (b) 1D
vertex textures for unique vertices contained in AABB nodes.

4.2.2 Vertex Textures

As will be explained in Section 6 in detail, as a model
X deforms, its geometry as well as its AABB stream SX

should be updated. The geometry of X, in our case, is rep-
resented using a list of triangles. These triangles are par-
titioned into a separate group and each group is bounded
by different �X

i ’s. Therefore, �X
i can contain more than a

single triangle. To update �X
i under deformation, we need

to store the triangles at separate textures, called vertex
textures1.

Let us denote nmax as the maximum number of trian-
gles that any �X

i can contain; i.e., nmax = max(|�X
i |),∀i.

Then, we prepare nmax 1D vertex textures whose size is
the same as that of an AABB texture. For example, as
illustrated in Fig. 4-(b), the ith vertex contained in the

1. The vertex texture in our paper is a different notion from
nVIDIA’s vertex texture

6 IEEE TVCG

jth AABB node is stored at the jth texel of the ith vertex
texture; however, here, we use only RGB channels of the
jth texel. The alpha channel (A) is reserved for represent-
ing an empty texel. In other words, if the size of �X

i , say
ni = |�X

i |, is smaller than nmax, we set the alpha channels
of texels between ni + 1 and nmax to zero and set the rest
as one.

In practice, working with 1D textures on GPUs turns
out to be less efficient than 2D textures. The main reasons
are: (a) GPUs are equipped with 2D frame buffers, so 2D
textures tend to be updated more rapidly than 1D textures
[40] and (b) the maximum number of possible multiple
1D textures is limited by underlying hardware. Thus, we
pack nmax 1D vertex textures into a 2D texture whose
dimension is 2dmax ×nmax where dmax is the height of the
complete binary AABB tree.

5 Streaming Collision Detection

At run-time, our streaming CD algorithm reports all in-
tersecting triangles between two deforming models. This
run-time process can be subdivided into three stages:
global AABB overlap test, streaming AABB overlap test,
and fast readback of colliding results.

5.1 Global AABB Overlap Test

Let us denote the global AABBs that bound the entire
models X and Y as �X

G ,�Y
G, respectively. As trivial re-

jection, if �X
G ∩ �Y

G = ∅, we immediately terminate the
algorithm and report no collision between X and Y ; other-
wise, we continue the next steps described in Section 5.2.
This test does not require a streaming computation and
thus can be simply implemented on CPUs.

5.2 Streaming AABB Overlap Tests

The process of checking for overlaps between two AABB
streams SX ,SY proceeds in two steps:

1. Stream Pairing: we represent all possible pairwise
combinations between �X

i ,�Y
j in SX ,SY by textur-

ing a squared rectangle with T X
min, T X

max in vertical
direction and with T Y

min, T Y
max in horizontal direction.

2. Elementary AABB Overlap Test: rendering the tex-
tured rectangle invokes a fragment program on GPUs
for each pixel that performs a simple interval overlap-
ping test between �X

i ,�Y
j .

More precisely, for the step (1), we render a 2dX
max ×

2dY
max rectangle, where dX

max and dY
max are, respectively, the

heights of the AABB tree X and Y that were precomputed
as preprocess. We texture-map the rectangle with four 1D
textures T X

min, T X
max, T Y

min, T Y
max, as illustrated in Fig. 5.

T X
min, T X

max from X are used to periodically texture the
rectangle in vertical direction and T Y

min, T Y
max from Y in

horizontal direction.
For the step (2), rendering the above textured rectangle

invokes a same fragment program on every pixel in a SIMD
fashion on GPUs. The fragment program performs an el-
ementary overlap test for the corresponding pixel, which
represents a pair of AABBs, �X

i ,�Y
j . The overlap test is a

simple interval overlap test along three principal axes of an
AABB. However, as explained in Section 4.2.1, we prevent
some fragments from being updated in the frame buffer
since their associated AABB pairs are virtual nodes. We
use two 1D stencil arrays from model X and Y to set up
the stencil buffer to disable unnecessary update of frame
buffer after the fragment processing for those pairs. For ex-
ample, as illustrated in Fig. 5, the white blocks marked as
’-’ represent prevented AABB pairs (PAPs) by the stencil
buffer.

The streaming
AABBs of the
model X

- -

- -

- - - - - - - -

- -

- - - - - - - -

- -

- -

- -

The streaming AABBs of the model Y

1 1 1 0 1 0 1 1

1

1

0

1

0

1

1

1

stencil (X)
↓

stencil (Y) →

-

CAP

NCAP

PAP

Fig. 5. AABB pair overlap tests on GPUs. The red blocks represent
colliding AABB pairs (CAPs) and the blue blocks represent non-
colliding AABB pairs (NCAPs). The white blocks marked as ’-’
represent prevented AABB pairs (PAPs) by the stencil buffer that is
defined by the stencil array of the model X (the right column) and
that of the model Y (the bottom row). The left AABB textures
correspond to an AABB stream SX of the model X and the top
AABB textures to SY of the model Y .

void streamingAABBTest (float uvA: TEXCOORD0,
float uvB: TEXCOORD1,
out float4 color: COLOR,
uniform sampler1D minTextureA,
uniform sampler1D maxTextureA,
uniform sampler1D minTextureB,
uniform sampler1D maxTextureB)

{
float3 aabbMinA = (float3) tex1D(minTextureA, uvA).xyz;
float3 aabbMaxA = (float3) tex1D(maxTextureA, uvA).xyz;
float3 aabbMinB = (float3) tex1D(minTextureB, uvB).xyz;
float3 aabbMaxB = (float3) tex1D(maxTextureB, uvB).xyz;

if(aabbMinA.x > aabbMaxB.x || aabbMaxA.x < aabbMinB.x ||
aabbMinA.y > aabbMaxB.y || aabbMaxA.y < aabbMinB.y ||
aabbMinA.z > aabbMaxB.z || aabbMaxA.z < aabbMinB.z)
discard; //no overlap

color= float4(1.0, 0.0, 0.0, 0.0);
}

TABLE I

Elementary AABB Overlap Test in Cg
The code implements a simple interval overlap test between AABB tex-
tures addressed by uvA, uvB, and returns its Boolean result as color.

The rendering result of the fragment program contains a
Boolean result of collision between a pair of AABBs: col-
liding AABB pairs (CAPs) and non-colliding AABB pairs
(NCAPs). For example, in Fig. 5, the red blocks repre-
sent CAPs and the blue ones represent NCAPs. Note that
PAPs are always NCAPs. Table I shows a simple, fragment

STREAMING COLLISION DETECTION 7

(a) Two intersecting models (b) Reduced hierarchical encoding (c) Hierarchical encoding

Fig. 6. Snapshots of streaming AABB overlap tests on GPUs and the hierarchical readbacks. (a) Snapshot of two intersecting models with CAPs
in wire-framed boxes. (b) Reduced hierarchical readback. Left: collision result of AABB pairs stored at an off-screen buffer P0; the red pixels
indicate the CAPs. Right: encoded off-screen buffer by a 8 × 8 kernel P ′

1. (c) Hierarchical readback. Left most: the same AABB collision
results P0. Right three images: hierarchically encoded off-screen buffers P1, P2, P3.

program in Cg performing an elementary AABB overlap
test for each pixel.

In Fig. 6, we show snapshots of our CD algorithm in
action. In Fig. 6-(a), two deformable models X and Y
intersect with each other. The left image in Fig. 6-(b) is a
snapshot of a textured rectangle, where the red pixels are
CAPs and the black ones are NCAPs.

5.3 Stream Reduction

5.3.1 Hierarchical Readback

One of the limitations to map the concept of streaming
computations to GPUs is the limited bandwidth of data
transmission between GPUs and CPUs, especially reading
the stream data from GPUs back to CPUs, also known as
downstream bandwidth. Therefore, when mapping stream-
ing computations to GPUs, we need to carefully design the
algorithm in such a way that the number of readbacks from
GPUs should be minimized. In general, the readback time
increases linearly in proportion to the size of a readback.
For example, on nVIDIA GeForce 6800 with PCI express
bus architecture, it takes 96.97 ms to read the entire con-
tents of a 2048 × 2048 floating point color buffer whereas
it takes only 6.58 ms to read a 512× 512 color buffer [41].

To speed up the readback performance, a straightfor-
ward idea will be to split a readback buffer into smaller
ones and read only relevant parts. A more intelligent way
is to read the data in a hierarchical fashion, assuming that
the relevant data is grouped together. In practice, collision
results show a spatial coherence; i.e., colliding triangles
tend to be in close proximity with one another. Based on
this observation, in [38], a hierarchical en/decoding strat-
egy has been suggested to speed up the readback perfor-
mance. We use a variant of this approach.

In our readback scheme, we consecutively reduce the size
of output stream in a hierarchical fashion. Initially, the
2D output stream whose element represents a Boolean col-
lision result is stored at a textured rectangular buffer P0,
i.e., off-screen color buffer, as shown in Fig. 5. We ren-
der this buffer Pi to another 4 × 4 times smaller buffer
Pi+1 until the size of the rendered buffer Pi+1 reaches a
certain value; in practice, we use three layers of off-screen

buffers to encode the original off-screen color buffer (i.e.,
imax = 3). We encode a set of 4 × 4 adjacent pixels in a
higher level buffer Pi as a single pixel in a lower level buffer
Pi+1.

When we decode the encoded streaming CD result, we
move backward from Pi+1 to Pi, starting from reading the
entire contents of Pimax

. Since each pixel in Pi+1 indicates
the contents of 4 × 4 pixels in Pi, we read only relevant
portion of pixels in the hierarchy. In practice, this ap-
proach works quite well when the ratio ,η , of CAPs to the
number of all AABB pairs is relatively small (say, 0.095%
in our implementation). However, as the ratio increases,
we might as well reduce the level of hierarchy. In fact, we
maintain only a single level in the hierarchy. More pre-
cisely, if η is smaller than a certain threshold, we perform
the hierarchical encoding strategy with imax > 1. Other-
wise, we encode P0 into P ′

1 whose size is 8×8 times smaller
than P0, but with imax = 1. As a result, a single pixel in
P ′

1 encodes 8× 8 adjacent pixels in P0.
Our experiment has shown that a variable hierarchical

method can provide a better readback timing than the
fixed hierarchy. Fig. 6 shows snapshots of the contents
in the hierarchical encoding at run-time. The left images
in 6-(b) and 6-(c) are both P0. The right image in 6-(b) is
P ′

1, and the right three images in 6-(c), from left to right,
denotes P1, P2, P3, respectively (we also refer the readers
to see the accompanying video).

5.3.2 Analysis

Now, we give a brief analysis of the variable hierarchical
en/decoding strategy. Fig. 7 shows the performance of
the variable hierarchical strategy. The x axis denotes the
ratio η and the y axis is the encoding/decoding timing for
different η’s.

The hierarchical readback consists of two steps: encod-
ing P0 into three layers P1, P2, P3 followed by decoding all
the layers backwards. In Fig. 7, the readback time is a
linear function of η. Moreover, encoding timing is almost
constant if the size of P0 is fixed whereas the decoding
time is also a linear function of η. However, the encod-
ing or decoding time of the reduced hierarchical readback

8 IEEE TVCG

scheme takes a constant time since there is only one level
of hierarchy.

Fig. 7. Performance of variable hierarchical readback. Encoding(H) and
Decoding(H) are the timings of encoding and decoding using the hi-
erarchical readback scheme with three levels. Total(H) is their sum.
Encoding(RH), Reading(RH) and Decoding(RH) are the timings of
encoding, reading P ′

1, and decoding using the reduced hierarchical
readback scheme with a single level. Total(RH) is their sum.

In order to improve the readback performance, when η
reaches a threshold indicated by the dotted line (0.095%) in
Fig. 7, we switch from a hierarchical scheme to a reduced
one. As a result, in our implementation, we can always
read 2048 × 2048 data in less than 7.2 ms. Note that
an optimal threshold value η should be recalculated for
different sizes of P0.

5.4 Primitive-level Intersection Test

Once we find CAPs (say �X
i ,�Y

j), we perform a trian-
gle/triangle intersection checking for all pairs of triangles
contained in �X

i ,�Y
j . We do not use streaming compu-

tations for this primitive-level checking unlike [36], [38];
instead, we use a classical, CPU-based method suggested
by Möller [39]. The main reason why we use a serial, CPU-
based method is that a set of triangles contained in CAPs
can be arbitrary such that the setup time to map the po-
tentially colliding triangles to textures can be quite expen-
sive [38] and this process can not be executed as prepro-
cess. Moreover, since the number of triangles contained in
CAPs is relatively small, the overhead of streaming compu-
tations for a primitive-level intersection checking can not
be compensated for.

5.5 Handling Large Models

The maximum texture size specified by GPUs limits the
maximum resolution of an AABB texture [14]. On modern
GPUs like nVIDIA GeForce 7800, for example, the maxi-
mum texture size is 4096×4096. That means that the max-
imum height of the complete binary AABB tree in Section
4.1 is limited to 12. To overcome this limitation, we pro-
pose a tile-based method to render a large rectangle with as
many as max{1, dA

max − 12}×max{1, dB
max − 12} texturing

tiles. Each tile is rendered and read back independently.

However, since the typical size of GPU memory is limited
to 256MB or 512MB, it is difficult to allocate these many
textures at one time. Thus, we create only a single render-
ing target (i.e., off-screen buffer) that can be used by all the
tiles. In theory, the tile-based rendering should perform
linearly with a respect to the number of tiles. However,
due to the GPU memory/cache coherence and parallelism
efficiency [42], the performance of tile-based rendering in
our test increases super-linearly. We anticipate that this
issue can be resolved in the future release of new GPU
architectures and drivers.

6 Stream Update

void streamUpdate (float2 uv: TEXCOORD0,
out float4 color0: COLOR0,
out float4 color1: COLOR1,
uniform samplerRECT vertexT,
uniform float nmax)

{
float3 vmin = float3(1.0, 1.0, 1.0);
float3 vmax = float3(0.0, 0.0, 0.0);
float3 v;

for (int row=0; row<nmax; row++)
{

v = texRECT(vertexT, uv + float2(0.0, row)).xyz;
vmin = min(vmin, v);
vmax = max(vmax, v);

}
color0 = float4(vmin, 0.0);
color1 = float4(vmax, 0.0);

}

TABLE II

Stream Update using A Min/Max Operation in CG
The code implements a simple min/max operation for a 2D vertex texture,
and returns its result as colors.

As a model deforms, its associated AABB stream should
reflect the deformation. An earlier BVH-based algorithm
such as [2] refits an entire AABB tree after each deforma-
tion step. Our approach does not maintain such hierarchy
but has only an AABB stream (i.e., SX) corresponding to
the leaf nodes in AABB hierarchy. In our case, this stream
is mapped to AABB textures and the underlying trian-
gle geometry is mapped to vertex textures. For a given
model X, our goal is to store the element-wise minimums
of vertex textures (T X

i , 1 ≤ i ≤ nmax) at T X
min and the

element-wise maximums at T X
max; i.e.,

T X
min[k] = min1≤i≤nmax

T X
i [k] (1)

T X
max[k] = max1≤i≤nmax T X

i [k]
and 1 ≤ k ≤ 2dmax

In order to perform element-wise min/max, we pack
nmax of individual 1D vertex texture, T X

i , into a sep-
arate column i in one 2D vertex texture whose size is
nmax × 2dmax . Then, we render a single line and texture
map it with the 2D vertex texture, while redirecting its
output to two different render targets (for min and max, re-
spectively) using multiple render target technique (MRT)
available in OpenGL 2.0 and DirectX 9.0. A fragment
program is invoked to actually perform column-wise min
and max operations for the 2D vertex texture, as shown
in Tab. II. Utilizing MRT, we can calculate min and max
concurrently. After rendering is completed, T X

min and T X
max

STREAMING COLLISION DETECTION 9

are respectively stored in the first and second render tar-
gets. The first render target is named as COLOR0 and the
second render target as COLOR1 in the code.

7 Experimental Results and Analysis

7.1 Implementation

We implemented the entire pipeline of our algorithm on
a PC equipped with a Intel Dual Core 3.4GHz Processor,
2.75GB of main memory and nVIDIA GeForce 7800 GTX
GPUs with 512M video memory and PCI-Express inter-
faces. As a choice for programming languages, we used Mi-
crosoft Visual C++, nVIDIA’s Cg shading language with
vp40 and fp40 profiles, and OpenGL 2.0 graphics library.
Because no GPUs currently provide double-precision float-
ing point numbers or double-precision arithmetic, for the
purpose of fair comparison, we have used 32-bit floating
point for both CPU and GPU computations throughout
the entire paper. However, even though the storage for-
mat of floating point in GPU is the same as the IEEE 754
standard, the arithmetic operation might produce slightly
different results.

7.2 Collision Benchmarking Scenario

In order to measure the performance of our streaming
CD algorithm, we employ six different deformable bodies
whose triangle count ranges from 15K to 50K triangles
(as shown in Table III). Such complex models can model
deformable simulation in most of applications. Also, we
apply two different kinds of deformations to the deformable
bodies to simulate their collisions:

• Wavy Deformation: Random bumps with wave
functions are generated on the surfaces of the de-
formable bodies and the bumps are propagated to the
entire surfaces. In our scenarios, sine and cosine func-
tions are used to simulate wavy bumps. Local poten-
tial energy introduced will be damped out while the
energy is being propagated to neighboring parts of the
surface.

• Pulsating Deformation: Vertex positions periodi-
cally move up and down in the direction of a surface
normal (bulging effect). Any random pulsating func-
tion can be chosen at user’s discretion.

7.3 Performance Analysis

The statistics and some snapshots of our experiments
are shown in Table III and Fig. 8-Fig. 9.

Table III shows the performance statistics of our algo-
rithm (all timings were measured in ms). The first four
columns indicate the triangle count of the tested models,
the number of CAPs, the number of the potential collid-
ing triangle pairs (PCTPs) and the number of actual col-
liding triangle pairs (CTPs), respectively. The following
five columns are the timings of streaming AABB overlap
tests, readback (encoding/decoding) by streaming reduc-
tion, primitive-level (i.e., triangle-level) intersection tests,
texture download and stream update (i.e., AABB textures

update). The last column indicates the total time includ-
ing all the steps used in our algorithm.

In Fig. 8, we used two deforming torii to simulate three
different configurations of deformations commonly occur-
ring in many applications: interlocking bodies, touching
bodies and merging bodies. Each torus consists of 15K
triangles. The timing in our experimental results shows
that the CD checking can be executed at the rates of 60-
80 frames per second (FPS) for the interlocking torii (Fig.
8-(a)), 90-100 FPS for the touching torii (Fig. 8-(b)) and
around 30 FPS for the merging torii (Fig. 8-(c)). For
these benchmarks, the wave deformation was adopted to
simulate the deformation.

We also have tested our algorithm with other models.
The snapshots of these benchmarks are highlighted in Fig.
9. For these benchmarks, the pulsating deformation has
been adopted. We refer to the accompanying video for a
better visualization of our experiments. The experimental
results have shown that our algorithm can be applied to
highly real-time applications that need to return all collid-
ing triangle pairs, accurately.

We analyze the time complexity of each step in our al-
gorithm. The streaming AABB overlap test takes a con-
stant time when the scenario is given. The hierarchical
readback takes a linear time in terms of the number of
CAPs when it is less than the precalculated threshold, and
takes a constant time when it is greater than the threshold,
as shown in Fig. 7. The primitive-level intersection test
takes a quadratic time in terms of the number of triangles
in AABBs. However, because each AABB �X

i contains
ni(ni < nmax) primitives where nmax is a fixed small con-
stant number, the primitive-level intersection test is sen-
sitive to the number of PCTPs in practice. The stream
update takes always a constant time. As a result, the en-
tire algorithm is sensitive to the number of PCTPs or the
number of CAPs in practice.

7.4 Comparisons with Other Approaches

Collision detection is well-studied in the literature and
a number of algorithms and public domain systems are
available. However, none of the earlier algorithms provide
the same capabilities or features as our streaming CD al-
gorithm does. We compare some of the features of our
approach with the earlier algorithms.

7.4.1 CPU-Based Algorithms

BVHs have been widely used for CD algorithms such as
I-COLLIDE, RAPID, V-COLLIDE, SWIFT, SOLID 1.0,
QuickCD, etc. However, these algorithms are designed for
rigid bodies. In SOLID [2], AABB trees are used to handle
collisions for deformable bodies. However, its timing statis-
tics have showed that updating the entire AABB tree can
be a bottleneck of the algorithm, because it uses a lazy re-
fitting method to recalculate the new bounding box of each
leaf AABB node and recalculate internal AABB nodes in
a bottom-up manner. Our approach also uses AABB as
a bounding volume, but does not keep any hierarchy at
run-time unlike [2] such that we do not need to update

10 IEEE TVCG

nTris nCAPs nPCTPs nCTPs Overlap Test Readback Tri Test Texture Download Stream Update Total
1 15000×2 475 129884 429 0.10 0.23/1.38 15.19 2.43 0.70 20.03
2 15000×2 167 30108 214 0.11 0.22/0.59 3.77 2.46 0.71 7.86
3 15000×2 781 204848 748 0.12 0.21/1.94 23.94 2.45 0.69 29.35
4 15000×2 743 41921 473 0.11 0.24/2.52 5.70 3.62 1.00 13.19
5 20000×2 1372 166600 865 0.10 0.24/3.24 22.27 5.45 1.18 32.49
6 50000×2 306 233104 416 0.11 0.24/0.75 26.28 10.34 1.48 39.20

TABLE III

Performance Statistics of Our Algorithm.

The benchmark models from 1 to 6 are interlocking torii, touching torii, merging torii, bump bunnies, happy buddhas and intimate animals.
The first four columns: the triangle count of models, the number of CAPs, the number of potentially colliding triangle pairs (PCTPs) in
CAPs, and the number of actual colliding triangle pairs (CTPs). The next four columns of timings measured in msec: streaming AABB
overlap tests, readback by streaming reduction, primitive-level intersection tests and stream update. The last column: the total CD time.

(a) (b) (c)

Fig. 8. Benchmark Set I: Each torus consists of 15K triangles and
the wave deformation is adopted to simulate the deformation. (a)
Interlocking torii (60-80 FPS). (b) Touching torii (90-100 FPS). (c)
Merging torii (25-30 FPS).

(a) (b) (c)

Fig. 9. Benchmark Set II: The pulsating deformation is adopted to
simulate the deformation. (a) Bump Bunnies (15K triangles/each,
50-60 FPS). (b) Happy Buddhas (20K triangles/each, 25-40 FPS).
(c) Intimate Animals (50K triangles/each, 20-35 FPS).

20 40 60 80
0

5

10

15

20 40 60 80
0

5

10

15

20 40 60 80
0

5

10

15

Ti
m

e
(m

s)

(c)(a)

 CPU-based Computation
 Streaming Computation
 Texture Download

(b)
Fig. 10. Our Algorithm (StreamingCD) vs CPU-based AABB-tree Algorithm (SOLID). The graph compares the performance of SOLID [3] with

ours for benchmarking set I: (a) Interlocking torii. (b) Touching torii. (c) Merging torii.

0 20 40 60 80 100
0
5

10
15
20
25
30

0 20 40 60 80 100
0
5

10
15
20
25
30

0 20 40 60 80 100
0
5

10
15
20
25
30

(c)(b)(a)

Ti
m

e
(m

s)

 CPU-based Computation
 Streaming Computation
 Texture Download

Fig. 11. Our Algorithm (StreamingCD) vs SOLID for Benchmarking Set II: (a) Bump Bunnies. (b) Happy Buddhas. (c) Intimate Animals.

such hierarchy. As a result, our update operation is more
efficient and faster than [2] where AABB trees need to be
updated in a bottom-up and serial manner on CPUs. An-
other bottleneck of the AABB tree scheme is in the process
of traversal if two objects have many overlapping AABB
nodes, for example, in severely deforming objects.

We have implemented the lazy AABB-update scheme
employed in SOLID [2] and compare its AABB culling
and AABB-tree update performance with our algorithm
as shown in Fig.’s 10 and 11. In the figures, we did not
include triangle-level intersection tests as they are used in
both schemes. Moreover, in order to highlight the perfor-
mance of our streaming algorithm, we separated the tim-

ing of texture download from CPU to GPU. Excluding
the downloading time, our algorithm is 2∼10 times faster
than SOLID. Including everything together, our algorithm
is 1.4∼2 times than SOLID. Notice that for more complex
benchmarking models such as Intimate Animals, our algo-
rithm performs even better. Considering the performance
growth rates of GPU compared to CPU, we expect that
the performance gap of collision detection observed in this
paper will be even wider in the future.

Finally, as new processors like CELL processors [11], [12]
are being equipped with streaming computation capabili-
ties, our algorithm can be adapted to other streaming pro-
cessors in the future, not just for GPUs. Compared to our

STREAMING COLLISION DETECTION 11

algorithm, BD-tree [3] is an algorithm that is limited to
reduced deformable models and suitable for only small de-
formations, whereas ours can handle severe deformations.

7.4.2 CULLIDE

The CULLIDE [4], [5], [6] uses GPU-supported, image-
space visibility queries to perform visibility culling for po-
tentially colliding sets. Since these methods are image-
based methods, their effectiveness are subject to the ras-
terization resolution; however, to maintain a higher resolu-
tion in CULLIDE decreases the performance significantly
[5]. In addition, the collision culling efficiency is also sen-
sitive to the specified viewing directions. Finally, the orig-
inal and quick CULLIDE [4], [6] may miss many colliding
triangle pairs.

Pruning Tri Test # of PCTPs # of CTPs Missing
1 61.01 1.91 13915 101 63%
2 35.66 4.88 36270 117 44%
3 79.87 13.13 100254 330 74%
4 64.45 6.40 291890 327 32%
5 65.50 10.67 71760 377 26%
6 127.60 21.52 165166 91 68%

TABLE IV

Performance statistics of CULLIDE. (See text for the

explanation of the abbreviations)

Fig. 12. Performance Comparison: Our Streaming CD vs CULLIDE.
The graph compares the performance of CULLIDE with that of our
algorithm to compute all the intersecting triangles under a same de-
formation scenario. On average, we have observed more than three
times performance improvement of our algorithm over CULLIDE.

As an exact collision algorithm, however, our approach
report all geometric contacts between deformable objects
within a floating point precision. We have compared the
performance of our algorithm with that of CULLIDE [4]
on the benchmarks proposed in Table III. The CULLIDE
library was provided by the authors of [4] and further
optimized for better performance. Table IV shows the
performance statistics of CULLIDE on our benchmarking
models. In this table, ’Pruning’ denotes the time spent
on pruning (occlusion query) using the nVIDIA OpenGL
extension GL NV occlusion query; ’Tri Test’ denotes the
time spent on the exact pairwise triangle intersection test
for the left triangles after Pruning; ’# of PCTPs’ denotes

the potential colliding triangles; ’# of CTPs’ denotes the
colliding triangles and ’Missing’ denotes the percentage of
the missing collisions. We test the performance of CUL-
LIDE at an image space resolution of 512×512. During
the tests, we observed that many missing collisions (30%-
70%) arise in CULLIDE due to the image space resolu-
tion, even though we optimized visibility query by provid-
ing manually-optimized view directions. As mentioned in
CULLIDE [4], the pruning efficiency largely depends upon
the choice of view direction for orthographic projection. A
view direction randomly selected will cause worse pruning
performance in our scenarios. A higher image space res-
olution can reduce missing collisions, but then it require
more time on visibility culling and pairwise exact trian-
gle tests. Fig. 12 shows the performance results. In our
experimental setting, we have observed about three times
performance improvement over CULLIDE. As we increase
the image space resolution for CULLIDE, we expect even
higher performance gaps between ours and CULLIDE.

We expect better performance and higher accuracy from
the improved versions of CULLIDE such as R-CULLIDE
[5] or Quick-CULLIDE [6]. But since these methods rely on
AABB-tree culling to narrow down the potentially colliding
sets, a combination of our techniques with these methods
is expected to provide even better performance.

7.4.3 Other Related Algorithms

Based on chromatic decomposition, CDCD [35] performs
graph coloring on a polygonal mesh model that requires a
fixed connectivity. Whereas, our approach makes no as-
sumptions about input geometry and topology and works
on arbitrary polygonal models, i.e., polygon soups. In [36],
mapping AABB trees onto GPUs has been proposed by
progressively building tree structure on GPUs and issuing
HW-supported queries to check for the number of primi-
tives to be read into the frame buffer. But this algorithm
shows a poor performance because it relies on multi-pass
rendering and a brute force readback from GPU memory.
Moreover, this algorithm [36] is designed for only rigid bod-
ies, and it is not clear whether it can handle severely de-
formable bodies because updating the entire AABB trees
on GPUs can be a huge bottleneck.

8 Conclusion and Future Work

We have presented a fast, exact collision detection al-
gorithm for severely deformable models using streaming
AABBs. This approach has been implemented on pro-
grammable GPUs that perform massively-parallel stream-
ing computations very rapidly. Our approach is applica-
ble to arbitrary triangular models. The algorithm involves
streaming AABB overlap tests and stream update using
SIMD computations available on modern GPUs. In addi-
tion, to improve the performance and scalability of the al-
gorithm, we have presented a stream reduction technique
for efficient readback and a tile-based rendering. Com-
pared to the earlier algorithms, our approach provides
highly interactive update rates while being able to report
all the colliding triangles in the deformable models.

12 IEEE TVCG

Our algorithm has a few limitations. One of them is that
the algorithm requires pre-setup time to prepare AABB
streams and to map them onto textures in GPU’s memory.
Moreover, our algorithm may need more texture memory
than other GPU-based CD algorithms. Finally, our algo-
rithm can not report self-intersections occurring inside a
model.

For future work, we want to extend our algorithm to pro-
vide separation distance and penetration depth to better
support physically-based simulation. We would also like to
investigate a possibility of haptic rendering of deformable
models using our algorithm.

References
[1] M.C. Lin and D. Manocha, “Collision detection and proximity

queries,” in Handbook of Discrete and Computation Geometry,
2nd Ed., 2004, pp. 787–807.

[2] G. van den Bergen, “Efficient collision detection of complex
deformable models using AABB trees,” Graphics Tools, vol. 2,
no. 4, pp. 1–13, 1997.

[3] D.L. James and D.K. Pai, “BD-Tree: Output-sensitive collision
detection for reduced deformable models,” Trans. Graphics, vol.
23, no. 3, 2004.

[4] N.K. Govindaraju, S. Redon, M.C. Lin, and D. Manocha, “CUL-
LIDE: Interactive collision detection between complex models in
large environments using graphics hardware,” in Proc. Graphics
Hardware, 2003, pp. 25–32.

[5] N.K. Govindaraju, M.C. Lin, and D. Manocha, “Fast and reli-
able collision culling using graphics processors,” in Proc. ACM
Symp. VRST, 2004, pp. 2–9.

[6] N.K. Govindaraju, S. Redonn, M.C. Lin, and D. Manocha,
“Quick-CULLIDE: Efficient inter- and intra-object collision
culling using graphics hardware,” in Proc. IEEE Virtual Re-
ality, 2005, pp. 59–66,319.

[7] G. Baciu and W. Wong, “Image-based techniques in a hybrid
collision detector,” IEEE Trans. Visualization and Computer
Graphics, vol. 9, no. 2, pp. 254–271, 2003.

[8] G. Baciu and W. Wong, “Image-based collision detection for de-
formable cloth models,” IEEE Trans. Visualization and Com-
puter Graphics, vol. 10, no. 6, pp. 649–663, 2004.

[9] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zach-
mann, L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure,
N. Magnenat-Thalmann, W. Strasser, and P. Volino, “Colli-
sion detection for deformable objects,” in Proc. Eurographics,
2004, pp. 119–135.

[10] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A.E. Lefohn, and T.J. Purcell, “A survey of general-purpose
computation on graphics hardware,” in Proc. Eurographics,
2005, pp. 21–51.

[11] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee,
C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masub-
uchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang,
J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and
K. Yazawa, “The design and implementation of a first-
generation CELL processor,” in IEEE Int’l Conf. Solid-State
Circuits, 2005, pp. 184–185,592.

[12] B. Flachs, S. Asano, S.H. Dhong, P. Hofstee, G. Gervais, R. Kim,
T. Le, P. Liu, J. Leenstra, J. Liberty, B. Michael, H. Oh,
S.M. Mueller, O. Takahashi, A. Hatakeyama, Y. Watanabe, and
N. Yano, “The microarchitecture of the streaming processor for
a CELL processor,” in IEEE Int’l Conf. Solid-State Circuits,
2005, pp. 134–135.

[13] J. Owens, “Streaming architectures and technology trends,” in
GPU Gems 2, 2005, pp. 457–470.

[14] M. Pharr, GPU Gems 2: Programming techniques for
high-performance graphics and general-purpose computation,
Addison-Wesley, 2005.

[15] R. Fernando, GPU Gems: Programming techniques, tips, and
tricks for real-time graphics, Addison-Wesley, 2004.

[16] J.D. Cohen, M.C. Lin, D. Manocha, and M.K. Ponamgi, “I-
COLLIDE: An interactive and exact collision detection system
for large-scale environments,” in Symp. Interactive 3D Graph-
ics, 1995, pp. 189–196.

[17] T.C. Hudson, M.C. Lin, J. Cohen, S. Gottschalk, and
D. Manocha, “V-COLLIDE: Accelerated collision detection for
VRML,” in Proc. Symp. VRML, 1997, pp. 117–125.

[18] S.A. Ehmann and M.C. Lin, “Accurate and fast proximity
queries between polyhedra using surface decomposition,” Com-
puter Graphics Forum, vol. 20, no. 3, pp. 500–510, 2001.

[19] P. Jimenez, F. Thomas, and C. Torras, “3D collision detection:
A survey,” Computers and Graphics, vol. 25, no. 2, pp. 269–285,
2001.

[20] R. Bridson, R. Fredkiw, and J. Anderson, “Robust treatment
for collisions, contact and friction for cloth animation,” in Proc.
SIGGRAPH, 2002, pp. 594–603.

[21] D. Baraff, A. Witkin, and M. Kass, “Untangling cloth,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 862–870, 2003.

[22] I. J. Palmer and R. L. Grimsdale, “Collision detection for ani-
mation using sphere-trees,” Computer Graphics Forum, vol. 14,
no. 2, pp. 105–116, 1995.

[23] Philip M. Hubbard, “Collision detection for interactive graphics
applications,” IEEE Trans. Visualization and Computer Graph-
ics, vol. 1, no. 3, pp. 218–230, 1995.

[24] S. Gottschalk, M.C. Lin, and D. Manocha, “OBB-Tree: A hi-
erarchical structure for rapid interference detection,” in Proc.
SIGGRAPH, 1996, pp. 171–180.

[25] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and
K. Zikan, “Efficient collision detection using bounding volume
hierarchies of k-DOPs,” IEEE Trans. Visualization and Com-
puter Graphics, vol. 4, no. 1, pp. 21–36, 1998.

[26] S.E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha, “Cache-
oblivious mesh layouts,” Trans. Graphics, vol. 24, no. 3, pp.
886–893, 2005.

[27] M. Shinya and M. C. Forgue, “Interference detection through
rasterization,” Visualization and Computer Animation, vol. 2,
no. 4, pp. 132–134, 1991.

[28] K. Myszkowski, O. G. Okunev, and T. L. Kunii, “Fast colli-
sion detection between complex solids using rasterizing graphics
hardware,” Visual Computer, vol. 11, no. 9, pp. 497–512, 1995.

[29] T. Vassilev, B. Spanlang, and Y. Chrysanthou, “Fast cloth an-
imation on walking avatars,” Computer Graphics Forum, vol.
20, no. 3, pp. 260–267, 2001.

[30] J.C. Lombardo, M.P. Cani, and F. Neyret, “Real-time collision
detection for virtual surgery,” in Proc. Computer Animation,
1999, pp. 33–39.

[31] K. Hoff, A. Zaferakis, M.C. Lin, and D. Manocha, “Fast and sim-
ple 2D geometric proximity queries using graphics hardware,” in
Proc. ACM Symp. Interactive 3D Graphics, 2001, pp. 277–286.

[32] D. Knott and D. Pai, “CInDeR: Collision and interference de-
tection in real-time using graphics hardware,” in Proc. Graphics
Interface, 2003, pp. 73–80.

[33] B. Heidelberger, M. Tescher, and M. Gross, “Detection of colli-
sions and self-collisions using image-space techniques,” Journal
of WSCG, vol. 12, no. 3, pp. 145–152, 2004.

[34] W. Chen, H. Wan, H. Zhang, H. Bao, and Q. Peng, “Inter-
active collision detection for complex and deformable models
using programmable graphics hardware,” in Proc. ACM Symp.
VRST, 2004, pp. 10–15.

[35] N.K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf,
R. Gayle, M.C. Lin, and D. Manocha, “Interactive collision
detection between deformable models using chromatic decom-
position,” Trans. Graphics, vol. 24, no. 3, pp. 991–999, 2005.

[36] A. Gress and G. Zachmann, “Object-space interference detec-
tion on programmable graphics hardware,” in Proc. SIAM Conf.
Geometric Design and Computing, 2003, pp. 311–328.

[37] D. Horn, “Stream reduction operations for GPGPU applica-
tions,” in GPU Gems 2, 2005, pp. 573–589.

[38] Y.J. Choi, Y.J. Kim, and M.H. Kim, “Self-CD: Interactive self-
collision detection for deformable body simulation using GPUs,”
in Proc. Asian Simulation, 2004, pp. 187–196.

[39] T. Moller, “A fast triangle-triangle intersection test,” Graphics
Tools, vol. 2, no. 2, pp. 25–30, 1997.

[40] M. Harris, “Mapping computational concepts to GPUs,” in
GPU Gems 2, 2005, pp. 493–508.

[41] I. Buck, K. Fatahalian, and P. Hanrahan, “GPUBench: Evaluat-
ing GPU performance for numerical and scientifc applications,”
in http://graphics.stanford.edu/projects/gpubench/.

[42] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding
the efficiency of GPU algorithms for matrix-matrix multiplica-
tion,” in Proc. Graphics Hardware, 2004, pp. 133–137.

