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Abstract— TSP art is an art form for drawing an image
using piecewise-continuous line segments. We present TSP-Bot,
a robotic pen drawing system capable of creating complicated
TSP pen art on a planar surface using multiple colors. The
system begins by converting a colored raster image into a
set of points that represent the image’s tone, which can be
controlled by adjusting the point density. Next, the system finds
a piecewise-continuous linear path that visits each point exactly
once, which is equivalent to solving a Traveling Salesman
Problem (TSP). The path is simplified with fewer points using
bounded approximation and smoothed and optimized using
Bézier spline curves with bounded curvature. Our robotic
drawing system consisting of single or dual manipulators with
fingered grippers and a mobile platform performs the drawing
task by following the resulting complex and sophisticated path
composed of thousands of TSP sites. As a result, our system
can draw complicated and visually pleasing TSP pen art.

I. INTRODUCTION

With the tremendous growth of digital technologies, digital
art has become one of the largest art fields since the early
1960s. Early pioneers of digital art were not only artists but
also engineers, computer scientists, and mathematicians who
challenged traditional art standards with new technologies.
Typically, most of the work focuses on investigating the
production of artistic images in virtual space, which enables
a wide variety of expressive and aesthetic styles using
computer algorithms.

Traveling Salesman Problem Art, abbreviated as TSP art,
is one of the representative examples of creating artistic
work using computer algorithms. It was first invented by
mathematician Robert Bosh [1]. TSP art is an art piece
that represents the original digital image with piecewise-
continuous line segments. TSP art involves not only the
creative process of computer algorithms but also fits the
nature of a robotic task, whose fundamental mission is to
follow a path accurately and efficiently.

As hardware technology advances, efforts have been made
to bring these digitally generated artistic results into the
physical space using machines [2], [3]. As robots are capable
of delivering long and complex motions, we believe TSP art
is best suited for the robotic drawing system, recognizing
the original purpose of the robot. Our work focuses on a
robotic TSP pen art system that is supported by complex and
sophisticated motions. Our goal is not to supplant human
artists but rather to aid and demonstrate the potential of
interdisciplinary collaboration between robotics and art.
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Fig. 1. TSP-Bot system drawing TSP pen arts using a dual arm setup (top)
and a mobile manipulator setup (bottom).

Main Results In this paper, we present a multi-color robotic
pen drawing system, TSP-Bot, that transforms a digital raster
image into long, continuous robotic paths that replicate the
original image’s tone and color and draw the result on a
planar canvas surface (Fig. 1). The system takes any raster
image with color as input. In order to be reproduced by
pens with a limited number of colors, the color image is
channel-split into user-provided color spaces, such as the
CMYK color space, and saved as separate image files. We
use a stippling algorithm to displace points so that the
points’ density represents the image’s tone. The system finds
piecewise-continuous line segments that visit every point
by solving TSP. We then perform path optimization with
bounded curvature so the robot can follow smoothly. The
drawing is rendered on a target canvas plane using our
robotic hardware. We carry out drawing experiments using
single and dual high degree-of-freedom (DoF) manipulators,
the former with a mobile platform, to show that our system
can create artistic and complicated TSP pen art in a physical
space. We present diverse TSP drawing results.

In summary, our technical contributions include:

• A novel approach for processing color raster images
suitable for limited-color-palette pens. This method in-
volves splitting the input image into user-defined color
spaces, such as CMYK, and using high-density TSP art
to represent image tone accurately.

• A simple path optimization with bounded curvature
to ensure smooth robot movement during the drawing
process, coupled with the TSP solver.



• A novel drawing tool design with a tool-change mech-
anism to ensure robust pick and place using a 3-finger
gripper. This new design enhances the reliability and
versatility of the drawing system.

II. PREVIOUS WORK

A. TSP art

TSP art was first presented in [1]. It is an art form that
reproduces an image’s tonal quality with a single, continuous
path by formulating the problem as a Traveling Salesman
Problem (TSP). TSP art can be obtained by first placing
some dots on the image and second connecting the dots with
piecewise-continuous line segments. The stippling technique,
to effectively reproduce the image’s shading with the density
of the points, has been explored by much research. [4] used
Lloyd’s Voronoi-based optimization algorithm [5] to create
point patterns that look similar to human stipple artworks.
[6] enhanced the method to recreate faithful local stipple
variations by adding weights to the centroid of the Voronoi
region with regard to the density of the image. Most recently,
[7] combined the Linde-Buzo-Gray (LBG) algorithm [8] with
weighted Voronoi stippling [6], dynamically splitting cells
until achieving the desired number of representative vectors,
and reformulated it to split and merge cells based on size,
grayscale level, or image variance.

Once the stipples are placed, finding the shortest possible
path that visits every stipple exactly once is equivalent
to solving a TSP. Much research has been carried out to
efficiently solve TSP, known as NP-Hard. Concorde [9] is
an optimization solver widely regarded as the fastest TSP
solver for large instances [10]. The resulting single line that
resembles the original image’s tone is considered an art form
called TSP art. We observe that such complex and continuous
paths are suitable for robotic drawing systems to reproduce
them on a physical surface with its capability of sophisticated
maneuverability.

B. Robotic Drawing

The early history of creating drawing machines can be
attributed to artistic work by Harold Cohens, AARON [11].
AARON was a computer program capable of producing
physical artwork using a plotting machine. With the recent
advancement of robotic hardware, diverse artistic applica-
tions of robots have appeared. Paul the robot [12] is a robotic
installation that creates portrait drawings by observing the
target with the camera, mimicking the artist’s stylistic signa-
tures. eDavid [13] creates a painting using an industrial robot
with the visual feedback and their Non-Photorealistic Ren-
dering (NPR) algorithm. More research is being conducted
using colors to produce more colorful and authentic draw-
ings [14], [15]. Recently, robotic drawing systems applying
machine learning techniques have appeared. Integrating the
algorithms for image segmentation and depth estimation
for human-like stroke order planning was proposed [16].
RoboCoDraw [17] is a personalized avatar character drawing
system using a Generative Adversarial Network (GAN)-
based style transfer approach. Additionally, researchers have

explored the use of reinforcement learning to enable painting
agents to learn optimal brush stroke placement [18].

The existing works focus on machine creativity and
thus pay more attention to the painterly rendering algo-
rithms, which still human outperform the machines. Recently,
robotic pen drawing systems that focus more on the robot’s
capability have appeared. A system for drawing on non-
planar surfaces using manipulator impedance control was
introduced [19], [20]. SSK [21] further extends the system
to draw on larger surfaces using a mobile manipulator by
solving a coverage planning problem. Another exemplary
instance highlighting the capabilities of robotic systems is
a flexible and robust system adept at drawing on non-
flat surfaces, prioritizing closed-loop planning for enhanced
precision [22]. Our work is also driven by the exploration
of areas where machines excel compared to humans, all
while ensuring the aesthetic integrity of the final outcome.
Chitrakar [23] proposes a robotic system that autonomously
converts a human face image into a non-self-intersecting
curve by solving TSP with a stippling method. We take
a similar approach, but our system can draw more color-
ful drawings and is more suitable for autonomous robotic
drawing with optimized drawing path and a pen-change
mechanism.

III. SYSTEM OVERVIEW

We present the overview of our TSP robotic drawing
system in Fig. 2. Given a target image I, in order to make it
drawable for robots, we require a method to map it into
the robot’s configuration space. This paper employs TSP
art to map the image to piecewise-continuous line segments
within the canvas space. The path optimizer smoothens the
trajectory by fitting cubic Bézier spline curves with bounded
curvature. Subsequently, we determine the corresponding
path in the configuration space by solving the path-wise
Inverse Kinematics (IK) problem.

We generate TSP art using two main stages as follows:
1) Stippling: From I, generate and place a set of points

P ⊂ R2 to replicate the tone of the original image.
2) TSP Solving: Find a cycling path X ⊂ R2 that visits

every point P once and returns to the first point.
In order to reproduce the original image’s color, we split the
image I into predefined n color channels Ii, i = 0, · · · , n−
1, where n is the number of colors. We repeat generating
TSP art for each Ii. In this paper, we follow a modern,
four-color-process printing technique called CMYK [24] that
splits the color space of the image into four color channels,
cyan, magenta, yellow, and black. Afterward, we perform
path optimization. We begin by applying the Ramer-Douglas-
Peucker algorithm [25] to simplify the piecewise linear paths
with bounded Hausdorff distance between the original curve
and the simplified curve. Then, we interpolate the linear
paths using cubic Bézier spline curves X ∗ ⊂ R2 with
bounded curvature. We map the path to the end-effector’s
configuration X ∗ ⊂ R2 → X̃ ⊂ SE(3) by projecting X ∗

onto the target 3D planar canvas space, with end-effector
orientation perpendicular to the canvas.
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Fig. 2. System overview. Given an original digital image, it is split into predefined color channels. A set of points is generated from each color channel
using a stippling technique. We find a path that visits every point for each channel by solving a TSP on the generated points as TSP sites. The generated
piecewise linear path is then smoothed and optimized with Bézier spline curves that ensure bounded curvature. We plan the robot’s joint configurations so
that the pen-holding end-effector follows the path for the drawing.

We finally find the joint configurations ξ corresponding to
X̃ , which is fed into robots to perform drawing. Our system
also considers the manipulator’s reachability to decide the
size of the drawable canvas space. We also designed a
new pen-drawing tool for a 3-finger gripper to quickly and
robustly switch between colored pens.

IV. MULTI-COLOR TSP ART

In this section, we introduce our approach to map the input
image I into a drawable robotic path X . We take the TSP art
idea with an additional color processing stage to reproduce
the color likeness of the original image.

A. Color Processing

We begin by segmenting the color image into distinct color
channels I0, · · · , In−1. Each channel is then independently
processed to generate TSP art pieces. When reassembled,
these TSP art fragments collectively replicate the color
similarity of the original image. The method for channel sep-
aration can be controversial; we adopt the CMYK approach,
commonly used for color printing, which separates images
into cyan, magenta, yellow, and black channels. CMYK is
effective due to its analogy to subtractive mixing, prevalent
in both print and pen ink application. However, CMYK
model may struggle to faithfully reproduce the original image
color when working with fewer points. Further insights into
alternative approaches are discussed in Sec. VII-C.

B. Point Generation

We perform stippling for each color channel individually,
which involves transforming an image into a set of points
P ⊂ R2. This process results in desner point placement
in darker regions and fewer points in brighter regions.
Numerous stippling methods have been explored to achieve
effective image reproduction. In this paper, we adopt the
LBG Stippling method [7] which combines a variant of
the Linde-Buzo-Gray algorithm [26] with weighted Voronoi
stippling [6]. The method progressively divides Voronoi cells
from a single point until the desired point density, determined
by the weight function, is reached. Additionally, the method

allows the merging of the neighboring cells once the point
density becomes excessive.

C. TSP Path Generation

The generated points P can already form an art piece,
feasible for robotic motion. However, repetitive up-and-down
motions are time-intensive. To address this, we connect
all the points in P to establish a singular path X (t) ⊂
R2, which makes the robot easier to follow. Finding this
path is equivalent to solving TSP, a widely known NP-
hard problem. Significant research has been directed towards
efficient approximated solutions for TSP. In this work, we
utilize the Concorde solver, which relaxes the problem into a
Linear Program (LP) and iteratively fixes potential fractional
solutions through a cutting plane algorithm [27]. Using the
Lin–Kernighan heuristic [28], which iteratively improves
a tour by exchanging pairs of edges while utilizing edge
removal, insertion, and recombination to minimize edge
crossings, we can generate a path without any edge crossings.

V. ROBOTIC DRAWING

This section outlines the optimization of the drawing path
and describes selecting the appropriate canvas dimensions
based on the manipulator’s reachability and relocating the
drawing end-effector pose accordingly. Furthermore, we
detail the robotic curve rendering method, which involves
determining joint configurations to execute the drawing task.

A. Path Optimization

Tracing a TSP path composed of piecewise linear seg-
ments X (t) that interpolate P is feasible for an end-effector
to follow, but it is not optimal for realizing the robot
motion. We optimize the path X ∗(t) to be better suitable
for robotic tracing while approximating the original path
with bounds on distance and curvature. The Ramer-Douglas-
Peucker algorithm simplifies the linear path by decimating
some sub-path that does not significantly contribute to the
curve’s shape. This process involves recursively subdividing
the path, checking if the distance between a sub-path and the
original path is below a threshold dϵ, and then discarding it.



After acquiring a simplified piecewise linear path that
interpolates a reduced number of points P∗, we interpolate
them using cubic Bézier spline curves. The curvature of
these curves is bounded by κϵ, determined by the maximum
acceleration of the end-effector. The entire path comprises
|P∗| − 1 spline curves, each with four control points. Fig. 3
illustrates two spline curves connected at p3. The curvature
of the Bézier spline curve at p3 is evaluated as:

κ =
2d

3c2
, (1)

where d = ||p2−p3|| and c represents the distance between
p1 and the line formed by p2 and p3 [29]. Thus, κ can
be controlled by fixing c and increasing d by displacing p2

along p2−p3 with some scaling factor s > 0. The final path
X ∗ is obtained by minimizing s such that sκi > κϵ,∀i ∈
|P∗| − 1 where κi denotes the curvature for ith spline.

p0

p3

𝒑𝒑1

𝑑𝑑
𝒑𝒑2𝑐𝑐

Fig. 3. Interpolating cubic Bézier curve. pi’s represent the control points
for the first Bézier spline that interpolates p0, p3.

Optimizing a path of more than 50,000 control points may
require a significant amount of computation time. Thus, we
employed rather simple path optimization and smoothing
techniques to save time. Moreover, since the preceding
TSP solver already produced spatially coherent and optimal
drawing routes, our simple approach still produces a highly
optimal path and prevents abrupt robot motion.

B. Maximum Size of Canvas Space

After generating the final 2D drawing path, the next step
before executing the robotic task is to map the path onto
the 3D real-world space. We determine the maximum size
of the drawing canvas based on the robot’s reachability.
The reachability of the robot is defined by discretizing
the robot’s Cartesian workspace and solving the inverse
kinematics problem for each discrete point to check if it
is reachable [30]. The reachable points are saved as shown
in Fig. 4 with colored spheres. The intersection between the
reachable point set and the target surface is used to determine
the canvas dimension. For dual-arm, we separate the drawing
task by color channels and find the intersection between
the reachable point set by both arms and the target surface.
For mobile manipulator, we split the canvas into sub-canvas
based on the manipulator’s drawing size. Then, we repeat
the process of drawing and shifting to the next sub-canvas
to complete the drawing. After determining the canvas space,
we obtain the target drawing poses by projecting the drawing
path onto the planar canvas space with fixed end-effector
orientation in the opposite direction of the surface normal:
X ∗ ⊂ R2 → X̃ ⊂ SE(3).

(a) Dual Manipulators (b) Mobile Manipulator

Fig. 4. Reachability of the manipulators. Green or blue spheres in (a)
and (b) represent the points that are reachable by each manipulator with a
fixed end-effector orientation. Red spheres in (a) represent the region that
is reachable by both manipulators.

C. Robotic Curve Rendering

Once the target drawing poses X̃ are decided, they are fed
to robots. Robotic drawing is equivalent to finding a contin-
uous path in the robot’s configuration space so that its end-
effector follows the given path; this problem is also known as
path-wise IK [31], [32]. Moreover, path-wise IK is suitable
for setting a robot’s kinematic and dynamic constraints while
following the robot trajectory. In the case of robot drawing,
achieving a feasible motion with no sudden jumps is crucial.
Plus, it is essential to follow the given end-effector poses
accurately not to ruin the resulting drawing. Thus, we solve
the path-wise IK problem by iteratively solving the IK for the
end-effector poses X̃ with the minimum distance objective
in the configuration space.

VI. DRAWING TOOL

Robotic pen drawing requires firmly holding the pen to
the robot’s end-effector as the task needs to resist contact
force from the canvas surface. A potential solution for this
requirement involves rigidly attaching the pen to the robot,
which makes human intervention inevitable for changing the
pen to a different color. Alternatively, one can employ a
robotic gripper to grasp and exchange the pen when needed.
This mechanism essentially corresponds to a pick-and-place
task, which is particularly challenging due to various un-
certainties of sensing and dynamics in the real world. This
section elaborates our approach to the pen-changing problem
ensuring robustness for multi-color drawing systems.

Fig. 5 shows snapshots of tool-change sequences using the
pen-holding tool and its docking structure. We design a pen-
holding tool that the 3-finger gripper can robustly grasp even
under slight motion perturbations due to position or motion
errors, which also ensures that the gripper always holds the
pen in the same pose. We flatten the side of the tool so
that when the gripper is half-closed, it can still adjust the
vertical orientation by the fingers. We created upper plates
in the holding structure that match the fingers’ height so
that they can fine-tune the gripper’s horizontal orientation
when lifted vertically by a half-closed gripper. The tool shape



Fig. 5. Pen tool picking sequences using a 3-finger gripper in five stages: from left to right, ready pose, approach, half grasp, vertical lift, and full grasp.
Placing the tool back to the docking structure is in reverse.

that matches the palm of the gripper once again guarantees
to grasp the tool when closing the fingers robustly. The
pen tool’s docking structure is a rounded concave shape
that matches the surface contour of the pen-holding tool.
It allows the tool to slide into the bottom when released
from the gripper. Another critical and practical aspect of the
docking structure is preventing the pen from drying during
the long drawing session. Our drawing tool and its docking
structure design are experimentally proven robust for many
tool changes.

3D printed 
pen-tools

Target canvas

Manipulators

(a) Dual manipulators and the pen-holding tools

Manipulator

Mobile 
platform

3D printed 
pen-tool

Target canvas

(b) Mobile manipulator and the pen-holding tool

Fig. 6. Robotic TSP pen-art drawing system setup

VII. RESULTS AND DISCUSSIONS

In this section, we present our experiment setting and
discuss the results. In particular, we show our drawing results
with two different color-processing methods performed with
two robotic hardware setups, one with a mobile manipulator
and another with dual manipulators.

A. Implementation Details

As shown in Fig. 6, we implemented our robotic drawing
system with two different robotic hardware setups:

• Dual Drawing Manipulators Setup consists of two
UR5e manipulators, each equipped with a Robotiq 3-
finger adaptive gripper. We designed a new pen tool
that allows our gripper to hold the pen firmly despite
sensing and mechanical errors. The drawing process is
fully automated thanks to the gripper and our pen tool
change mechanism.

• Mobile Drawing Manipulator Setup consists of a
KUKA LBR iiwa 7 R800 manipulator mounted on top
of the omnidirectional mobile platform Ridgeback from
Clearpath Robotics. A 3D-printed pen tool is rigidly
attached to the robot’s end-effector, which requires a
manual change of colors. Thanks to its mobility, unlike
previous robotic drawing systems, it is not limited to
the drawing canvas size.

We use Robot Operating System (ROS) Melodic frame-
work under Ubuntu 18.04 operating system to communicate
with the robots and perform the drawing task. We use C++
and Python for programming, which runs on a PC equipped
with Intel i7 CPU and 32 GB memory. We use MoveIt! [31]
with TRAC-IK [32] inverse kinematics solver for computing
the robot trajectory following the Cartesian path.

B. Drawing Results

The statistics for the experimental drawings shown in
Figs. 1, 7 and 9 are provided in Table I. These statistics
include the size of the drawing and the number of stippled
points used to solve TSP. Additionally, the time consumed
to run the stippling algorithm, solve TSP, and execute the
robot is presented. The number of points and the times in
the statistics represent the sum of values for every color.
Please note that the drawing result of Violet in Fig. 9,
marked with * in Table I, is generated with Weighted Voronoi
stippling algorithm [6] as a stippling method. Regarding TSP
solving time, we impose a time-bound to ensure that the
data generation process does not take an excessive amount
of time. During the drawing process, we operate the robot
at a low speed, specifically 20% of the maximum joint
velocity. This is to ensure the safety of both the robot and
any collaborators, such as humans.

Fig. 8 shows the digital drawing result of the Heart before
and after the path optimization. Note that the TSP path
in Fig. 8(a) without path optimization produces a similar
result like Chitrakar [23]. The number of points decreased
from 21,664 to 16,720, which means about 15% of the



TABLE I
ROBOTIC DRAWING EXPERIMENTAL STATISTICS

Robotic Hardware Dual Arm (Fig. 7) Mobile Manipulator (Figs. 1, 9)

Drawing Starry Night Big Ben Heart Violet∗ EWU

Canvas Size (mm2) 315× 250 214× 300 400× 350 850× 300 3600× 400
# of Stippled Points 81,591 76,257 21,664 95,155 154,475

Stippling Time (sec.) 32 34 2 35 32
TSP Solving Time (sec.) 6 11 4 17 43

Drawing Time (min.) 124 63 61 585 662

(a) Starry Night (b) Big Ben

Fig. 7. TSP pen art results produced by the dual manipulators (left: input image, right: TSP drawing)

points were removed while the shape of the result is non-
distinguishable between the two. We experimentally set the
parameters of dϵ and κϵ to 0.5 and 2.0, respectively, given
the simplification rate of 15% and the bound for maximum
end-effector acceleration.

Fig. 7 shows the robotic pen drawing results drawn with a
dual-arm robotic setup. Fig. 1 and Fig. 9 show the robotic pen
drawing results drawn with the mobile manipulator setup.
The Heart is drawn in one place with no mobile platform
moving. The Violet drawing was split into three regions,
and the Ewha Womans University (EWU) graffiti was split
into nine regions according to the appropriate canvas space
measured in Sec. V-B.

(a) Original TSP path (b) Optimized path

Fig. 8. Digital drawing result of Heart before and after the path optimization

C. Discussions

Color Splitting Methods: The CMYK color channels we
use for the system are widely used for printing materials
that combine colors. This is suitable for our robotic pen
drawing system, which also uses a limited number of colors
and aims to achieve a similar color to the original image.
However, as the robotic pen drawing system uses far fewer
stippling points than printing, the result may be reproduced
poorly depending on the color spectrum of the input image.
Generating our own color palette instead of using predefined
color spaces like CMYK can be an alternative approach.

(a) Heart (left: input image, right: TSP drawing)

(b) Violet (top: input image, bottom: TSP drawing)

Fig. 9. TSP pen art results produced by the mobile manipulator

This involves partitioning raster image pixels containing
color information into k different groups, which can be
achieved using various clustering algorithms (i.e., K-Means,
Agglomerative, or DBSCAN). Unlike CMYK, the color
channels obtained by this method use representative colors
from the pixels. This may allow for more accurate colors with
fewer points. However, a drawback is that the color of the
physical drawing tool (pen) may not match the obtained color
perfectly. Consequently, we have adopted the predefined
color palette approach since it can maintain a consistent color
palette across all images.



Robotic Hardware: We use two distinct robotic setups,
each with unique advantages. The mobile manipulator con-
figuration excels in its capacity to create expansive artworks
on a larger scale. However, it requires manual intervention
for color changes. On the other hand, the dual-arm setup
offers autonomous tool-changing capabilities. Our design
choice involves constraining the drawing canvas using the
shared reachable range of both arms, which results in each
arm drawing sequentially. Alternatively, it is possible to
divide the task based on the reachability of each arm,
allowing for the creation of larger artworks for both arms
drawing simultaneously. In this case, the system may need to
duplicate drawing resources, including multiple color palettes
and drawing tools, to maximize the drawing concurrency
and reachability. This approach is one of our future research
directions.

VIII. CONCLUSION

We introduce TSP-Bot, a multi-color robotic pen drawing
system that translates digital raster images into continuous
paths on a physical surface, replicating the original colors
by segmenting the image into predefined color spaces. Our
robotic hardware executes this intricate task by following
paths comprising thousands of points, suitable for robots with
high accuracy and repeatability. Demonstrating its capabili-
ties, we utilize both a dual-arm robotic setup with a color
change mechanism and a mobile manipulator setup, show-
casing flexibility beyond canvas size. Our system produces
colorful and aesthetically appealing TSP pen art.

Future directions involve further path optimization to en-
hance robotic drawing performance, including investigating
the effects of varying parameters like dϵ and κϵ on robot
joints and resulting drawings. Additionally, immediate plans
include further exploration of the dual-arm drawing setup.
This entails distributing the drawing task between the arms
based on their reachability, which will also alleviate the
limitation of a restricted drawing canvas space. This approach
will require an efficient collision-aware motion planning
method and a new drawing strategy.
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