
View-Dependent Dynamics of Articulated Bodies

Sujeong Kim
Ewha Womans University
kimsujeong@ewhain.net

Stephane Redon
i3D-INRIA Rhône-Alpes
stephane.redon@inria.fr

Young J. Kim∗

Ewha Womans University
kimy@ewha.ac.kr

Abstract
We propose a method for view-dependent sim-
plification of articulated-body dynamics, which
enables an automatic trade-off between visual
precision and computational efficiency. We begin
by discussing the problem of simplifying the sim-
ulation based on visual criteria, and show that it
raises a number of challenging questions. We then
focus on articulated-body dynamics simulation,
and propose a semi-predictive approach which
relies on a combination of exact, a priori error
metrics computations, and visibility estimations.
We suggest several variants of semi-predictive
metrics based on hierarchical data structures and
the use of graphics hardware, and discuss their rel-
ative merits in terms of computational efficiency
and precision. Finally, we present several bench-
marks and demonstrate how our view-dependent
articulated-body dynamics method allows an ani-
mator (or a physics engine) to finely tune the visual
quality and obtain potentially significant speed-
ups during interactive or off-line simulations.

Keywords: view-dependent dynamics, adap-
tive dynamics, articulated body simulation

1 Introduction

Physically-based simulation has been taking an in-
creasingly important role in numerous graphical
applications where a realistic motion is desired, in-
cluding computer animation, feature films, com-
puter games, and virtual reality. In particular,
articulated-body dynamics has been used to realis-
tically simulate the motions of diverse forms of an-
imating characters such as humans, hair, animals,

∗Corresponding author

plants, etc.

One of the fundamental problems in articulated-
body dynamics is the forward dynamics problem,
which computes the motion of an articulated-body
when the given forces are exerted to the body.
Linear-time, optimal solutions for forward dynam-
ics are well-known (e.g. [1, 2]); however, these so-
lutions can be still very costly for simulating nu-
merous or complex articulated bodies in feature
films or computer games.

This paper proposes a method for view-dependent
articulated-body dynamics, which simplifies the
forward dynamics of articulated bodies based on
visual criteria. We propose a semi-predictive ap-
proach, which relies on a combination of exact,
a priori error computations and visibility estima-
tions. Our method is able to simplify the dynamics
of an articulated body not only based on visibility
criteria (i.e. the visible portion of the articulated
body on the screen), but also based on the rela-
tive importance that the articulated-body motion
has to the viewer. We demonstrate our approach
on several benchmarks and show how our view-
dependent articulated-body dynamics method al-
lows an animator (or a physics engine) to finely
tune the visual quality of a simulation, and obtain
potentially significant speed-ups during interactive
or off-line simulations. As will be shown in the
benchmarking results, without incurring visual de-
terioration (e.g. popping), the view-dependent dy-
namics gracefully simplifies the level of details in
the simulation and thus provide visually-plausible
simulation to the viewer.

Organization: Section 2 provides an overview
of related work on simulation levels of detail and
view-dependent dynamics simplification. In Sec-
tion 3, we discuss the general problem of simplify-



ing a simulation based on visual criteria. Section 4
gives an overview of the adaptive articulated-body
algorithm, upon which our algorithm is based.
Section 5 introduces our semi-predictive motion
metrics. Section 6 presents several applications of
our approach. Finally, Section 7 concludes this pa-
per and suggests a few future research directions.

2 Related Work

View-dependent simplifications of a dynamics
simulation is related to the following research ar-
eas.

Simulation levels of detail: A number of ap-
proaches exist for adaptive simulation of a number
of complex systems, including deformable bodies
[3, 4], cloth [5], fluid and smoke [6], hair [7, 8],
or objects with a finite but potentially large num-
ber of degrees of freedom such as particle sys-
tems [9] or articulated bodies [10]. Often, these
approaches resort to some type of adaptivity to
refine the simulation where the current level of
discretized simulation cannot appropriately emu-
late the full dynamics of the system, independently
of visual criteria (but possibly with application to
view-dependent simplification).

View-dependent simplification: Some authors
have specifically addressed the problem of simpli-
fying a simulation based on visual criteria. Carlson
and Hodgins [11] use three levels of sophistication
to animate creatures in a virtual environment partly
based on the distance of the creature to the cam-
era (with arbitrary thresholds, however). Perbet
and Cani [12] animate prairies using three levels
of detail based on the viewer’s position (classified
as near, medium and far). O’Brien et al. [9] sim-
plifies the dynamics of particle systems by clus-
tering particles into groups, partly based on visual
criteria. Chenney and Forsyth [13] discuss a view-
dependent culling of dynamic systems and intro-
duce two important criteria that should be satisfied
by a dynamics simplification method, namely con-
sistency (object re-entering the view satisfy view-
ers’ expectations) and completeness (objects that
should re-enter the view do so). In particular, they
classify the objects based on the viewers expecta-
tions, and focus computing resources on the ob-
jects for which the viewers have certain expecta-
tions. However, they do not discuss how to sim-
plify the dynamics of visible objects. Chenney et
al. [14] focuses on the consistency problem when
the objects motions can be tightly bound. Their
method only applies to continuously evolving sys-
tems with few degrees of freedom and no exter-
nal influence, which forbids interactive simula-

tions and collision handling. Beaudoin and Keyser
[15] present a method to simplify plant motion,
and propose rigorous methods to compute the er-
rors caused by the approximations. The levels of
details are pre-computed and a generalization to
other objects and external forces does not seem
straightforward.

Perceptually-based simplification: How an an-
imation or a simulation is being perceived by
humans has recently received research attention.
O’Sullivan and Dingliana [16] discuss how view-
ers perceive collisions in a dynamics simulation of
rigid bodies, and in another work, O’Sullivan et
al. attempt to evaluate the visual fidelity of such
simulations [17]. Harrison et al. [18] study how
noticeable changes in the lengths of articulated-
body links are, depending on viewers attention.
O’Sullivan [19] discusses the effect of collisions
on attention. One goal of this research is often to
define perceptual metrics, which would help sim-
plify an animation or a simulation based on per-
ceptual criteria. There have been also research ef-
forts to generate and suggest plausible motions of
the physical simulation under different initial con-
ditions [20, 21]. [22] have introduced the many
worlds browsing method, where the user is allowed
to interactively browse and modify the simulation
results to match his or her requirements. There are
also attempts to understand the error thresholds for
plausible motion [17].

3 View-dependent simulation

Although several methods have been proposed to
take advantage of visibility to simplify simula-
tions, it appears that very few authors have for-
mally discussed how to choose an appropriate sim-
ulation level of detail based on visual criteria. In
this section, we discuss this problem and identify
a number of relevant issues. We find that the prob-
lem of quantifying and, most importantly, predict-
ing the number of perturbed pixels due to an ap-
proximation in a simulation is surprisingly diffi-
cult, for a number of reasons. This may explain
why the problem of simplifying a simulation based
on its appearance has been relatively unexplored
compared to, for example, the problem of view-
dependent geometric simplification [23].

3.1 Defining an error measure

View-dependent simplification of dynamics first
raises the problem of defining an appropriate error



Figure 1: View-dependent dynamics simplification. Top: Our algorithm automatically simplifies the
dynamics of a falling character as its distance to the viewer increases. Bottom: Corresponding
rigidification at this time step (one color per rigid group). See also Fig. 7 for the corresponding
motion strips (see also the attached video).

Figure 2: View-dependent dynamics simplification of a toy-like dog model in an interactive applica-
tion (offline rendering). a: the complete environment. The user controls the model (sixteen
rigid bodies) with a haptic interface. b: the user places the dog behind the environment. Our
algorithm automatically rigidifies the legs of the model, resulting in a total of eight rigid groups.
c: this back view shows the rigid groups corresponding to the position shown in b (one color per
rigid group — see attached video).

measure with which the quality of a simplification
can be judged.

3.1.1 Static case

Consider first the static problem, i.e. simplifying a
simulation at a single instant in time. In the static
problem, we would like to simplify the dynamics
of the objects in the scene at a given time step and
still obtain, at the next time step, an image “close”
to the one we would have obtained if the full dy-
namics had been simulated. We thus need an ob-
jective measure of the similarity between the sim-
plified frame and the fully simulated one, at the
next time step.

Fortunately, this question has already been raised
within the graphics and scientific visualization re-
search communities for geometric simplification
(see [24] for an extensive overview). Often, the
error between two images is measured in terms of
the number of pixels that differ between the two
images [23]. More generally, the characteristics of
the visual system should be accounted for, in or-

der to take advantage of e.g. attention [19], mesh
saliency [25], etc. Although much progress has
been made, the problem of defining a “perceptual
distance” between two images is still largely open.

Note that the simulated objects may go through
a complex, non-linear rendering stage, involving
complex lighting and material models as well as
various post-processing stages (e.g. motion blur,
editing, etc.). Ideally, a completely integrated sys-
tem would take the full simulation and rendering
pipeline into account, to avoid spending too much
time on motions that would later be hidden by
post-process.

3.1.2 Dynamic case

The dynamic problem, i.e. considering the long-
term impact of a simplification, raises additional
questions. Indeed, we should probably consider
the impact of a simplification at a given time step
on all subsequent time steps. Ideally, all simpli-
fications should be invisible to the viewer. One
way to measure the error could thus be to compare



the final images of the simplified segment and the
original animation segment.

Because general systems are aperiodic, however,
and may be extremely sensitive to perturbations, a
simplified simulation might rapidly diverge from a
non-simplified one. Thus, a better way to mea-
sure the error between two animation segments
might thus be as the sum of (or bound on) succes-
sive static errors. This is typically how the qual-
ity of an integration method is evaluated, i.e. by
computing a bound on the error occurring at each
time step. Such an error measure might be able to
solve the consistency and completeness problems
defined by Chenney and Forsyth [13], by choosing
sufficiently low error thresholds.

3.2 Simplifying the dynamics

Adaptive methods can be roughly classified ac-
cording to the way they evaluate (or estimate) and
use error measures.

Ideally, the exact error should be computed a pri-
ori, i.e. without having to compute the exact solu-
tion to the problem. This is often extremely diffi-
cult, however, and a priori methods often estimate
the error (e.g. [3]).

Note that another approach would be to design
an a posteriori simplification method, similar to
adaptive time-stepping integration methods. This
would prove relatively easy: two images would be
produced, one using full dynamics, and the other
with view-dependent dynamics. If the images dif-
fer by less than a user-defined threshold (in terms
of the number of pixels, for example), then the
view-dependent simplification would be declared
acceptable.

There are, however, at least three problems with
such an approach. First, to make the scheme com-
putationally worthwhile, we would have to assume
that temporal coherency is high, so that the simpli-
fication test can be performed only once in a while
(for example every one hundred frames). This
might not be valid in numerous dynamics scenar-
ios, especially when discontinuities resulting from
collisions, external forces or user interactions may
occur (moreover, regular “peaks” in computational
costs might be inappropriate in interactive appli-
cations such as games and virtual environments,
which favor consistent frame rates). Second, per-
forming a full dynamics step might well be too
slow when too many degrees of freedom are in-
volved. Finally, it might be difficult to decide what
simplification should be attempted. Should the de-
grees of freedom be removed because they have

little variation? Should they be grouped together
because they have similar variation? Because of
the exponential number of combinations, some a
priori assumptions have to be made to simplify the
system before comparing it to the fully simulated
one (e.g. merging and splitting degrees of freedom
based on their acceleration [8]).

In this paper, we propose a semi-predictive ap-
proach, which combines a priori computations of
joint accelerations errors with visibility estima-
tions.

4 Preliminaries

The predictive component of our view-dependent
method relies on the adaptive dynamics (AD)
method introduced by Redon et al. [10]. For com-
pleteness, we briefly describe their approach here.
We refer the reader to their paper for a detailed ex-
position.

4.1 Divide-and-conquer
articulated-body dynamics

The AD algorithm can be seen as a generalization
of the Divide-and-Conquer Algorithm (DCA) pro-
posed by Featherstone [1, 2]. In this algorithm, an
articulated body is recursively defined by connect-
ing two articulated bodies. A binary assembly tree
describes the sequence of assembly operations, in
which the leaf nodes represent rigid bodies, and
the root node corresponds to the complete articu-
lated body (see Figure 3). Each non-leaf node thus
represents both a sub-articulated body and the joint
used to connect its two child nodes.

Featherstone [1, 2] shows that the dynamics of an
articulated body can be described by the following
articulated-body equation:

a = Φf +b, (1)

which is similar to the Newton-Euler equation de-
scribing the motion of a rigid body. Here, a is
the composite acceleration of the articulated body
(a vector which concatenates the bodies acceler-
ations), Φ is the composite inverse inertia of the
articulated body, f is a composite kinematic con-
straint force (which holds the articulated body to-
gether), and b is a composite bias acceleration,
due to external forces and torques (inertial ef-
fects are zero under the quasi-statics assumption).
Featherstone’s DCA essentially consists in two
passes over the complete assembly tree. The main
pass is a bottom-up traversal, in which the DCA



Figure 3: Assembly tree of an articulated
body. Adaptive articulated-body dynam-
ics simulates only some of the joints in
the articulated bodies, which form the
active region.

determines the inverse inertias Φ and bias acceler-
ations b for each node in the assembly tree from
those of its children, and the external forces and
torques applied on the articulated body. The top-
down back-substitution pass computes, for each
internal node starting from the root node, the kine-
matic constraint forces f (which enforce the kine-
matic constraint described by the node) and the ac-
celeration q̈ of the joint represented by the node.
This algorithm is applied repeatedly to simulate
the motion of an articulated body.

4.2 Adaptive articulated-body dynamics

4.2.1 Hybrid bodies

In order to speed up articulated-body dynamics
simulation, Redon et al. [10] approximately solve
the problem by computing joint accelerations in a
limited sub-tree of the assembly tree (cf Figure 3),
called the active region. The remaining joints are
inactive, and their accelerations are being implic-
itly set to zero. An articulated body with at least
one inactive joint is called a hybrid body. The
motion of a hybrid body is simulated by “rigidify-
ing” the inactive joints. This results in hybrid in-
verse inertias and bias accelerations Φ and b, that
can also be computed from the bottom up. The
complexity of simulating a hybrid body is then
O(na + n f log(n/n f )), where na is the number of
active joints, n is the total number of joints, and n f
is the number of nodes where an external force of
a torque is updated. This results in potentially sig-
nificant performance speed-ups when the number
of active joints and external forces updates are low.

4.2.2 Active region determination

To approximate the motion that would have been
obtained if full dynamics were computed, Redon

et al. [10] periodically updates the active region
using motion metrics. If C is an articulated body,
the acceleration metric A (C) of C is a weighted
sum of its joint accelerations:

A (C) = ∑ q̈T
i Aiq̈i, (2)

where the Ai are symmetric, positive definite ma-
trices. Similarly, the velocity metric V (C) of C is
a weighted sum of its joint velocities:

V (C) = ∑ q̇T
i Viq̇i, (3)

where the Vi are symmetric, positive definite ma-
trices. Redon et al. [10] shows that the ac-
celeration metric value of an articulated body is
a quadratic function of the kinematic constraint
forces:

A (C) = (fC)T ΨCfC +(fC)T pC +η
C, (4)

where the acceleration metric coefficients ΨC, pC

and ηC can be computed from the bottom up (sim-
ilar to the articulated-body coefficients). To update
the active region, the acceleration metric is used to
restrict the back-substitution pass to the most im-
portant sub-tree of the assembly tree. Then, the
velocity metric is used to determine the new set of
most important joints.

5 View-dependent metrics

We can now present our approach for view-
dependent simplification of articulated-body dy-
namics. Our method can be regarded as semi-
predictive, since we are able to predict the exact
error in joint accelerations before actually com-
puting all of them (using the adaptive dynamics
framework), but we make some assumptions about
how the visual error is affected by errors in joint
accelerations.

5.1 Simplifying the simplification
problem

In order to make the view-dependent simplifica-
tion practical, we make two fundamental assump-
tions.

First, we assume that the motion of a joint only
has a local effect on the motions of the rigid bod-
ies (in cartesian coordinates). This is generally
the case when there is little correlation in neigh-
boring joints, and cross-coupling inverse inertias
tend to have low ranks and not transmit applied



Figure 4: View-dependent motion metric. The view-dependent motion metric is obtained by combining a
priori motion metrics with visibility estimations.

torques and forces [26]. This allows us to exam-
ine each sub-assembly of the articulated body in-
dependently of the others, by assuming that the vi-
sual impact of a joint acceleration error in a sub-
assembly is approximately restricted to this sub-
assembly.

Second, we assume that the visual error caused by
the rigidification of a sub-assembly can be roughly
obtained by decoupling the contribution of the sub-
assembly motion (acceleration or velocity) from
the visibility of objects under such motion (e.g.
the number of rasterized pixels). The major ben-
efit of this assumption is that we can easily cus-
tomize the motion metrics in the adaptive dynam-
ics framework, and exploit well-established mea-
sures of visibility used in other types of applica-
tions, in particular in rendering.

These two assumptions allow us to formulate
view-dependent motion metrics which can be
computed efficiently, while still providing reason-
able estimations of the visual error caused by par-
tial rigidifications (cf Section 6).

5.2 Semi-predictive metrics

Let us call NM(C) the projected area of an ar-
ticulated body C onto the screen, under the view-
ing transformation M. Then, the view-dependent
acceleration and velocity metrics, AM(C) and
VM(C), are defined as follows (cf Figure 4):

AM(C) = dt2NM(C)
√

∑ q̈T
i Aiq̈i

= dt2NM(C)
√

A (C),

VM(C) = dtNM(C)
√

∑ q̇T
i Viq̇i

= dtNM(C)
√

V (C),
Ai = Vi = Di,

where dt is the size of the time step, and Di is
a diagonal weight used to homogenize joint types
(to mix ball-socket joints and prismatic joints, for
example — Di can be set to the identity matrix if
all degrees of freedom are of the same type).

Intuitively, these metrics estimate the visual error
caused by zeroing accelerations or velocities by as-
suming the worst possible case: all joints in the
sub-assembly have correlated motions, and con-
tribute to the displacement of the whole visible sur-
face. Once the acceleration and velocity metrics
have been obtained as in the adaptive dynamics
framework, these view-dependent metrics can be
obtained in constant time, provided we know the
values of NM(C). We now present different ways
of obtaining NM(C) and discuss their relative ad-
vantages in terms of precision and computational
efficiency.

5.3 Calculation of NM using
bounding-volume hierarchies

For a given sub-assembly C, we can quickly ap-
proximate NM(C) using bounding volumes (BVs)
such as spheres, oriented bounding boxes [27] or
axis-aligned bounding boxes. Before the simula-
tion begins, we compute a bounding volume for
each rigid body in the articulated body, that we
store in the local reference frame attached to the
rigid body. We also associate a bounding volume
to each internal node of the assembly tree. These
internal bounding volumes are updated at runtime,
so as to enclose the bounding volumes of their chil-
dren. In order to approximate NM(C), we can
then use either the bounding volume associated
to C, or the bounding volumes associated to the
rigid bodies composing C. The resulting approx-
imations of NM(C), denoted by ÑM(C), is taken
as the minimum of these two projections (see also



Figure 5):

Ñ 1
M(C) =

∫ ∫
M(∂BV(C))

dxdy (5)

Ñ 2
M(C) = ∑

i∈C

∫ ∫
M(∂BV(Ci))

dxdy (6)

ÑM(C) = min{Ñ i
M(C)|i = 1,2} (7)

Even though we need to sacrifice additional time
to update the internal bounding volumes at run-
time, we may obtain a tighter estimation of NM,
depending on the configuration of the articulated
body and the camera position. For example, if
an articulated body forms a long but folded chain,
then Ñ 1

M will be smaller than Ñ 2
M. On the other

hand, if this articulated body is stretched, then Ñ 1
M

will be larger.

The choice of the bounding volume also affects
the theoretical complexity of the visibility estima-
tion. If we use spheres or oriented bounding boxes,
we can store their parameters in the local refer-
ence frame associated to the internal nodes. As
a result, we do not have to update these bounding
volumes in the rigid region, and the complexity of
updating the bounding-volume hierarchy is linear
in the number of active joints. In order to update
the internal bounding volumes in constant time,
however, we need to compute their parameters di-
rectly from those of their children, and not from
the bounded geometry. This might result in overly
conservative bounding volumes. In such a case,
axis-aligned bounding volumes can be preferable
despite the need to update all of them (i.e. includ-
ing in the rigid region).

5.4 Calculation of NM using
GPUs-based occlusion queries

Estimating visibility using bounding volumes has
the following disadvantages:

• Without a proper clipping procedure or visi-
ble surface determination, the ÑM(C) value
in Eq. 7 is always positive.

• Depending on the choice of bounding vol-
umes, the projected area can be quite conser-
vative.

In order to address these issue, we rely on oc-
clusion queries supported by commodity graphics
hardware [28]. Using occlusion queries, one can
quickly obtain the number of visible pixel cover-
age of an articulated body C on the screen. How-
ever, this GPUs-based approach takes a linear time
with respect to the number of links in C. More
specifically, we get the number of visible pixels

Figure 5: Visibility estimation from bound-
ing volumes The visibility estimation
ÑM(C) is taken as the minimum of two
projections. a: Projected bounding
volume of the entire articulated body. b:
Sum of the projected bounding volumes
of individual rigid bodies.

Table 1: Comparisons From top to bottom: the
original Featherstone’s DCA, BVH- and
occlusion query (OQ)-based methods.

Method Timing (msec) # of Active joints
Featherstone 0.218 19

BVH 0.136 10
OQ 0.108 8

NM(C) for an articulated body C in two passes as
follows:

1. Render the entire simulation scene including
C and other objects in the environment.

2. Render each rigid body Ci (i.e. leaf-level
node in the assembly tree) in C and use oc-
clusion queries to determine the number of its
visible pixels NM(Ci).

3. Recursively add up NM(Ci)’s to get the num-
ber of visible pixels for the parent node of Ci’s
until we get NM(C).

By using a two-pass rendering method, we can get
the number of visible pixels for C, occluded by the
objects in the environment as well as by some of
its own links in C (self-occlusion).

5.5 Comparisons between the two
methods for calculating NM

We have presented two methods to calculate
NM earlier. Each method has its own cons
and pros. The bounding-volume hierarchy-based



method has a sublinear time complexity with re-
spect to the number of links in an articulated body
to calculate NM; it is the same as that of the orig-
inal adaptive dynamics [10]. Moreover, since this
method relies completely on CPU-based compu-
tation, the dynamics process is completely decou-
pled from the rendering process. However, in this
case, it is not straightforward to take into account
occlusion between links. Moreover, NM can be
overly conservative depending on the relative con-
figurations between links. On the other hand, the
GPU-based method provides a tight estimation of
NM and can easily handle different types of vis-
ibility including occlusion and screen space clip-
ping. However, it requires a linear time complex-
ity with respect to the number of links. But, in
practice, the linear time complexity is almost neg-
ligible on modern graphics hardware thanks to its
rapid rasterization capability.

We evaluate these methods using the pendulum
model consisting of 20 rigid bodies and 19 joints.
In Table 1 (also in the accompanying video), we
summarize the average timings and the number of
active joints during the simulation using the orig-
inal Featherstone’s algorithm, BVH-based (Eq.
(6)) and occlusion queries-based methods. Com-
pared to the original Featherstone’s algorithm, our
methods consume 40-50% less time. The oc-
clusion queries-based method further reduces the
number of active joints by taking into account the
inter-visibility between links.

6 Implementation and Results

We implemented our view-dependent dynamics al-
gorithm using C++ and OpenGL graphics library
(for occlusion queries). In this section, we demon-
strate our algorithm on scenarios running on a
2.26GHz Intel Pentium M processor laptop with
2GB RAM under Windows XP. Notice that our
view-dependent dynamics performs exactly like
adaptive dynamics [10] except that the adaptivity
is automatically determined by the visibility of the
simulated bodies.

6.1 Applications

Swinging pendulum : a pendulum model consist-
ing of three hundred rigid bodies swings because
of gravity. View-dependent dynamics is applied
to the swinging motion of a pendulum in two se-
ries of tests: one by varying the threshold value
for motion metrics (Figure 8) and one by varying
the viewer’s distance to the pendulum (Figure 9).

Figure 6: View-dependent Simulation of 100
Swinging Toy Dogs. 100 toy-like dogs
consisting of 1600 rigid bodies are at-
tached to virtual springs (not shown in
the image) in space and simulate dynam-
ics in a view-dependent manner. In this
scene, as many dogs are occluded by
other dogs, clipped against the viewport,
or seen far from the viewer, the num-
ber of simulated, active joints is reduced
from 1500 to 493 on average without in-
curring visual deterioration in the simu-
lation. Each simulation frame takes 14
msec on average.

As can be seen from the graphs, our method allows
the user to finely tune the performance of the view-
dependent dynamics by changing the error thresh-
old or, for a given threshold, to benefit from the au-
tomatic simplification and corresponding speed-up
when the distance to the viewer varies.

Haptic-enabled dog puppet: a toy-like dog
model consisting of sixteen rigid bodies is inter-
actively manipulated using a haptic interface (Fig-
ure 2.a). We use Sensable’s Omni haptic device
and map its end-effector to a virtual control stick
attached to the toy dog by virtual strings. As the
user interactively controls the toy dog, some links
of the dog can be hidden by objects in the environ-
ment (Figure 2.b). Our view-dependent algorithm
automatically rigidifies these links (Figure 2.c).

Hanging toy dogs: 100 toy-like dog models are
attached to springs whose other ends are fixed in
space. Initially, the dogs are twisted from the equi-
librium state in order to create an initial rotational
velocity. Then, the dogs are released and create
dynamics simulation (Figure 6). During the simu-
lation, a random torque is intermittently applied to
the dogs.

Falling character: a character consisting of
twenty-nine rigid bodies falls on a floor due to
gravity. As the viewer moves away from the char-
acter, the view-dependent dynamics automatically
rigidifies some joints (Figure 1) but preserves the
overall look of the motion (Figure 7).

Please refer to the video to see the corresponding



motions.

6.2 Limitations

The approach presented in this paper has essen-
tially two limitations:

• Our view-dependent metric is only semi-
predictive. We do not currently have a (not
overly) conservative way to bound the visual
error caused by a simplification. We only es-
timate this error a priori, by making an as-
sumption on the effect of a joint acceleration
on the global articulated-body motion.

• Because of the way we combine acceleration
metrics with visibility estimations, the error
threshold set by the user is not as intuitive as
it should be. However, the graceful, “contin-
uous” degradation of the dynamics produced
by our algorithm when the threshold or dis-
tance vary makes it relatively easy to choose
this parameter.

7 Conclusion and Future Work

In this paper, we have introduced a method for
view-dependent simulation of articulated-body dy-
namics. We have first discussed the general prob-
lem of simplifying a simulation based on visual
criteria, a question which seems to have received
relatively little attention in the past. We have
showed how this problem raises a number of new
challenges, even though it is strongly related to the
well-known geometric simplification problem. Fo-
cusing on articulated-body dynamics, we have pro-
posed semi-predictive motion metrics, which com-
bine predictive error metrics based on joint accel-
erations with visibility estimations. The metrics,
based on bounding volume hierarchies or graphics
hardware visibility queries, allow us to automati-
cally simplify a simulation based on visual crite-
ria. We have demonstrated our approach in several
scenarios and showed that our approach allows a
user to finely trade between visual quality and per-
formance. The dynamics are gracefully simplified
as the distance to the viewer, or the error threshold,
is increased.

Besides addressing the limitations mentioned
above, we would now like to consider perceptual
factors (e.g. [29]). In particular, we would like
to perform user studies and examine how these
studies could lead to more general view-dependent
simulation methods.

References
[1] Roy Featherstone. A divide-and-conquer articulated body algo-

rithm for parallel o(log(n)) calculation of rigid body dynamics.
part 1: Basic algorithm. International Journal of Robotics Re-
search 18(9):867-875, 1999.

[2] Roy Featherstone. A divide-and-conquer articulated body algo-
rithm for parallel o(log(n)) calculation of rigid body dynamics.
part 2: Trees, loops, and accuracy. International Journal of
Robotics Research 18(9):876-892, 1999.

[3] G. Debunne, M. Desbrun, M.-P. Cani, and A. H. Barr. Dynamic
real-time deformations using space and time adaptive sampling. In
Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, 2001.

[4] E. Grinspun, P. Krysl, and P. Schroeder. Charms: a simple frame-
work for adaptive simulation. ACM Transactions on Graphics,
21(3), 2002.

[5] L. Li and V. Volkov. Cloth animation with adaptively refined
meshes. In Proceedings of the Twenty-eighth Australasian con-
ference on Computer Science, 2005.

[6] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke
with an octree data structure. ACM Transactions on Graphics
(SIGGRAPH 2004 Proceedings), 2004.

[7] K. Ward, M.C. Lin, L. Joohi, S. Fisher, and D. Macri. Model-
ing hair using level-of-detail representations. In Proceedings of
Computer Animation and Social Agents, 2003.

[8] F. Bertails, T.-Y. Kim, M.-P. Cani, and U. Neumann. Adap-
tive wisp tree - a multiresolution control structure for simulat-
ing dynamic clustering in hair motion. In Proceedings of ACM-
SIGGRAPH/Eurographics Symposium on Computer Animation,
2003.

[9] D. O’Brien, S. Fisher, and M. C. Lin. Automatic simplification of
particle system dynamics. In Proceedings of Computer Animation,
2001.

[10] S. Redon, N. Gallopo, and M. C. Lin. Adaptive dynamics of ar-
ticulated bodies. In ACM Transactions on Graphics (SIGGRAPH
2005), 24(3), 2005.

[11] D. A. Carlson and J. K. Hodgins. Simulation levels of detail for
real-time animation. In Proceedings of Graphics Interface, 1997.

[12] F. Perbet and M.-P. Cani. Animating prairies in real-time. In Pro-
ceedings of the 2001 symposium on Interactive 3D graphics, 2001.

[13] S. Chenney and D. Forsyth. View-dependent culling of dynamic
systems in virtual environments. Proceedings of the 1997 sympo-
sium on Interactive 3D graphics, 1997.

[14] S. Chenney, J. Ichnowski, and D. A. Forsyth. Dynamics modeling
and culling. IEEE Computer Graphics and Applications, 1999.

[15] J. Beaudoin and J. Keyser. Simulation levels of detail for plant mo-
tion. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation, 2004.

[16] C. O’Sullivan and J. Dingliana. Collisions and perception. ACM
Transactions on Graphics, 20(3), 2003.

[17] Carol O’Sullivan, John Dingliana, Thanh Giang, and Mary K.
Kaiser. Evaluating the visual fidelity of physically based anima-
tions. In SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pages
527–536, New York, NY, USA, 2003. ACM Press.

[18] J. Harrison, R. A. Rensink, and M. Van De Panne. Obscuring
length changes during animated motion. ACM Transactions on
Graphics 23(3), 2004.

[19] C. O’Sullivan. Collisions and attention. ACM Transactions on
Applied Perception, 2005.

[20] Ronen Barzel, John F. Hughes, and Daniel N. Wood. Plausi-
ble motion simulation for computer graphics animation. In Pro-
ceedings of the Eurographics workshop on Computer animation
and simulation ’96, pages 183–197, New York, NY, USA, 1996.
Springer-Verlag New York, Inc.

[21] Stephen Chenney and D. A. Forsyth. Sampling plausible solutions
to multi-body constraint problems. In SIGGRAPH ’00: Proceed-
ings of the 27th annual conference on Computer graphics and in-
teractive techniques, pages 219–228, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.



[22] Christopher D. Twigg and Doug L. James. Many-worlds browsing
for control of multibody dynamics. ACM Trans. Graph., 26(3):14,
2007.

[23] H. Hoppe. View-dependent refinement of progressive meshes.
ACM Transactions on Graphics (SIGGRAPH 1997 Proceedings),
1997.

[24] D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and
R. Huebner. Level of detail for 3d graphics. Morgan Kaufmann
Publishers, 2003.

[25] C. H. Lee, A. Varshney, and D. W. Jacobs. Mesh saliency. In ACM
Transactions on Graphics (SIGGRAPH 2005), 24(3), 2005.

[26] S. Redon and M. C. Lin. An efficient, error-bounded approxima-
tion algorithm for simulating quasi-statics of complex linkages. In
Computer-Aided Design, 38, pp. 300-314, Elsevier, 2006.

[27] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: a hierarchical
structure for rapid interference detection. In ACM Transactions on
Graphics (SIGGRAPH 1996), 1996.

[28] NVIDA. SDK White Paper - Occlusion Query, Checking for Hid-
den Pixels. NVIDIA, 2004.

[29] P. S. A. Reitsma and N. S. Pollard. Perceptual metrics for character
animation: Sensitivity to errors in ballistic motion. ACM Trans-
actions on Graphics (SIGGRAPH 2003 Proceedings), 22(3):537–
542, 2003.



Figure 7: View-dependent dynamics simplification of a falling character. Our algorithm automatically
simplifies the dynamics of the falling character while preserving the overall visual aspect of the
impact (e.g. legs motion, see also Fig. 1 for a close-up on the final frames.).

Figure 8: Performance of our algorithm depending on visual error thresholds. As the visual er-
ror threshold e increases, the number of active nodes is automatically decreased by the view-
dependent algorithm (left), and the computational cost is reduced (right).

Figure 9: Performance of our algorithm depending on the viewer’s distance. Our algorithm automat-
ically decreases the number of active joints when the distance d between the viewer and the
pendulum increases (left), reducing the computational cost of the simulation (right).


