High-performance Penetration Depth Computation for Haptic Rendering

Young J. Kim

http://graphics.ewha.ac.kr Ewha Womans University

Issues of Interpenetration

- Position and orientation of the haptic probe, governed by the user through the haptic device
- Interpenetration in haptic simulation is unavoidable

Penalty-based Response

• Penetration depth (PD) is required for computing penalty-based contact response

Previous Work on PD

- Convex polytopes -[Cameron and Culley86], [Dobkin93], [Agarwal00], [Bergen01], [Kim et al. 04]
- Non-convex polyhedra -[Kim02],[Redon and Lin06], [Lien08a,b], [Hachenberger09]
- Polygon soups [Je et al. 12]
- Distance fields [Fisher and Lin01], [Hoff02], [Sud06]
- Pointwise PD [Tang et al. 09]
- Generalized PD [Ong and Gilbert96], [Ong96], [Zhang07], [Tang et al. 12]
- Volumetric PD [Wellner and Zachmann09]

Challenges

- Penetration depth (PD)
 - Is very expensive to compute accurately
 - May not handle arbitrary geometry and topology
- Current practice
 - Hacks

→Slow, inconsistent, geometrically unstable

Goal

- Recent research results
 - Pointwise
 - Translational
 - Generalized
- Recent results on 6DoF haptic rendering

M. Tang, M. Lee, Y. J. Kim, Interactive Hausdorff Distance Computation for General Polygonal Models, SIGGRAPH 2009

Pointwise Penetration Depth

Pointwise Penetration Depth

 Defined as deepest interpenetrating points

One-sided Hausdorff Distance

 \mathcal{A}

Felix Hausdorff (1868 - 1942) \mathcal{B}

 $h(\mathcal{A},\mathcal{B}) = \max_{\mathbf{a}\in\mathcal{A}} \left(\min_{\mathbf{b}\in\mathcal{B}} \|\mathbf{a}-\mathbf{b}\|\right)$

One-sided Hausdorff Distance

 $h(\mathcal{B},\mathcal{A}) \equiv \max_{\mathbf{b}\in\mathcal{B}} \left(\min_{\mathbf{a}\in\mathcal{A}} \left\| \mathbf{a} - \mathbf{b} \right\| \right)$

Two-sided Hausdorff Distance

 $H(\mathcal{A},\mathcal{B}) \equiv \max\left(h(\mathcal{A},\mathcal{B}),h(\mathcal{B},\mathcal{A})\right)$

Shape Deviation Measure

Hausdorff distance quantifies deviation
 between two geometric models

Large Hausdorff Distance Value

Small Hausdorff Distance Value

Pointwise Penetration Depth

- **1.** Find intersection surfaces ∂A and ∂B
- **2.** Penetration depth = $H(\partial \mathcal{A}, \partial \mathcal{B})$

Pointwise Penetration Depth

Demo (40K Bunny vs 40K Bunny)

Benchmark: Pointwise PD

Model complexity - 50K tri Avg. Performance - 3.88ms/pair

Benchmark: Pointwise PD

Model complexity - 3.5K tri Avg. performance - 0.95ms/pair

C. Je, M. Tang, Y. Lee, M. Lee, Y. J. Kim, PolyDepth: Real-time Penetration Depth Computation using Iterative Contact-space Projection, ACM Transactions on Graphics 2012

Translational Penetration Depth

(Translational) Penetration Depth [Dobkin 93]

 Minimum translational distance to separate overlapping objects

Penetration Depth

Configuration Space

Translational Configuration Space

workspace configuration space

Translational C-space = Minkowski Sums

Minkowski Sum

$P \oplus Q = \{\mathbf{p} + \mathbf{q} \mid \mathbf{p} \in P, \mathbf{q} \in Q\}$ $P \oplus -Q = \{\mathbf{p} - \mathbf{q} \mid \mathbf{p} \in P, \mathbf{q} \in Q\}$

Video credit: D. Halperin

Combinatorial Explosion

Complexity of Minkowski Sum
 – O(m³n³) with m and n triangles

WHC, April 14th 2013

PD Estimation

Continuous Collision Detection

- Source codes are available
 - <u>http://graphics.ewha.ac.kr/FAST</u> (2-manifold)
 - <u>http://graphics.ewha.ac.kr/C2A</u> (polygonsoups)
 - <u>http://graphics.ewha.ac.kr/CATCH</u> (articulated)
 - <u>http://graphics.ewha.ac.kr/CCQ</u> (for motion planning)

WHC, April 14th 2013

In-Projection = LCP

(Linear Complementarity Problem)

PolyDepth: Iterative Optimization \mathbf{q}^{f} **Out-Projection** \mathbf{q}_2 **q**₀ q **In-Projection** Penetration Depth **Boundary** of Minkowski Sums

PolyDepth Performance

- Spoon: 1.3K triangles
- Cup: 8.4K triangles
- Time: 1~7 msec

PolyDepth Performance

- Bunny: 40K triangles
- Dragon: 174K triangles
- Time: 2~15 msec

Comparison against Exact Solution

M. Tang, Y. J. Kim, Interactive Generalized Penetration Depth Computation for Rigid and Articulated Models using Object Norm, Ewha Technical Report 2012

Generalized Penetration Depth

Generalized PD

Generalized Penetration Depth

 Minimal rigid motion to separate overlapping objects

Franslational PD

Definition of Generalized PD

• Defined in 6D configuration space

 $PD_{g}^{\sigma}(\mathcal{A},\mathcal{B}) = \left\{\min\left\{\sigma_{\mathcal{A}}(\mathbf{q},\mathbf{o})\right\} \| interior(\mathcal{A}(\mathbf{q})) \cap \mathcal{B} = \emptyset, \mathbf{q} \in \mathcal{F}\right\}$

X

4

 \mathbf{q}_1

Distance metric

 \mathbf{q}_0

- Object norm
 - The average squared displacement

$$\sigma_{\mathcal{A}}(\mathbf{q}_0,\mathbf{q}_1) = \frac{1}{V} \int_{\mathbf{x}\in\mathcal{A}} (\mathbf{x}(\mathbf{q}_0) - \mathbf{x}(\mathbf{q}_1))^2$$

1. Free-configuration selection

2. Contact-space projection

3. Constrained optimization

4. Re-projection

5. Iteration until finding a locally-optimal solution

PolyDepth++ for Articulated Model

• Object norm for a link

PolyDepth++ for Articulated Model

 Constrained optimization in higher dimension

Minimize
$$\sigma(\mathbf{q}) = \sum_{i=0}^{n-1} \sigma_i$$

subject to: $\mathbf{C}(\mathbf{q} - \mathbf{q}_c) \ge 0$
 $\mathbf{n} \times |\mathbf{q}|$

WHC, April 14th 2013

Generalized PD Performance

Generalized PD for Rigid Body

Software Implementations

• Source codes are available

- <u>http://graphics.ewha.ac.kr/polydepth</u> (translational PD)
- <u>http://graphics.ewha.ac.kr/hdist</u>
 (Hausdorff distance and pointwise PD)

Y. Li, S. Zhang, Y. J. Kim, Six-degree-of-freedom Haptic Rendering using Translational and Generalized Penetration Depth Computation, IEEE WHC 2013

HAPTIC APPLICATIONS

Penalty-based Haptic Rendering using Translational and Generalized PD

Translational PD

Generalized PD

Penalty-based Haptic Rendering using Translational and Generalized PD

Translational PD

Generalized PD

Benchmarks Setup

6DoF PHANToM Premium 1.5

Performance

Summary

- Pointwise PD
- Translational PD
- Generalized PD
- 6DoF haptic rendering with translational and generalized PD

Future Work

- Parallel haptic rendering
 - Asynchronous contact handling
 - GPU-based parallelization
- Haptic rendering for

 Articulated models
 Massive models

High Performance GPU-based Collision Queries

5. Results

HW: Intel Quad-core 2.66GHZ CPU 4.0GB memory NVIDIA Geforce GTX580 SW : Windows 7 & VS 2008 CUDA 4.0

Real-time Collision Culling of a Million Bodies on GPUs ACM Trans on Graphics 2010 Real-time Adaptive Signed Distance Fields for Rigid and Deformable Models on GPUs

Acknowledgements

- Min Tang, Xinyu Zhang, Minkyoung Lee, Yi Li (Ewha)
- Fuchang Liu (NTU)
- Changsoo Je (Sogang)
- KEIT/MKE (IT core research)
- NRF

Thank you for listening!

http://graphics.ewha.ac.kr