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Abstract— We propose a fully autonomous system for mobile
robot exploration in unknown environments. Our system employs
a novel frontier detection algorithm based on the fast front
propagation (FFP) technique and uses parallel path planning to
reach the detected front regions. Given an occupancy grid map
in 2D, possibly updated online, our algorithm can find all the
frontier points that can allow mobile robots to visit unexplored
regions to maximize the exploratory coverage. Our FFP method
is six∼seven times faster than the state-of-the-art wavefront
frontier detection algorithm in terms of finding frontier points
without compromising the detection accuracy. The speedup can
be further accelerated by simplifying the map without degrading
the detection accuracy. To expedite locating the optimal frontier
point, We also eliminate spurious points by the obstacle filter and
the novel frontier region (FR) filter. In addition, we parallelize
the global planning phase using the branch-and-bound A*,
where the search space of each thread is confined by its best
knowledge discovered during the parallel search. As a result,
our parallel path-planning algorithm operating on 20 threads is
about 32 times faster than the vanilla exploration system that
operates on a single thread. Our method is validated through
extensive experiments, including autonomous robot exploration
in both synthetic and real-world scenarios. In the real-world
experiment, we show that an autonomous navigation system
using a human-sized mobile manipulator robot equipped with
a low-end embedded processor that fully integrates our FFP and
parallel path-planning algorithms.

I. INTRODUCTION

Exploring unknown regions is a primitive research motiva-
tion for embodied agent navigation problems. Indeed, seeking
unknown space is a common objective to drive many types of
mobile robot platforms that operate in diverse environments,
ranging from exploration in extreme environments like Mars
exploration rovers [1] to consumer-level products such as
home cleaning bots [2] that affects our daily life.

Specifically, map building is one of the most fundamental
mobile robot tasks where the exploring agent should be aware
of visited places to discover a new destination that is likely
to provide abundant information about the navigating envi-
ronment. As such, it is evident that locating new places and
prioritizing their visiting orders based on reasonable criteria
would improve the agent’s navigation performance in terms
of its exploration efficiency.

While numerous studies have been conducted with regards
to the efficient navigation strategies, the standard approach
is detecting frontier region in the occupancy grid map in 2d,
which is defined as the boundary of an unexplored free region,
followed by global motion planning to generate an optimal
path to reach the detected frontier regions. Needless to say,
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exploration accuracy and efficiency are two essential features
for evaluating the procedure of frontier point detection.

In this paper, we propose a simple and fast approach
for autonomous exploration in unknown environments while
maintaining its exploration accuracy sufficient for practical
applications in mobile robot navigation problems. Our method
exploits the idea of fast front propagation (FFP) algorithm
[3][4] which quickly propagates front grid-cells to identify
the boundaries between the known and unknown regions in
a given 2d grid map. In FFP, the scanning (i.e., propagation)
procedure is dependent on the number of map cells, making
the algorithm runs in linear time in terms of the number of map
cells in the map. As a result, our method is much faster than
the wavefront detection (WFD) [5] algorithm. Moreover, we
have achieved further acceleration by hierarchically exploiting
the regular structure of the 2d grid map, allowing the frontier
detection algorithm insensitive to the online map update
frequency. Thanks to this speed-up, we can globally locate
frontier regions by processing the entire map images even
if the size of the map grows up to cover a very large scale
environment –e.g. Deutsche museum dataset [6] covering an
area consisting of 5.4K × 3.3K cells at 5cm resolution.

In addition, we introduce two novel filters, namely frontier
region (FR) filter and obstacle filter, to eliminate spurious fron-
tier points detected by the FFP algorithm to minimize visiting
redundant sites. Afterward, the filtered points are efficiently
handled by the global, parallel path-planner, which distributes
the path plan tasks to multiple processors based on the branch-
and-bound technique to early-terminate unnecessary search
works. We observed that employing both the two filters and
parallel path-planning improved the planning time up to 32
times compared to a serialized planner.

In summary, our main contributions in this paper are:
• We propose a novel linear-time algorithm for frontier

detection that runs faster than the WFD by 6 ∼ 7
times without degrading the detection accuracy. This
performance can be further accelerated by two folds by
simplifying the input maps.

• We propose two novel filters (FR filter and obstacle filter)
that can eliminate spurious frontier points to accelerate
the path planning step.

• Our global path-planner is effectively parallelizable using
the branch and bound, showing scalable performance in
terms of the number of participating CPU threads.

• We show a practical application of our algorithm solv-
ing a real-world 2d space exploration problem using a
human-sized mobile manipulator running entirely on the
embedded multi-core CPUs.



II. RELATED WORK

The idea of locating unexplored regions to visit is also
known as frontier point detection problem, which was first
introduced by Yamauchi [7]. His work defines the boundary
regions between free space and unexplored space as frontiers.
Later on, Yamuchi’s work impacted many following research
works.

For instance, Burgard et al. [8] expands the idea of covering
frontier cells with a multi-robot team. This method exploits
the mobile robots’ current position to assign an appropriate
target goal to each robot. As a result, the robots collaborate
on exploring unknown spaces more efficiently than operating
a single robot for the same task.

[5] revisits the frontier detection problem by introducing
wavefront frontier detector (WFD). WFD uses two bread-first
search (BFS) schemes in order to locate frontier boundaries.
Beginning from the robot’s position, their algorithm employs
a BFS scan over the unoccupied cells until a frontier cell is
detected. Then, a new BFS is executed to find the neighboring
frontier point regions starting from the detected frontier point.
In Keidar’s work, WFD is expanded to the fast frontier
detector (FFD) to achieve further speed-up. However, since
the method relies on the incoming scanning, it resorts to
a database structure to globally manage previously detected
frontier points. [9] proposed two variants of WFD called
EWFD and NaiveAA, which could be categorized into another
branch of WFD.

Locating frontier regions in the entire occupancy grid map
could become a time-consuming process when covering a
large space. A workaround solution is limiting the exam-
ining space to the local region that the current scanning
process reaches. [10] introduced an efficient updating strategy
that copes with only the newly modified map cells. RRT
exploration [11] ameliorates the efficiency issue employing
rapidly exploring random tree (RRT), yet [12] reports that
RRT exploration has a limited performance in narrow corridor
cases.

Osulic’s dense frontier detector (DFD) [12] offers a sub-
map based approach built on top of SLAM cartographer [6].
DFD exploits the properties of pose graph SLAM, such as
considering active local maps only to speed up the frontier
detection procedure. One drawback of this method is a lack of
compatibility with other types of SLAM systems since DFD is
tightly coupled with SLAM cartographer. [13] is a spinning-off
research of DFD since Sun’s work is implemented on top of
SLAM cartographer similar to DFD. This method introduces
a dilation step prior to detecting the frontier region to discard
unreachable frontier points.

In the context of parallel planning, there have been many
types of research to parallelize A* search methods [14]. For
instance, simple parallel A* search (SPA) [15] uses a single
open list shared over whole threads. SPA is relatively simple
to implement, while the shared memory causes extra tim-
ing overhead on the thread synchronization. The randomized
methods [16], [17] are typical decentralizing strategies for
alleviating the synchronization overhead, yet could suffer from
a large amount of search overhead due to redundant expansion

of the same node by different threads.[18] exploits GPU
computation power to parallelize priority queues.However,
relying on GPU power could be infeasible for low power light-
weighted embedded systems. In contrast, our parallel search
method is simple to work on grid maps and cost maps and
shows scalable performance in terms of participated parallel
processors.

Fig. 1: The map image consists of black, gray and white
pixels that represent free, unknown, and occupied map cells,
respectively. The red points and green crosses are super-
imposed on top of the map to show frontier regions and their
frontier points, respectively.

III. PRELIMINARIES

A. Problem Formulation

A 2d grid map M consists of three different types of cell
classes: (1) occupied cellsMo corresponding to obstacles, (2)
unoccupied or free cellsMf corresponding to the space where
a robot can freely navigate, and (3) unknown or unexplored
cells Mu. Therefore, the occupancy of a cell x, M(x), is
labeled as

M(x) =


OCCUPIED if M(x) ∈Mo

UNKNOWN if M(x) ∈Mu

FREE if M(x) ∈Mf .

(1)

A set of unknown cells neighboring either free or occupied
cells is defined as a boundary region B. A set of unknown
cells neighboring free cells is defined as a frontier region F
which is a subset of B; see Figure 1.

Information gain (IG) stands for the size of frontier region
|F|, where | · | refers to the cardinality of a set. ci is the
geometric centroid of i th frontier region Fi. Subsequently,
i th frontier point fi is the closest point to ci among all the
points belonging to Fi. That is,

fi = {x | argmin
x

D(ci, x) and x ∈ Fi} (2)

where D() is the Euclidean distance operator. Lastly, f∗ refers
to the optimal frontier point that has the shortest path among
all frontier candidate points; f∗ is set to a goal point for global
path planning.
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Fig. 2: Autoexplorer overview. The frontier detector finds a set of candidate frontier points {fi}, which are subsequently fed
into the global planner to identify the optimal frontier point f∗.

B. Autoexplorer System Overview

In this work, we assume that a mobile robot senses its
surroundings with its range sensor during an exploration task,
thereby constructing 2d occupancy grid maps with a SLAM
module. The frontier detection algorithm takes a new map
whenever it is updated by the map generator. Then, two
filtering processes acting on the cost-map (obstacle filter)
and grid-map (FR filter) eliminate spurious candidate frontier
points. The resulting frontier points are efficiently handled by
parallel global planner based on the A* search with branch
and bound in order to select the optimal frontier point f∗

and generates the global path plan using f∗ as a goal point.
Finally, the robot moves toward the goal under the guidance
of both the global planner and a local planner using DWA [19]
avoiding obstacles. Figure 2 illustrates the overall architecture
of our exploration system.

IV. THE FRONTIER DETECTION ALGORITHMS

A. Frontier Region Detection using Fast Front Propagation

The fast marching level-set method [3] is a numerical tech-
nique to solve the boundary value problems in diverse fields
of studies. The boundary value problem can be understood
as an inside/outside classification problem or identifying the
boundaries of particular regions, for instance, such as edges in
a 2D image. Notably, Kim et al. [4] used this idea to find the
boundary surface of swept volumes of complex polyhedrons.
In this approach, the method propagates a front inward from
arbitrarily far seeding points to arrive at the outer boundaries
of the arrangement of open surfaces.

Our work was inspired by this work to locate frontier
regions of given 2D maps. In addition, we further speed up
the whole process by taking a multi-resolution approach for
the map.

Algorithm 1 summarizes the pseudo-codes of our fast front
propagation (FFP). The method consists of two consecutive
procedures: 1) marching front (MARCHFRONT) and 2) ex-
tracting frontiers (EXTRACTFRONTIERS). Marching front
scans over the entire map image to locate and store boundary
cells. Extracting frontiers revisits the stored boundary cells to
extract frontier regions.

At the beginning of the algorithm, a seed point is appended
to a queue Q (Line 9). In the main loop, a cell q ∈ Q and

Algorithm 1: Fast front propagation (FFP) algorithm

1 Function EXTRACTFRONTIERREGION ( input map
M) :

2 Empty the scan list P
3 Initialize the lattice vector L as FAR
4 Empty the front queue Q
5 Initialize the frontier region list F
6 MARCHFRONT()
7 EXTRACTFRONTIERS()
8 Function MARCHFRONT():
9 Add a seed index s to Q

10 while Q is nonempty do
11 Extract a trial point index q from Q
12 L(q)← KNOWN
13 for each neighboring point index n around q

do
14 if L(n) is not KNOWN then
15 if M(n) is UNKNOWN then
16 if L(n) is FAR then
17 Add n to Q
18 L(n)← TRIAL
19 end
20 end
21 else
22 Add q to P
23 end
24 end
25 end
26 end
27 Function EXTRACTFRONTIERS():
28 for each point index p in P do
29 if For all neighboring indexes n around p,
30 P(n) are not OCCUPIED then
31 Add p to F
32 end
33 end
34 return F

its neighboring cells are inspected whether they are boundary
cells (i.e., q ∈ B) or not (Line 14-24). For example, if



any neighboring cell of q is not an UNKNOWN cell, then
q is at the boundary region because q is an UNKNOWN
cell. Subsequently, the boundary cells are stored in a linear
list P (Line 23) during the main loop process since this
cell potentially belongs to the frontier region. Moreover, L
stores the information on whether the examined cell has been
previously visited or not.

One can naively initialize the seed point to be an unexplored
point, arbitrarily far from the current robot position (e.g.
the origin of the entire map image), whereas a better idea
estimates the nearest, unexplored point from the explored map
using the extent of the map. Moreover, it is unnecessary to
propagate through the entire grid map, if the size of the map
is given. For example, Cartographer [6] builds a map with the
currently explored region while Gmapping [20] uses a fixed
map size (4K × 4K). When an input map is given, we pad
the border of the map with UNKNOWN labels. For example,
a N × N sized map expands to (N + p) × (N + p), where
p is the size of the padding. Subsequently, FFP chooses the
(0,0) coordinate of the expanded map as the seed point.

EXTRACTFRONTIERS revisits all the cells stored in P to
check whether any of its neighboring cells are FREE (Line
29) or not. If all neighboring points are not OCCUPIED, then
the function has found a frontier cell. Thus, this point needs
to be collected (Line 30).

Once the frontier region F is identified, computing the fron-
tier point f is performed as follows. We cluster frontier regions
by computing a connected component for each frontier region,
followed by computing their centroids and the corresponding
frontier point.

B. Complexity Analysis

The marching front procedure handles three different data
structures, two linear lists L and P, and a queue Q whose
sizes are bounded by the number of map cells. Moreover, the
number of cells to process in extracting frontiers is linear to the
size of P only. Therefore, our method has O(n) complexity
where n is the number of map cells. Note that the WFD runs
a BFS inside another BFS loop, making the O(n2) complexity
in the worst-case scenario.

C. Multi-resolutional Maps

Section IV-B discusses that the performance of our method
is dependent on the number of map cells. Thus, reducing the
map size to coarser levels would considerably speed up the
whole process. We convert the SLAM maps to 2D map images
and successively down-sample them to build a multi-resolution
hierarchy [21] of map grids. [5] briefly mentions the possibility
of using coarse level approximation without further analysis
while we have carried out a number of experiments in Section
VI-A to concretely provide the effect of down-sampled map-
images in terms of both run-time and the number of frontier
point detection.

D. Eliminating Spurious Frontier Points

Processing a map with the FFP algorithm may generate
a high number of redundant frontier point candidates. These
candidates often include unreachable cells such as a cell

cluster surrounded by obstacles or false detection caused by
incorrect laser sensor scanning. Motion planning to all of
such cells would cause severe inefficiency in the exploration
process.

To eliminate the spurious frontier candidates, we first em-
ployed the obstacle filter, where we reject points surrounded
by obstacles. To do this, we compute the cost-map score [22]
of obstacle-presence probability for a small patch around the
frontier point candidate. Then, we reject the points whose
cost is higher than a predetermined threshold. Secondly, we
proceed to the FR filtering, which extracts a small patch
around the candidate cell on the occupancy grid map, followed
by computing the boundary measure ρ of the patch P:

ρ = 1− 2

∣∣∣∣ |Pu|
|P|
− 1

2

∣∣∣∣ (3)

where |P| and |Pu| refer to the total number of cells in
the patch and the number of unknown cells in the patch,
respectively. A candidate point fc with ρ ≈ 1 is likely to
be on the boundary of the unknown regions (the green point
in Figure 3), which potentially yields a high probability of
discovering abundant map information on visiting it.

It is possible that frontier point candidates computed from
coarse-level maps are often found at inaccurate locations when
the points are transformed to original map coordinate. Such
location errors need to be corrected prior to computing their
boundary measures. To this end, we successively push the
frontier point’s location outward in spiral direction until the
point neighbors at least one FREE cell.

UNKN

FREE

𝜌𝜌 = 1

Frontier 
Point

Fig. 3: An ideal frontier region patch where the number of
FREE cells and UNKNOWN cells are the same, leading to
ρ = 1.

V. PARALLEL PATH PLANNING

It is not unusual to locate several frontier points at the end
of the frontier detection process, especially at the beginning
stage of exploration. One exploration strategy is visiting the
closest frontier point f ∗ among the available frontier points.
Such a strategy involves computing the path length to each
of the individual frontier point. This path-length computation
would be time consuming if the number of frontier points is
high and parallel computation would reduce the overall time.

A. A* Search

A* algorithm [23] is an efficient graph-search method to
find an optimal path from the starting to the goal node. Given
a starting node, A* traverses the graph by choosing the node
having the minimal cost function:

F(n) = G(n) + H(n), (4)



where G(n) computes the cost from the starting node ns
to the current node n, and H(n) is a heuristic function to
estimate the cost from n to the goal node ng .

B. Parallel A* Search with Branch and Bound

An A* algorithm should satisfy the following theorems to
satisfy the completeness [24].

Theorem 1 (Consistent heuristic): A heuristic function H()
is consistent if H(n) <= C(n, n′) + H(n′) where C(n, n′) is
the cost of moving from the node n to n′ .

Corollary 1 (Monotonic cost): In consistent A* search,
F(n) is a monotonic increasing function. –i.e.) ∀n, n′ ∈
M, F(n′) ≥ F(n).

Now we assume the following to preserve the underlying
consistency property over the entire map, and the grid map
consistency is guaranteed.

Assumption 1: A path is calculated on the occupancy grid
map, where each cell on the map is classified into three distinct
labels (FREE, OCCUPIED, UNKNOWN)

Theorem 2 (Grid map consistency): A* search with Eu-
clidean heuristic on the occupancy grid map is consistent.

Proof: If theorem 2 is false, then ∃n, n′, H(n) >
C(n, n′) + H(n′) must be true. Let H(n) := D(n, ng),
which refers to Euclidean distance between the current node
and the goal node. Rewriting the equation, we need to
see if D(n, ng) > C(n, n′) + D(n′, ng) is valid. Accord-
ingly, D(n, ng) > D(n, n′) + D(n′, ng) must hold because
C(n, n′) >= D(n, n′). However, D(n, ng) − D(n′, ng) is
equivalent to D(n, n′), making D(n, n′) > D(n, n′), which
is an invalid statement.

Our parallel A* search algorithm using branch and bound
combined with Corollary 1 and Theorem 2 works as follows:

1) Branch: we launch many CPU threads Ti’s to perform
A* search concurrently by computing Fi in Eq. 4.

2) Bound: whenever the thread Ti encounters ε < Fi during
A* search, Ti is terminated. Here, ε is an upper bound
of all Fi values and is initialized to a large value.

3) If Ti successfully finishes the search and Fi < ε, ε is
updated to Fi (ε := Fi).

Algorithm 2 summarizes the pseudo-code of our parallel
A* search algorithm. Similar to the standard A* search, our
algorithm initializes two lists of the open and the closed nodes
and keep track of them (Line 4-5). Then, each thread starts
performing A* search based on the bound condition (Line 6).
The function exploits the bound condition to terminate the
thread (Line 9). Lastly, the algorithm updates the bounding
parameter ε if the thread has found a better path (Line 15-
17). The algorithm finally selects the optimal frontier point f ∗

which has the shortest path length. Subsequently, the trajectory
to f ∗ is used as the global plan to guide the robot.

VI. EXPERIMENTS AND RESULTS

In this work, we tested our system on two different types of
simulators: 1) Tesse-Unity simulator [25] and 2) AWS Gazebo
simulator [26]. The former offers realistic rendering of scenes
while the latter provides a more practical robotic model with

Algorithm 2: Parallel A* with Branch and Bound

1 Function MULTI-PROCESSING(MP) BRANCH AND
BOUND(BB) A* SEARCH ( a set of frontier points
{f} ) :

2 ε :=∞
3 launch Ti and do in parallel
4 Empty the priority buffer qo

5 Empty the buffer qc

6 while fj ∈ {f } is not processed do
7 Dequeue open cells n from qo

8 Update cell n’s cost F(n)
9 if min(F(n)) > ε then

10 Abandon fj and relanunch the thread Ti
11 end
12 Enqueue new discovered cells into qo

13 Enqueue n into qc

14 end
15 if F(fj ) < ε then
16 ε ← F(fj )
17 end
18 end
19 return the optimum f ∗ s.t. F(f ∗) := ε

20

rich sensory data. We observed that our system successfully
completed all environments available in both simulators. These
results are qualitatively reported in Figure 4.

A. Performance of the Frontier Detection Algorithm

To quantitatively measure the performance of our frontier
detection algorithm (FFP), we collected a sequence of map
images while driving an agent in the 2nd Tesse-scene. The
size of the covered area gradually increases over time as the
robot moves around. We measured the performances of WFD
vs. FFP in terms of both run-time and the number of detected
frontier points. Figure 5(a) shows that FFP is generally faster
than WFD while the number of detected points of the two
methods are almost identical, as shown in Figure 5(b). The
speed-up is much more prominent when the down-sampling
procedure is applied. FFP with a double down-sampled map
image is about 14 times faster than the original FFP and 87
times faster than WFD.

This run-time experiment highlights the benefits of down-
sampled map images, but it also raises another question: to
what extent does the down-sampling procedure affect the
number of detected frontier points? To answer this question,
additional experiments were undertaken and reported in Figure
5(c). This figure shows how the down-sampled map images
affects the number of detected frontier points. The figure
implies that thresholding the cluster size of a frontier region
with IG > 6 is almost equivalent to the performance of
applying single down-sampling - see Section III-A for the
definition of IG. That is, if we consider only the reasonable
size of frontier region clusters, the coarse level analysis still
finds all the necessary frontier points. Here, IG > 6 refers
to a cluster with a cell size greater than 6, meaning a region
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Fig. 4: (a) An example snap shot taken from the Tesse-envs. (b)∼(e) are the exploration results of four different Tesse-envs.
The red dots represent agent’s trajectories. (f) and (h) are AWS-book-store and AWS-small-house environments. (g) and (i) are
the corresponding exploration results, respectively. The blue dots represent agents’ trajectories.

with 0.3m since the map resolution was set as 0.05m. Note
that 0.3m is the size of an ordinary home cleaning robot such
as Turtlebot, and IG = 12 is about the size of a warehouse
robot –e.g., Fetch robot. Thus, with single down-sampled map
images, our algorithm can find all frontier regions that a
Turtlebot-sized robot.

B. Ablation Study on the Parallel Path Planning

It is significant to analyze how the ideas of filtering and par-
allel A* developed in IV-D and V impacts the final efficiency
of our method. To this end, beginning from the vanilla version1

of our frontier detector, we measured the performance of our
system by progressively adding improvements: 1) filtering, 2)
parallel A* without branch and bound (MP naive), and 3)
parallel A* with branch and bound (MPBB). The experiment
result shown in Figure 6(a) highlights the significance of
each improvement technique’s contribution to the proposed
system. For example, we observed that the MPBB approach
was approximately 4.2 times faster than MP naive. When
our system equipped with filtering and branch-and-bound
utilizes 20 threads, we have observed about 32 times speed
up compared to the vanilla version of the system. Figure 6(b)
shows the scalability of our parallel search algorithm in terms
of the number of participating threads.

C. Real World Experiments

1) Large-scale benchmark: We tested our system on
Deutsche museum bag-file [6] to see the performance of our
method on pose graph optimization type SLAM. This dataset
explores a very large scale space that increases up to 18M
cells, including many potential frontier regions. We observed
that our system successfully completed the dataset, and so did
the dense frontier detector (DFD).

1Here, the vanilla system refers to a serialized global planner operated with
the whole FFP outputs without any filtering process

Unfortunately, however, it was not straightforward to com-
pare the performance of our method against the DFD algo-
rithm for the following two reasons. First, DFD computes
local frontier regions on every laser scan message, while
global frontier contours are computed only when pose graph
optimization is performed. Conversely, our method requires
subscribing to the global map messages generated from the
SLAM system to find global frontier points. This underlying
difference hinders us from making the timing comparison
between the two methods. Second, DFD does not offer a
selection procedure to find frontier points from the detected
frontier contours, while the selection function is one of the
essential steps to determine the final frontier points. To address
this issue, we attempted to apply the same connected compo-
nent labeling algorithm used in our approach to cluster the
points found in the DFD method. However, unfortunately, the
clustering procedure on DFD ends up with many fragmented
small components that are supposed to be grouped together
while our method successfully finds meaningful clusters.

To the best of our knowledge, this fragmentation problem
is associated with a sub-map-based frontier detection strategy.
That is, these methods narrow down the scanning area to active
sub-maps only, guaranteeing fast running time at the cost of
imperfect alignment when the frontier regions are transformed
and merged into the global coordinate frame.

Therefore, we found that a quantitative analysis of the two
methods is an infeasible task. Instead, we show Figure 8 to
present that the performance of our method is qualitatively
comparable to DFD in terms of finding frontier regions.

2) Experiments with a real robot: Lastly, we tested our
system on the Fetch robot’s onboard CPU (Intel i5 Haswell)
and memory (16GB). In this experiment, the Fetch robot
was operated in fully autonomous mode relying on our SW
framework shown in Figure 2. We deployed our Fetch robot
on the entire floor of Ewha-SK Telecom Center. Figure 9
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Fig. 5: (a) Our FFP method is about six times faster than WFD, which can be further accelerated even by down-sampling
map sizes. Here, FFP(ds1) refers to applying FFP on a single down-sampled map-image. Note that FFP on a double down-
sampled map-image was about 14 times faster than FFP on the original map size and 87 times faster than WFD on the original
map size. Yaxis of this picture is the log-scaled execution time. While FFP is faster than WFD, the two methods scored a
similar performance in terms of the number of detected frontier points as shown in (b). (c) shows the effect of down-sampling
map-images on the number of detected frontiers. The experiments were performed in AWS-small-house-world.
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Fig. 6: (a) Our parallel planning approach is about 4.2 times
faster than the parallel A* search without branch and bound.
Note that our approach was about 32 times faster than the
vanilla system (red line) when 20 threads were operating.
(b) shows the relative run-time improvement w.r.t the single-
threaded planning. All experiments were carried out in the
same grid-map generated from AWS-small-house-world.

(a) (b) (c)

Fig. 7: (a) The input map image and (b) the corresponding
frontier regions found by FFP followed by the clustering. (c)
DFD locates a similar amount of frontier cells. However, many
of them are not connected in the global coordinate frame.

shows the trajectories of the robot and the covered area. The
robot took 396s for the exploration time in order to cover the
entire floor when the full system architecture with filtering and

(a) FFP (b) FFP (ds1) (c) FFP (ds2) (d) DFD

Fig. 8: The detected frontier regions on a large scale map-
image of the Deutsche museum: (a) FFP result in green lines.
(b) FFP with single down-sampling (c) FFP with double down-
sampling, and (d) DFD in red lines. Note that the FFP results
on down-sampled map images are qualitatively comparable to
other cases.

parallel A* with four CPU threads was employed. We also
carried out an identical experiment with the vanilla navigation
system. In this case, the robot had spent 671s to explore the
entire floor.

VII. CONCLUSION

We have introduced a novel frontier point detection based
autonomous exploration system in unknown environments.
Our FFP is more efficient than WFD in the worst-case
analysis. Moreover, we have shown that FFP could be further
accelerated by down-sampling map sizes while maintaining
sufficient accuracy in detecting essential frontier regions.
Besides, our method is capable of eliminating spurious point
candidates, preventing tours to unreachable goals. Lastly,
our global planning module is efficiently parallelized by the
branching and bound style A* algorithm. Both synthetic and
real-world experiments support that our method is applicable



(a) (b) (c)

(d) (e) (f) (g)

Fig. 9: Autonomous navigation in the real-world environment: (a) the Fetch robot approaches the first frontier point (b) the
robot arrives at the first target, then locates the second frontier point in turn (c) the Fetch arrives at the third goal, discovering
new areas subsequently. (d), (e), and (f) are the views from the Fetch robot’s perspective at (a), (b), and (c), respectively. (g)
is the covered area of Ewha-SK Telecom center where blue dots represents the robot’s exploration trajectory

to the real-world mobile robot map building problem. In the
future, we plan to tackle large-scale dynamic space covering
problems using our system. To attain this goal, we need to
make the system robust against moving obstacles, such as
human objects.
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