
C2A: Controlled Conservative Advancement for
Continuous Collision Detection of Polygonal Models

(http://graphics.ewha.ac.kr/C2A)

Min Tang, Young J. Kim and Dinesh Manocha

Abstract— We present a simple and fast algorithm to per-
form continuous collision detection between polygonal mod-
els undergoing rigid motion for interactive applications. Our
approach can handle all triangulated models and makes no
assumption about the underlying geometry and topology. The
algorithm uses the notion of conservative advancement (CA),
originally developed for convex polytopes [1], [2]. We extend
this formulation to general models using swept sphere volume
hierarchy and present a compact formulation to compute the
motion bounds along with a novel controlling scheme. We have
implemented the algorithm and highlight its performance on
various benchmarks. In practice, our algorithm can perform
continuous collision queries in few milli-seconds on models
composed of tens of thousands of triangles.

I. INTRODUCTION

Collision detection and distance computation are important
problems in robotics, computer graphics and physically-
based modeling. In particular, reliable and fast collision
detection algorithms are required for robot motion planning
and dynamics simulation to enforce the non-penetration con-
straints. Collision detection has been extensively studied over
the past two decades by many researchers in the field. Most
of the earlier approach on collision detection focused on
static scenes, where the queried objects are placed stationary
in space. Recently, research has focused on dynamic scenes,
where objects undergo motion. In a few dynamic scenarios,
the entire motion trajectory of an object may be known in
advance as a function of time. In most practical scenarios, the
object’s motion is not known a priori and only a few sampled
locations are known. For example, in sampling-based robot
motion planning, randomized planners generate collision-free
configurations of a robot using sampling algorithms and use
these samples to compute a continuous collision-free path
from the initial to goal configurations.

At a broad level, the dynamic collision detection algo-
rithms can be subdivided into two categories: discrete and
continuous. Discrete algorithms check for collision only
at sampled configurations using static collision detection
algorithms. In consequence, they may miss collision between
two successive configurations, also known as the tunneling
problem. On the other hand, continuous collision detection
(CCD) algorithms can resolve the tunneling problem by

M. Tang and Y. J. Kim are with the Department of Computer Sci-
ence and Engineering at Ewha Womans University in Seoul, Korea.
{tangmin|kimy}@ewha.ac.kr

D. Manocha is with the Department of Computer Science at the Univer-
sity of North Carolina at Chapel Hill, U.S.A. dm@cs.unc.edu

first computing a continuous, motion interpolation between
successive configurations and use the interpolated motion to
check for collisions. Thus, CCD never misses any potential
collision between configurations. CCD algorithms are used
in sampling-based motion planning to perform the local
planning step [3], [4], [5], and in robot dynamics to find the
first time of contact to apply responsive forces [6]. However,
the major drawback of CCD algorithms are that they are
typically slower than the discrete counterpart. Many well-
known libraries for sample-based motion planning such as
MSL1 mostly use discrete collision checking for local plan-
ning. Most of the prior algorithms for continuous collision
detection are limited to polyhedral or articulated models,
which take into account the connectivity or topological
information. These approaches can be rather slow on general
models that are represented as polygon-soup models with no
connectivity information.

Main Results: In this paper, we present a simple and
fast algorithm that performs CCD for polygon-soup models
undergoing rigid motion at highly interactive rates. We make
no assumptions about the model geometry and topology as
long as the model is tessellated. Our CCD algorithm uses an
extension of the conservative advancement (CA) technique,
which was initially proposed for convex polytopes[1], [2], as
described in Sec.III. The CA formulation requires two func-
tional components: distance computation and motion bound
calculation. One can use any separation distance computation
algorithm for polygonal models. In our case, we adopt the
well-known algorithm based on swept sphere volume (SSV)
available as part of PQP library [7]. We also present a novel,
analytic method to efficiently calculate the motion bound
of SSVs, as described in Sec.IV. Moreover, we accelerate
the performance of our CCD algorithm by using controlled
advancement techniques that are described in Sec.V. We have
implemented our algorithm and highlight the performance on
different benchmarking models with varying complexities,
as shown in Sec.VI. In practice, our algorithm can perform
CCD in a fraction of milli-seconds on models represented
using tens of thousands of triangles. Furthermore, our new
algorithm is faster than the prior specialized CCD algorithms
for polyhedral models.

1http://msl.cs.uiuc.edu/msl/

II. PREVIOUS WORK

In this section, we give a brief survey of prior work on
continuous collision detection and motion bound computa-
tions.

A. Continuous Collision Detection

Different types of CCD algorithms have been proposed
in the literature. At a broad level, these algorithms can be
classified into the following: algebraic equation solvers [8],
[9], [10], [11], swept volume formulations [12], adaptive
bisection approach [6], [3], kinetic data structures (KDS) ap-
proach [13], [14], [15], Minkowski sum-based formulations
[16] and conservative advancement [1], [2], [17].

However, most of these approaches are unable to perform
very fast CCD queries on general polygonal models. A few
of these algorithms can handle polygon-soup models such
as [11], [3]. Redon et al. [11] uses a continuous version
of the separating axis theorem to extend the static OBB-
tree algorithm [18] to CCD and demonstrates real-time per-
formance on polygonal models. But the algorithm becomes
overly conservative when there is a large rotational motion
between two configurations. In practice, this algorithm is
slower than Zhang et al.’s algorithm [17] for polyhedral
models. More recently, Zhang et al. have extended their
approach to articulated models [19], but each link in the
model should be a polyhedron. Redon et al. [20] describe an
extension of [11] to articulated models and their algorithm
suffers from a similar problem. Schwarzer et al.’s algorithm
[3] is based on a conservative condition to guarantee a
collision-free motion between two configurations, but the
condition may become overly conservative when an object
slides over another object. Moreover, the motion bound is
also quite conservative and is mainly designed for simple
prismatic and revolute joints, or their combinations.

B. Motion Bound Calculation

Schwarzer et al. [3] propose a method to bound the motion
trajectory of a moving robot with constant translational and
rotational velocities. The upper bound on the motion trajec-
tory is computed by taking the weighted sum of differences
between all the configuration parameters along the motion
trajectory. This bound is used for local planning in MPK
motion planning library.

Redon et al. [21] bound the motion trajectory of linear
swept spheres (LSS) by using interval arithmetic and the
resulting bound has been used for dynamic collision check-
ing between a moving avatar and the virtual environment.
However, these methods do not take into account how close
a robot and obstacles are displaced from each other (i.e.
undirected motion bound) and the motion trajectory may not
be fully utilized during the bound calculation.

Lin [1] and Mirtich [2] propose a ballistic motion as a mo-
tion trajectory for CCD and compute a directed motion bound
along the closest direction between two convex polytopes
by bounding the ballistic rotational velocity. Zhang et al.
[17] use the extremal vertex query to find a directed motion

bound for an object moving with constant translational and
rotational velocities.

III. OVERVIEW

In this section, we first introduce our notation and the def-
initions used throughout the paper. Next, we briefly explain
the basic idea of conservative advancement (CA) and give
an overview of our algorithm.

A. Preliminaries

Let A and B be two polygon-soup models in 3D, where
A is movable under rigid transformation M(t). Without loss
of generality we assume that B is fixed. Further, we assume
that the initial and final configurations of A are given as q0
and q1 at time t = 0 and t = 1, respectively. We also define
A(t) = M(t)A. The problem of CCD can be formulated as
checking whether Eq. 1 has a feasible solution:

{ t ∈ [0,1] | A(t)∩B 6= /0}. (1)

Furthermore, if Eq. 1 has a solution, we also compute the
minimum value of t that satisfies this equation, known as the
first time of contact, τ .

Fig. 1. Conservative Advancement of LSS.

CA (conservative advancement) is a simple technique that
computes a lower bound of τ between two convex objects
by repeatedly advancing A by ∆ti toward B while avoiding
collisions [1], [2]. In this case, ∆ti is calculated based on
a lower bound on the closest distance d(A(t),B) between
A(t) and B, and an upper bound µ on the motion of A(t)
projected onto d(A(t),B) per unit second (also shown in
Fig. 1); i.e.

∆ti ≤
d(A(t),B)

µ
. (2)

Then, the first time of contact τ can be obtained by re-
peatedly calculating the time-step ∆ti and summing it (i.e.
τ = ∑∆ti) until d(A(τ),B) becomes less than some user-
specified threshold. Notice that the CA works only for convex
objects. We extend this formulation to arbitrary polygon-soup
models using swept sphere volume (SSV) hierarchies.

B. Our Approach

We assume that only the initial and final configurations
of A are given as q0,q1. Using these configurations, we
compute a continuous motion M(t) to interpolate q0,q1 with
constant translational and rotational velocities. If we know
the actual motion of A a priori(e.g. [15]), we approximate

the motion with M(t) in a piecewise manner. A similar inter-
polating method was also used in [6] and [17]. [6] pointed
out when the simulation time-step is small, the difference
between the actual objects’ motions and the interpolated
paths is negligible.

As a preprocess, we compute a bounding volume hierarchy
(BVH) for polygon soups, in particular the SSV hierarchy.
SSV is a BV consisting of one of the three types, namely
point swept sphere (PSS), line swept sphere (LSS) and
rectangle swept sphere (RSS). These bounding volumes can
contain a set of polygon primitives. The root-level SSV node
bounds the entire set of primitives, and the SSV hierarchy
is recursively built by partitioning the polygonal primitives,
and bounding each partition with an SSV node until the leaf-
level SSV node contains only a single primitive. More details
on the construction and its use for distance and proximity
computations are available in [7].

At run-time, we apply CA to the nodes in the SSV
hierarchy in a selective manner. As shown in Eq. 2, CA
requires two components: closest distance and motion bound.
Thus, we need to compute the closest distance between SSVs
and its motion bound. The distance is obtained as a byproduct
of the SSV algorithm; however, we still need to compute a
tight upper bound on the motion, µ for SSV, which will be
explained in Sec. IV.

A critical computation on the algorithm is deciding which
nodes in the hierarchy are the likely candidates for CA.
One choice is to use nodes that the BVH traversal stops
at during the closest distance query, called the front nodes.
In practice, these nodes have a higher probability to realize τ

than the others. However, the depth of the front nodes in the
hierarchy can be high and thus the number of nodes in the
front can be rather large. This affects the performance of our
CCD algorithm since we need to apply CA to these nodes
repeatedly. In Sec. V, we propose a novel scheme, called
controlled CA (C2A), to control the depth of the front nodes
during the CA iterations, thereby improving the performance
of CCD algorithm significantly. The main idea is that during
the first few CA iterations, we do not need to compute the
closest distance exactly, but towards the final CA iterations,
we perform exact distance computation. The choice of the
level of distance approximation determines the depth of front
nodes or the number of nodes used in our computation.

IV. MOTION BOUND CALCULATION

In this section, we present our algorithm to compute the
motion bound, µ . This bound is computed for the swept
sphere volumes (SSVs) and triangle primitives when these
primitives undergo rigid transformation M(t) with constant
translational velocity v and rotational velocity ω .

A bounding volume, SSV consists of PSS, LSS and RSS,
which are defined as the Minkowski sums between a point,
line and rectangle with a sphere in 3D, respectively (see a 2D
illustration of SSV in Fig.2). Let α denote a BV or triangle
primitive of A. Further, let pi be a point on α , n be the
closest direction between α,β , ri be a vector from the origin
of the local body frame attached to A, to pi. The maximum

trajectory length (or motion bound) of α , projected onto n
is given as [17]:

µ = max
i

1∫
0
|ṗi(t) ·n|dt

≤ |v ·n|+
1∫
0

max
i
|ω×n · ri(t)|dt

≤ |v ·n|+
1∫
0

max
i
|c(t) · ri|dt,

(3)

where c(t) = R−1(t)n×ω and R is the rotational component
of M(t). In Eq. 3, the first term is constant. Therefore, our
goal is maximize the second term. Notice that c(t) is coplanar
and forms a plane S whose normal is ω . The maximal value
of the second term in Eq. 3 can be obtained by the maximal
projection of ri onto S as shown below.

Lemma 1 Let α be a SSV. Then, the directed motion bound
µ of α is:

µ ≤ |v ·n|+‖ω×n‖
(
r +max

(∥∥c⊥i
∥∥)) ,

where ∥∥∥c⊥i
∥∥∥=
‖ci×ω‖
‖ω‖

,

and r is the radius of a sphere used for constructing SSV,
and ci are the endpoints of the generator primitives2 of SSV.
In other words, for PSS, LSS and RSS, i = 1,1 . . .2,1 . . .4,
respectively.

Proof: We start by analytically representing ri for the
three kinds of SSV as follows (also see Fig. 2):
• For PSS, ri = c1 + r, where c1 is the endpoint of PSS

and r is some point on a sphere centered at the origin
with a radius of r .

• For LSS, ri ∈ (sc1 +(1− s)c2 + r) and s ∈ [0,1], where
c1 and c2 are both end points of the line in LSS. r is
defined similarly as for the PSS.

• For RSS, ri ∈ (sc1 +(1− s)c2 + µ (c3−c1))+r, s∈ [0,1]
and µ ∈ [0,1] where c1, c2 and c3 are the three endpoints
of the rectangle in RSS. r is defined similarly as above.

Furthermore, we can say that ri = r+k for all three types
of SSV, where k is the vector from the origin of the body
frame of A to a point on the generator on SSV. This results
in:

|c(t) · ri|=
∣∣∣c(t) · ri

⊥
∣∣∣≤‖c(t)‖·∥∥∥ri

⊥
∥∥∥≤‖c(t)‖r+‖c(t)‖

∥∥∥k⊥
∥∥∥ ,

(4)
where k⊥ is the projection of k to the plane S. It is known
that the projection of a point to a plane is a point, the
projection of a line to a plane is a line or a point, and the
projection of a rectangle to a plane is a quadrangle or a line.
Since the projection of k to S should be inside the projection
of the generator primitive of SSV to S, we get the following
relationship:

2The generator primitive of PSS, LSS and RSS is a point, a line, and a
rectangle, respectively.

∥∥∥k⊥
∥∥∥≤max(

∥∥∥c⊥i
∥∥∥) ,

∥∥c⊥i
∥∥ =

‖ci×ω‖
‖ω‖

(5)

By using Eq.’s 3, 4, 5, we obtain the result of the lemma.

We can compute a motion bound for a triangle primitive
by projecting the triangle’s vertices to bound the range of
projection.

Lemma 2 Let α be a triangle primitive. Then the directed
motion bound µ of α is given as:

µ ≤ |v ·n|+‖ω×n‖
(
max

(∥∥c⊥i
∥∥))

where ∥∥∥c⊥i
∥∥∥=
‖ci×ω‖
‖ω‖

and ci are the vertices of α , and i = 1 . . .3.

Proof: Similar to Lemma 1

c3

c1 c2

c4
r

r

r
c1

c2

c1 ri

ri

Fig. 2. Swept Sphere Volume in 2D. From left to right: PSS, LSS and
RSS.

V. CONTROLLED ADVANCEMENT

We first analyze the cost function for performing CCD and
then present our controlled advancement scheme to minimize
the cost function.

A. Cost Analysis

We present a simple formula to measure the performance
of our CCD algorithm as follows:

T = 2TBV H +Nτ ×NBV ×TCA, (6)

where T is the total cost function for CCD, TBV H is the cost
of BVH construction of a polygonal model, Nτ is the total
number of CA iterations to find τ , NBV is the number of
bounding volume pairs that CA is applied to, and TCA is the
cost to evaluate the CA equation in Eq. 2. In our case, TBV H
and TCA are constants. As a result, the main goal is to design
efficient methods to reduce Nτ and NBV .

B. Balancing Nτ and NBV

As explained in Sec. III-B, we apply CA operations to the
front nodes of the BVH that are computed during the closet
distance query. Therefore, NBV corresponds to the number
of the front nodes. In order to decrease NBV , we reduce or
control the depth of the front nodes by terminating the BVH
traversal early during the closest distance query; see Fig.
3. The result of early termination yields only approximate

Algorithm 1 C2A: Controlled Conservative Advancement
Input: BVH nodes nA,nB, current closest distance dcur,
current advancement step ∆tcur, CA controlling variable w
Output: Updated dcur and ∆tcur
{Initially, C2A(BV HA.root, BV HB.root ∞, 1, w) is called
and w < 1. }

1: if # of CA iterations > Rmax or dcur < Dthreshold then
2: w = 1;
3: end if
4: if nA and nB are leaf nodes then
5: d = Distance(nA,nB); {Using the PQP library}
6: if(d < dcur) dcur = d;
7: ∆t = CalculateCAStep(d,nA,nB); {Using Eq. 2}
8: if(∆t < ∆tcur) ∆tcur = dt;
9: return dcur,∆tcur

10: end if
11: if nA is not a leaf node then
12: A = nA.le f tchild; B = nA.rightchild; C = D = nB;
13: d1 = Distance(A,C); d2 = Distance(B,D);
14: else
15: A = B = nA; C = nB.le f tchild; D = nB.rightchild;
16: d1 = Distance(A,C); d2 = Distance(B,D);
17: end if
18: if d2 < d1 then
19: if d2 < wdcur then
20: return C2A(B,D,dcur,∆tcur,w);
21: else
22: ∆t = CalculateCAStep(d2,B,D);
23: if(∆t < ∆tcur) ∆tcur = ∆t;
24: end if
25: if d1 < wdcur then
26: return C2A(A,C,dcur,∆tcur,w);
27: else
28: ∆t = CalculateCAStep(d1,A,C);
29: if(∆t < ∆tcur) ∆tcur = ∆t;
30: end if
31: else
32: if d1 < wdcur then
33: return C2A(A,C,dcur,∆tcur,w);
34: else
35: ∆t = CalculateCAStep(d1,A,C);
36: if(∆t < ∆tcur) ∆tcur = ∆t;
37: end if
38: if d2 < wdcur then
39: return C2A(B,D,dcur,∆tcur,w);
40: else
41: ∆t = CalculateCAStep(d2,B,D);
42: if(∆t < ∆tcur) ∆tcur = ∆t;
43: end if
44: end if

distance bound, typically smaller than the actual closest
distance. Therefore, the advancement time-step ∆ti based on
Eq. 2 would also be less tight since d(A(t),B) is smaller. In
our experiments, we have observed that when i < j, ∆ti �
∆t j, in particular when i is equal to one or two. Therefore,
when i is small (i.e. during the first few iterations of CA),
having a smaller value of d(A(t),B) results in a useful value
of ∆ti. However, decreasing NBV for some i’s may result in
more CA iterations Nτ and in that case reducing both Nτ

and NBV might be hard. We need to balance Nτ and NBV to
reduce the cost function, Eq. 6. Thus, to prevent an excessive
number of iterations, for each iteration, we check whether the

approximate distance is smaller than some threshold value or
whether Nτ becomes too big. If it is the case, we don’t use
early termination and traverse all the way to the leaf nodes
to compute the closest distance.

There are different ways to enforce the early termination
during the closest distance query. Our choice is that during
the recursive call for distance query, we provide a faked,
small distance value as an initial distance value3 to the
recursive function. This will cause the recursive distance
query to terminate early when the recursion cannot improve
the faked, current distance value. Finally, when the entire
recursive traversal is over, we collect the front nodes where
the recursion stops and use them for the CA operations.

The pseudocode of our algorithm is given in Algorithm
1. In our implementation, we use w = 0.3∼ 0.5 for the first
few iterations to control the advancement; we reset w = 1
toward the end of CA iteration.

Front with
Actual Distance

Front with
Approximate Distance

Fig. 3. Controlling the Depth of Front Nodes. This image shows
the front nodes with different depth values. The different front nodes are
obtained by terminating the recursion early during the closest point query
with approximate and exact distance values.

C. Early Rejection

We use a simple, early rejection scheme to further improve
the CCD performance. During the CA iterations, if we find a
node n of bounding volume pairs whose advancement time-
step ∆ti is greater than some upper bound value Λi, we prune
away the node and its children nodes. Initially, we set Λ1 = 1

but for kth iteration, set Λk = 1−
k−1
∑

i=1
∆ti. This works as the

condition ∑∆ti > 1 imply no collision for the node n during
[0,1] and thus we can prune it away.

VI. RESULTS AND DISCUSSIONS

In this section, we describe our implementation and high-
light its results on various benchmarks. We implemented
our CCD algorithm using C++ on a PC running Windows
XP, equipped with an Intel Core Q9450 2.66GHz CPU and
2.75GB main memory. We use a public-domain library PQP
for SSV hierarchy construction and distance queries, and
modify it to suit for our purpose. We benchmark our CCD al-
gorithm using models of varying complexities, ranging from
1K to 105K triangles, as shown in Fig. 5. The performance
over all the benchmarks is shown in Table I.

We adopt the benchmarking setup used in [17] to measure
the performance of our algorithm; one of the models moves
from a random configuration q0 toward another random

3Under normal circumstances, this value should be initialized as the
infinity or some cached distance from last time instance.

configuration q1 against another model fixed in space (e.g.
see Fig. 6). We repeat this test for more than 200 trials
and record the performance. We use three benchmarks corre-
sponding to polygon-soup models; Club VS Club, Gear VS
Gear and Hammer VS CAD piece. In case of club VS club,
the interpolated motion between q0 and q1 yields collisions
for all the trials (i.e. τ < 1); in gear VS gear, two thirds
of trials generate collisions but for the rest there are no
colliding configurations. In the hammer VS CAD model, the
configurations are similar to the gear VS gear scenario. As
shown in Table I, the controlled advancement improves the
performance of our CCD algorithm by a factor of 1 ∼ 28.
In Fig. 4, we show the number of front nodes (NBV) for
each trial. By using controlled advancement, NBV reduces
by 82.3% on average.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6
x 104

Simulation Step

N
o.

 o
f F

ro
nt

 N
od

es

Fig. 4. Number of Front Nodes. The red line shows the number of front
nodes using controlled conservative advancement whereas the blue one is
without it for the Club VS Club benchmark

We also compare the performance of our algorithm with
that of FAST [17] using the same benchmarks: Bunny VS
Bunny, Bunny Dynamics, and Torusknot VS Torusknot (as
shown in 6). For these benchmarks, we do not take advantage
of the connectivity information in the models, though FAST
exploits it. However, the performance of our algorithm is
better than that of FAST due to controlled advancement. Fi-
nally, our software implementation is available for download
at http://graphics.ewha.ac.kr/C2A.

VII. CONCLUSIONS

In this paper, we have presented an interactive CCD
algorithm for polygon-soup models. The algorithm is based
on tight motion bound calculation for swept sphere volumes
(SSV) and conservative advancement to adaptively control
the performance. One of the limitations of our algorithm is
that distance calculation based on SSV is still a bottleneck.
For future work, we would like to extend our approach to
articulated models, N-body scenarios and deformable models
[19], [22], [23]. Moreover, we are interested in using the
algorithm for different robotic applications such as motion
planning and dynamics.

ACKNOWLEDGEMENTS

This research work was supported in part by the KRF Grant
funded by the Korean Government (KRF-2007-331-D00400) and
the IT R&D program of MKE/IITA (2008-F-033-01, Development
of Real-time Physics Simulation Engine for e-Entertainment). Di-
nesh Manocha was supported in part by NSF, ARO, Intel and

Benchmark # of Triangles CCD without C2A CCD with C2A FASTCollision Collision-free Total
Club VS. Club 104.8K (each) 14.97 3.6 – 3.6 –
Gear VS. Gear 25.6K (each) 55.49 2.96 0.0048 1.98 –

Hammer VS. CAD piece 1.7K, 2.6K 7.68 2.82 0.0052 1.89 –
Bunny VS. Bunny 69.7K (each) 8.64 4.11 0.048 2.77 4.01
Bunny Dynamics 26.4K (each) 0.41 5.54 0.11 0.22 0.31

Torusknot VS. Torusknot 34.6K (each) 6.8 2.81 0.41 2.01 1.96

TABLE I
Benchmark Statistics. Each row represents, from left to right, benchmarking type, the number of triangles in each model, the performance of CCD

algorithm without controlled advancement (in milli-sec), the performance of CCD algorithm with controlled advancement (in milli-sec) with only

collision-free configurations, colliding configurations, average query time over collision-free and colliding configurations, and performance of FAST.

Fig. 5. Benchmarking Models. From left to right (with a triangle count): Gear (25.6K), Club (104.8K), CAD Piece (2.6K), Hammer (1.7K), Torusknot
(34.6K), Bunny1 (26K), Bunny2 (70K).

0 50 100 150 200 250 300
0
5

10
15
20
25

0 50 100 150 200 250 300
0

1

2
x 104

0 50 100 150 200 250 300
0

10
20
30
40
50

Simulation Step

Number of Interations

Number of Front Nodes

Number of Contacts

Fig. 6. Profiling Torusknot vs Torusknot. Top: the red, blue, yellow, and
green torusknot represents the initial q0 and final q1 configurations of A,
the configuration of B, and the configuration of A at τ . From the second
row to bottom: the number of CA iterations Nτ , the number of front nodes
NBV , and the number of contacts for the benchmark.

RDECOM. We would also like to thank Xinyu Zhang, Liangjun
Zhang and Xin Huang for their help.

REFERENCES

[1] M. C. Lin, “Efficient collision detection for animation and robotics,”
Ph.D. dissertation, University of California, Berkeley, CA, Dec. 1993.

[2] B. V. Mirtich, “Impulse-based dynamic simulation of rigid body
systems,” Ph.D. dissertation, University of California, Berkeley, 1996.

[3] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact collision checking
of robot paths,” in Workshop on Algorithmic Foundations of Robotics
(WAFR), Dec. 2002.

[4] S. Redon and M. Lin, “Practical local planning in the contact space,”
Proc. of IEEE ICRA, 2005.

[5] L. Zhang and D. Manocha, “Constrained motion interpolation with
distance constraints,” in International Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2008.

[6] S. Redon, A. Kheddar, and S. Coquillart, “Fast continuous collision
detection between rigid bodies,” Proc. of Eurographics (Computer
Graphics Forum), 2002.

[7] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Department of Computer Science,
University of North Carolina, Tech. Rep. TR99-018, 1999.

[8] J. F. Canny, “Collision detection for moving polyhedra,” IEEE Trans.
PAMI, vol. 8, pp. 200–209, 1986.

[9] Y.-K. Choi, W. Wang, Y. Liu, and M.-S. Kim, “Continuous collision
detection for elliptic disks,” IEEE Transactions on Robotics, 2006.

[10] B. Kim and J. Rossignac, “Collision prediction for polyhedra under
screw motions,” in ACM Conference on Solid Modeling and Applica-
tions, June 2003.

[11] S. Redon, A. Kheddar, and S. Coquillart, “An algebraic solution to
the problem of collision detection for rigid polyhedral objects,” Proc.
of IEEE Conference on Robotics and Automation, 2000.

[12] K. Abdel-Malek, D. Blackmore, and K. Joy, “Swept volumes: Founda-
tions, perspectives, and applications,” International Journal of Shape
Modeling, 2002.

[13] P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang,
“Deformable free space tiling for kinetic collision detection,” in
Workshop on Algorithmic Foundations of Robotics, 2001, pp. 83–96.

[14] D. Kim, L. Guibas, and S. Shin, “Fast collision detection among
multiple moving spheres.” IEEE Trans. Vis. Comput. Graph., vol. 4,
no. 3, pp. 230–242, 1998.

[15] D. Kirkpatrick, J. Snoeyink, and B. Speckmann, “Kinetic collision
detection for simple polygons,” in ACM Symposium on Computational
Geometry, 2000, pp. 322–330.

[16] G. van den Bergen, “Ray casting against general convex objects with
application to continuous collision detection,” Journal of Graphics
Tools, 2004.

[17] X. Zhang, M. Lee, and Y. J. Kim, “Interactive continuous collision
detection for non-convex polyhedra,” The Visual Computer, pp. 749–
760, 2006.

[18] S. Gottschalk, M. Lin, and D. Manocha, “OBB-Tree: A hierarchical
structure for rapid interference detection,” Proc. of ACM Siggraph’96,
pp. 171–180, 1996.

[19] X. Zhang, S. Redon, M. Lee, and Y. J. Kim, “Continuous collision
detection for articulated models using Taylor models and temporal
culling,” ACM Transactions on Graphics (Proceedings of SIGGRAPH
2007), vol. 26, no. 3, p. 15, 2007.

[20] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha, “Fast continuous
collision detection for articulated models,” in Proceedings of ACM
Symposium on Solid Modeling and Applications, 2004.

[21] S. Redon, Y. J. Kim, M. C. Lin, D. Manocha, and J. Templeman,
“Interactive and continuous collision detection for avatars in virtual
environments,” in Proceedings of IEEE VR Conference, 2004.

[22] N. Govindaraju, D. Knott, N. Jain, I. Kabal, R. Tamstorf, R. Gayle,
M. Lin, and D. Manocha, “Collision detection between deformable
models using chromatic decomposition,” ACM Trans. on Graphics
(Proc. of ACM SIGGRAPH), vol. 24, no. 3, pp. 991–999, 2005.

[23] S. Curtis, R. Tamstorf, and D. Manocha, “Fast collision detection
for deformable models using representative-triangles,” Proc. of ACM
Symposium on Interactive 3D Graphics and Games, 2008.

