

S7698:

CanvoX: High-Resolution VR Painting for Large Volumetric Canvas

Yeojin Kim¹, Byungmoon Kim², Jiyang Kim¹ and Young J. Kim¹ Ewha Womans University¹, Adobe Research²

Fundamental Questions in VR Painting

- Can we recolor, erase, and mix the color?
- Can we draw and mix transparent object?
- How much can we extend canvas?
- How detail can we draw?
- How can we navigate 3D canvas?

Challenges

- Large Canvas with high detail
 - Deep Level Octree
 - Expensive refinement and coarsening
 - Dynamic Tree on GPU
 - Random access \rightarrow need complex data structure
 - CPU-GPU transfer cost
- Rendering
 - Real-time ray casting (resolution $1680 \times 1512 \times 2$, 90fps~)
 - Tree traversal time
 - Accumulated error along the ray

CanvoX Model

[Kim15] Byungmoon Kim, Panagiotis Tsiotras, Jeong-Mo Hong , and Oh-young Song, Interpolation and parallel adjustment of center-sampled trees with new balancing constraints

- Strong 2-to-1 Balanced Tree [Kim15]
 - Root array(Uniform grid) + Tree
 - Simple primal-only tree
 - Maximum depth level : 26
 - Physical Unit : $0.3 \text{mm}^3 \sim 40 \text{km}^3$
- Each cell has
 - Parent ID
 - Child #0 ID
 - Flags depth, refine, coarsen, etc. ...
 - RGBA

GPU Side Octree

- GPU has shadow octree of CPU octree
 - Memory management benefits from CPU
 - Convert 1D Array Fields \rightarrow 2D Array Texture
 - Size of texture image : **30MB**
- Only updates **blocks** of texture
 - Block : $M \times N$ Texels
 - Brush causes only local changes with tree
 - Tree Index is located on same texel regardless of cell

Refinement and Coarsening

- At each frame, do only **one-level** refinement/coarsening
- Refinement/Coarsening will finished less than **#Max Depth frames**
- While tree traversal, color the cells and find cells to be refined simultaneously
- "Outside" cell helps to reduce tree traversal cost

... and Update Tree on GPU

Ray Casting in Large Canvas

Ray Casting in Large Canvas

Octree : 3-Neighbors

- Tree traversal from root to leaf at every sample points
- \rightarrow Tree traversal using neighbor cells with ray direction

- Thanks to strong 2-to-1 balance tree,
 - A cell always has 6 neighbors
 - 3 neighbors share the parent
 - (= Their ID can be computed by using offset)
 - 3 neighbors have different parent

→ If we precompute only 3 Neighbors, we can move to next neighbor directly

Using World Coordinate System

Using Local Coordinate System

Ray Casting with Local Coordinates

Foveated Rendering

With Screen resolution $W \times H$,

Screen Quad Tree

Summary

- Dynamic and Simple Octree both on CPU and GPU
 - Shadow octree on GPU and local updates
 - One-level refine/coarsen strategy
- Ray Casting in Large Canvas
 - 3-neighbor and ray casting with local coordinates
 - Foveated Rendering
- Future work
 - Performance optimization
 - Improve assistive tools
 - Isosurface Rendering

Thank you 😳

Ack. :

Project Webpage : <u>http://graphics.ewha.ac.kr/canvox/</u>

Yeojin Kim, <u>yeojinkim@ewhain.net</u>

Byungmoon Kim, <u>bmkim@adobe.com</u>

Jiyang Kim, <u>soarmin11@ewhain.net</u>

Young J. Kim, <u>kimy@ewha.ac.kr</u>