
Pacific Graphics 2018
H. Fu, A. Ghosh, and J. Kopf
(Guest Editors)

Volume 37 (2018), Number 7

Dynamic Deep Octree for High-resolution Volumetric Painting

in Virtual Reality

Yeojin Kim1 Byungmoon Kim2 Young J. Kim1

1Ewha Womans University, South Korea
2Adobe Systems Incorporated, USA

(a) A Sneaker (b) Spring Concert

Figure 1: Our dynamic tree allows interactive volumetric painting on a very large canvas (40km3) with high details (down to 0.3mm3).
Volumetric painting with ray casting supports transparency (green breeze in 1(b)) with a very high depth complexity. Unlike geometry-based
painting, recoloring and color mixing operations are easily extended from 2D painting. Artists can paint for several hours in virtual reality,
due to the hard real-time constraint for frame rates and low-latency update of dynamic octree.

Abstract

With virtual reality, digital painting on 2D canvas is now being extended to 3D space. In this paper, we generalize the 2D pixel
canvas to a 3D voxel canvas to allow artists to synthesize volumetric color fields. We develop a deep and dynamic octree-based
painting and rendering system using both CPU and GPU to take advantage of the characteristics of both processors (CPU
for octree modeling and GPU for volume rendering). On the CPU-side, we dynamically adjust an octree and incrementally
update the octree to GPU with low latency without compromising the frame rates of the rendering. Our octree is balanced and
uses a novel 3-neighbor connectivity for format simplicity and efficient storage, while allowing constant neighbor access time
in ray casting. To further reduce the GPU-side 3-neighbor computations, we precompute a culling mask in CPU and upload
it to GPU. Finally, we analyze the numerical error-propagation in ray casting through high resolution octree and present a
theoretical error bound.

CCS Concepts

•Computing methodologies → Virtual reality; Volumetric models; Rendering;

1. Introduction

With virtual reality (VR), digital painting on 2D surfaces is be-
ing extended into 3D volumes. VR-based 3D painting applications
have recently surged and are now widely accepted as a new art form
by artists. 3D painting is distinguished from traditional 3D model-

ing/rendering. While 3D modeling/rendering typically assumes a
team of artists performing a sequence of works such as modeling,
lighting, rendering, and composition, a 3D painting system allows
an artist to finish an 3D painting within her/his own budget [Kat17].
Also, a 3D painting system enables an artist, without physical con-
straints, to rapidly sketch a large scene and to directly manipulate

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

the color fields of the scene in 3D space rather than draw it indi-
rectly by adjusting materials and lighting.

State-of-the-art VR painting systems such as Tilt brush and Quill
[Goo15, Ocu16] are geometric painting systems that emit 2D sur-
face geometries as artists make brush strokes (Fig. 2(b)). These sys-
tems have their intrinsic boundaries. Color mixing between strokes
is not supported since overlaps between stroke geometries are in-
finitely thin, and hard and expensive to compute robustly. The sim-
ple recoloring of part of a stroke would be complicated since a tex-
ture map needs to be invoked such that updated colors can be stored
into the texture map. In addition, semi-transparent volume depic-
tion would be limited since efficient handling of a large number of
stroke geometries in high-depth complexity is nontrivial.

(a) Ours (b) Tilt Brush

Figure 2: Our volume painting system (a) allows trivial color mix-
ing and recoloring operations, which are very difficult to be imple-
mented in geometry-based painting systems. A state-of art system
(b) simply does not allow color interactions between strokes.

(a) Ours (b) Tilt Brush

Figure 3: In geometry-based painting (b), over-painting strokes
should be very carefully planned so that the new stroke is slightly
above previous strokes to avoid occlusion and z-fighting. However,
in (a), voxels can be simply added, erased, refined, coarsened, or
recolored with various color mixing modes.

In this paper, we explore a new route for VR painting in 3D
space: volumetric painting. Volumetric strokes applied to a 3D grid
are amenable to depicting both solid and non-solid shapes (see
green, translucent breeze in Fig. 1). Volumetric painting also natu-
rally supports color mixing. Moreover, artists can repeatedly apply
strokes to the same area until they are satisfied with the mixed color
pattern without considering occlusion and z-fighting, as demon-
strated in Fig.3(a), which is a very typical practice in 2D paint-
ing. Finally, the volumetric painting system naturally handles semi-
transparent strokes and renders the resulting semi-transparent vol-
ume using ray-casting.

On a 3D canvas, unlike a 2D planar canvas, perspective can be

compromised: distant objects in the background can be painted at
a relatively large size compared to the foreground objects - for ex-
ample, distant mountains can be painted at their actual sizes. This
requires a very large canvas support. For a large canvas, we use an
array of octrees of high depth (e.g. level 24 or higher). Using an
octree, we can maintain a very large canvas; e.g. a virtual canvas
with a painting space of up to 40 Km3 and with very fine details of
tiny voxels painted at a size of 0.3mm3 with respect to the typical
room-scale VR setup (see Fig. 1).

We believe that the volumetric painting system supporting very
large canvases with fine details using a highly adaptive tree is a
promising new direction as a new VR art style, and perhaps even
new fine art may be developed over time. In this paper, anticipating
to pave the new way for 3D painting art styles that can be persistent
in the future, we advance technology towards this overarching goal.

After extensive experiments and conversations with artists, we
have concluded that the following elements are required for an in-
teractive volumetric painting system in VR.

• Dynamic tree update: artists will continuously modify the under-
lying tree; we therefore need to update the tree dynamically.

• Constant frame rates: artists spend several hours painting in VR,
and consideration must therefore be given to mitigating the pos-
sibility of VR-sickness. One source of such sickness is hitching
or stuttering in the rendering frame rates, which should not be
compromised; the frame rates should stay constant.

• Low-latency stroke display: when an artist applies a stroke, the
tree should be modified immediately and rendered back to the
artist. Therefore, we require low latency for stroke display.

• Low memory consumption: when a very large canvas is used, we
found artists tend to paint a very large world and add details in
multiple locations. Thus, a low memory requirement is beneficial
for maintaining a large canvas.

To realize such requirements, the use of GPU is inevitable. How-
ever, using GPU alone would be lesser efficient than using CPU and
GPU together for the following reasons. First, a CPU can handle
complex tree adjustment and color blending operations in a more
versatile manner than a GPU. Second, a CPU has an independent
separate memory pool that can perform low-latency incremental
updates to the tree with uninterrupted rendering in a GPU. In this
way, we utilize one octree in a CPU for painting, and the other oc-
tree in a GPU for rendering. Overall, we propose incremental up-
date strategies from the CPU to the GPU that satisfy all the afore-
mentioned requirements. Finally, we solve the numerical issues in
traversing a high-depth octree. In summary, our contributions are
as follows:

• Interactive adjustment of a large octree in a CPU for painting
• Strategies to perform adaptive painting strokes and distributed

grid adjustment over multiple time steps
• Incremental, low-latency octree update to the GPU without ad-

verse impact on the already GPU-intensive volume rendering,
• New and simple octree neighbor connectivity with only three

connections per cell for fast traversal to neighboring cells
• Numerical error propagation analysis during ray traversal on a

high-depth octree
• Novel 3D volumetric field painting effects such as color pick-up

and color mix with adaptive grids.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

2. Related Works

In this section, we survey relevant octree works in the literature
including representation, update, and authoring techniques as well
as GPU-based ray-casting methods.

2.1. Adaptive Spatial Grids

2.1.1. Octree representation

Octree grids have been applied to various problems such as dis-
tance field generation [FPRJ00, KBSS01], texturing [DGPR02,
BD02, LHN05], modeling [JLSW02, KH13, HWB∗13], simulation
[LGF04,Mus13,Hoe16], model reconstruction [ZGHG11,CBI13],
and visualization [BNS01, GMG08, CNLE09, JMH15] to name a
few. Without predetermined, fixed topological configurations, an
octree is ideal for painting on a large canvas as the tree can be re-
fined at any location at a desirable depth. However, one concern of
using a high-depth octree is the traversal time from a root cell to a
leaf cell. To reduce this traversal time, a more shallow tree has been
used [LSK∗06, LK10, Mus13, Hoe16]. [LSK∗06] used multi-level
page tables and brick-border voxels to achieve O(1) memory ac-
cess, even for the look-ups from a root cell. While accessing octree
cells from a root at a constant time is the key feature for coordinate-
based look-ups, (e.g. texture fetching problem [LSK∗06]), octree
cells are still accessed locally in many applications, such as start-
ing from the leaves, moving to the children of the non-root parent
nodes, or accessing neighbors.

In order to render large-scale scene, full or out-of-core [GMG08,
CNLE09, Mus13, HBJP12, RTW13] updates to GPU have been
made for rendering applications. Recently, studies on a directed
acyclic graph with scalar fields [DKB∗16,DSKA18] have achieved
rendering scenes in high resolution (32K3 ∼ 128K3), which is com-
pressed on GPU memory using geometry redundancy. For dynamic
updates, a directed acyclic graph needs real-time compression tech-
niques; otherwise, reconstruction takes several minutes for updates.

2.1.2. Dynamic octree update

Besides one-time construction or full reconstruction [DGPR02,
BD02, LHN05, CNLE09], octree can also be incrementally ad-
justed. Real-time dynamic octree adjustment in GPU has been ap-
plied [LSK∗06, CNS∗11]. In [CNS∗11], a scene is classified to
static and dynamic parts, and stored as separate memories in GPU.
When objects move, the entire dynamic part is updated. Note that,
in our volumetric painting application, dynamic and static parts
cannot be separated. In another study, an octree is stored on a CPU
and the subtree data is streamed through CPU-GPU data transfer in
a view-dependent manner [GMG08]. In order to retain connectiv-
ity information with subtrees, the indices of all eight children are
stored. Recently, [Hoe16] supports dynamic topological updates on
GPU, however, it only supports insertion for now.

2.1.3. Octree texture authoring

Glift has been adopted for an adaptive texture authoring applica-
tion [LSK∗06, KLS∗05]. Given a model represented in an adap-
tive grid, the authors found voxels in a brush stroke by projecting
the model and the brush stroke onto a 2D screen-space and then

update the color of voxels. If a higher resolution is required, they
reallocated a tile populated with interpolated color. This approach
limits volumetric painting; non-surface voxels are not considered
and cannot be colored. In fact, the problem of octree texture au-
thoring [KLS∗05, DGPR02, BD02] significantly differs from our
problem. We do not need an underlying model to paint as our aim
is to author a general volumetric field including transparency. In
some sense, our work models various structures and objects with
clear and blurry boundaries while simultaneously coloring them
with volumetric brush stroking.

2.2. GPU-Based Ray Casting on Adaptive Grids

Ray casting has been extensively researched for several decades
[EHK∗06, HLSR09]. Since a ray traversal on 3D adaptive grids is
expensive, acceleration techniques such as neighbor precomputa-
tion, early ray termination, and empty space skipping [KW03] are
often used. In order to reduce the cost of finding neighbors, the
ROPE algorithm [HBv98] was developed for a k-d tree and neigh-
bor linking was proposed [Sam89, MB90] for an octree. Since
a k-d tree has a varying number of neighbors per cell, six ropes
were linked from a cell to bounding boxes along axial directions
instead of pointing to neighbor cells directly [PGSS07]. An octree,
even when 2-to-1 balanced, needs a maximum of 24 neighbors per
cell. [GMG08] has reduced the number of neighbors down to six
per cell by pointing the parents of neighbors. In our paper, we use
only three neighbors per cell, computed on a GPU with the pri-
mal octree represented by only two indices: a parent and the first
child. Our precomputed neighbors enable stackless ray casting and
dynamic updating of an octree on-the-fly on a GPU as the tree con-
nectivity changes.

A sparse voxel octree (SVO) [CNLE09,LK10] showed both high
quality rendering and efficient ray traversal benefits of shallow tree
topology and bricks. These works address the static scene render-
ing problem that does not require dynamic update. Particular ob-
jects in [CNS∗11] can be updated dynamically while rendering.
In this work, rendering with dynamic updates which are not lim-
ited to specific objects was not the target problem. SVOs extend
to a tree with resolution configurable at each levels, called Open-
VDB [Mus13]. Recently, OpenVDB structure was implemented in
GPU [Hoe16], which enables efficient neighbor access using ghost
voxels and GPU-based ray casting. [Mus13, Hoe16] address dy-
namic scene rendering problem that does not have hard real-time
constraints while updating structure simultaneously.

To the best of our knowledge, octrees as deep as 24 have not
been used for ray casting. The deepest 3D adaptive structure we
found in the literature was 128K3 [DKB∗16], which is equivalent
to the octree depth of 17 (whereas our canvas is equivalent to (4×
224)3). Moreover, the ray angle drift error has not been identified
as an important challenge due to the limited size of a 3D scene.
Spacing between floating points can cause sudden movement of the
ray origin with continuously changing view points, which makes
rendering unstable in a VR environment. [Ize13] used a padding
factor in order not to miss a cell due to such precision. In this paper,
we study a more principled approach - i.e. we propose to analyze
the propagation of numerical error and ensure that ray computation
does not increase numerical error regardless of the ray length.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

User
Input

Render
Output

Painting Thread
Generate stroke data
(Segments, Color, Stamps, …)

Stroke Thread
Test cell-stroke intersection
Color the overlapped cells
Update octree for desired
details in multi-step

Staging Thread
Generate staged blocks
: copy partial octree
data into a block

Upload Thread
Upload staged blocks to GPU
Upload dirty-bit mask to GPU
for neighbor computation

Render Thread
Update 3-neighbor texture
based on dirty bit mask
Ray Casting

Stroke
Job Queue

Staged Block
QueueCPU-side

Octree
GPU-side

Octree

Figure 4: A sequence of CPU-side threads from user input to rendering output. After applying brush strokes, the octree is dynamically
adjusted and incrementally uploaded to GPU for rendering. We enable uninterrupted painting by using the stroke job queue, and enable
uninterrupted rendering by staging blocks. We achieved very small latency from painting to rendering, measured at under 20 milliseconds on
average.

3. System Primer

In section 4, we describe both CPU and GPU memory layouts of
our system. In general, the CPU-side octree is constructed of lin-
ear pools (parent/child indices and fields, as shown in Fig. 5 (a))
that are packed into textures in the GPU. The CPU has temporary
pools (for painting) that do not exist in the GPU. For an efficient ray
traversal, the GPU has a neighborhood connectivity pool, G3 tex-
ture, that CPU does not have. In section 5, we design adjustment
and update strategies that meet the requirements outlined in section
1. We subsequently slice a painting task into smaller tasks by using
one-level adjustment.Then we stage the changed blocks, compute
the update masks for G3, upload them to the GPU, and validate the
results.

Cell ID order

Mem. Pool
Linked List

Tree CellsRoot Array

Parent ID

Child0 ID

Flags

Field:
RGBA

(a) Dynamic Deep Octree on the CPU

Parent ID Child0 ID Depth

X-axis Neighbor ID Y-axis Neighbor ID Z-axis Neighbor ID Z-axis Neighbor ID

: Cell ID order

R G B A

(b) Dynamic Deep Octree on the GPU

Figure 5: Two octrees with different flavors. (a) A CPU-side octree
for dynamic adjustment and color blending, pick up, erase, and
recolor operations. (b) A GPU-side octree for rendering. Each side
has only one copy of the octree.

Interactive volumetric field painting is composed of several par-
allel tasks: processing strokes, adjusting the octree, uploading the
octree to the GPU, and rendering the octree. These are implemented
in multiple threads as illustrated in Fig. 4. In the painting thread,
the segments, color, and the stamp of strokes are queued. In the
stroke thread, we conduct a stroke-cell intersection test, and re-
fine or coarsen the intersecting cells. The octree memory is divided
into a uniformly-sized blocks. In the staging thread, we copy a se-
quence of cells including newly refined or coarsened cells into a
separate memory, which we call staged block. These staged blocks
are pushed to the staged blocks queue. In the upload thread, we
consume this staged queue by uploading staged blocks to the GPU.
Finally, the rendering thread renders the octree using ray casting.

In order to support concurrent tasks such as painting and ren-
dering, we adopt a strategy to construct a single octree in the CPU
for painting and another octree in the GPU for rendering. The ad-
vantage of using octrees both on CPU and GPU is that it enables
different-flavored buffers (Fig. 5), tree adjustment, and color blend-
ing for the CPU and volume ray casting for the GPU, which make
painting and rendering tasks hazard-free. The remaining challenge
is to upload a tree from the CPU to the GPU at the right time with
an appropriate strategy.

4. Octree Representation and Memory Layouts

4.1. Root Array and Tree Depth

In order to author highly-detailed and dynamic volumetric fields,
we use an array of octrees. We store the roots of the octree as a 3D
array, which we call a root array. Each root can be refined up to
24 times, which is the maximum depth in our current implementa-
tion. The painting details appear to be sufficiently fine at this level.
While the root array helps to reduce the tree depth and offers sev-
eral advantages such as trivial parallelization, in a very large canvas
with highly adaptive tree, the advantage appears to diminish. There-
fore, we resort to a relatively coarse, 43 array of octree roots, each
of which can be refined to a maximum depth. Effectively, this is
equivalent to a single 26-deep octree root. This resolution can span
a volumetric space of from 0.3mm3 to 40Km3 with respect to the
room-scale VR setup.

4.2. Dynamic Deep Octree Representation in a CPU

Based on a previous study [KTHS15], we construct a 2:1 balanced
octree on the CPU-side, where the difference in the depth of the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

two neighboring cells is less than or equal to one. Since we are au-
thoring volumetric fields that can be defined at any location in the
3D space and for the sake of simplicity, eight children are created
when a cell is refined. Similar to [GMG08], we do not use pointers,
but instead use the index I that uniquely identifies each cell. Our
octree is made up of multiple linear memory pools indexed by I.
Painting properties such as color, density, and temporary variables
are stored as separate field pools. More field pools can be added,
even dynamically if needed, such as alpha values. We group prop-
erties that are likely to be accessed together and then store them in a
single memory pool. To allow dynamic refinement and coarsening,
we implement linked-list based memory management. The size of
an allocation unit is fixed as we allocate or free eight cells. When
a unit is freed, we return to the beginning of the pool to ensure
that the pool is populated from the beginning. The pool begins with
a uniform root array, i.e., 43 array, that cannot be freed. We have
another separate flag pool for the depth of cells and other bit-field
flags for tree adjustment.

4.3. Tree Graph Gp and Novel Neighbor Graph G3

Our octree is defined only by parents and children pools that store
two indices of the parent and the first child, since indices of the
remaining seven children are consecutively numbered and hence
do not need to be stored. Let this primal tree graph be Gp. Since
we do not use a dual tree such as used in [LSK∗06, LK10], each
cell in Gp is represented only by two 32-bit indices: the parent and
the first child. Note that ray casting using only Gp may have poor
performance as the depth of the tree increases; e.g. if the maximum
depth is 24, the traversal path from Gp to a neighbor can be as long
as 48 in the worst case. Therefore, an immediate neighbor topology
such as neighbor linking for octrees [Sam89,MB90], or ROPEs for
KD-trees [HBv98], is useful to accelerate the ray traversal. ROPE
connects cells that share a face, resulting in the blue connections
from cells C and D in Fig. 6. Note that D has five neighbors. In a
2-to-1 balanced octree, since four neighbors can exist on cell’s each
faces, the number of neighbors can be six to 24.

: ROPE, Neighbor Linking
: Grouped ROPE, Neighbor Linking per face
: Our 3-Neighbor

C
C0

C3

C1

C2

C3CC

D0

D3

D2

D D1

Figure 6: Neighbors of C (left), and D (right) in the quadtree. C,C1,
and C2 share the same parent, and hence computing C1 and C2
from C is easy. On the other hand, tree distances between C and
C0,C3, and between D and D0,D3 can be very large. Therefore,
we precompute C0,C3,D0, and D3 and stored them in a separate
texture.

By grouping cells per face with ROPE [PGSS07], or linking
the same depth or the smaller-depth neighboring cells per face

[GMG08], the number of neighbors is reduced to 6. In our work,
we further reduce the number of neighbors to three as follows. First,
let’s consider the same depth cell (e.g. D1 in Fig. 6) or the smaller-
depth neighboring cell (C0). Since each face has only one such
neighbor, every cell has six neighbors. We then store only three of
these six neighbors. Since eight children have consecutive indices,
three of these neighbors share the same parent (e.g. C1,C2 of C and
D0,D2 of D) and can be obtained immediately from its associated
cell index (e.g., C1 = C+ 1). The other three neighbors may have
different parents (e.g. C0,C3,D1,D3), and because computing such
neighbors requires long tree traversals, they are precomputed. We
refer to this neighbor structure as the 3-neighbor topology, denoted
by G3. The graph G3 is a collection of the three neighbors for each
cell.

Using the union of G3 and Gp, we can quickly discover all the
six to 24 neighbors, since in Gp ∪ G3, the distance between two
cells sharing a face is 2 in Gp, or 1 or 2 in G3. Therefore, finding
neighbors in our scheme incurs a low cost, while finding a group
of cells, as in previous works [PGSS07,GMG08], can have the dis-
tance between neighbors greater than 2 in Gp. In Fig. 6, the leaves
of D1 that are in contact with D can be found easily as C(D1) and
C(D1)+2, where C(·) denotes the first child. In the case where a
ray proceeds to D1, we can quickly identify C(D1) or C(D1) + 2
using the ray parameters. Thus, G3 is represented by three indices
per cell. We store G3 as a separate neighbor pool. Using G3, we
simplified variable numbers of immediate neighbors to a constant
3. We also reduced the memory required for a fast traversal from
24 (maximum) neighbors to 3 neighbors, while still allowing small
constant time access to all of the 24 neighbors.

4.4. Dynamic Deep Octree Representation in a GPU

Mapping the octree pools in a CPU to textures in a GPU is straight-
forward. Since textures have a resolution-limit in each dimension,
we cannot use a 1D texture. We must use 2D or 3D textures and
map a linear index I to two or three indices. Since modern GPUs
support up to 16 thousand texels per dimension, 2D textures can
support up to 256M cells. We pack Gp (parent, child) and the depth
into a texture. RGBA color is stored as another texture.

G3 (3-neighbor) is another integer texture with three channels.
Note that we do not use G3 on the CPU. The G3 texture is built from
the Gp texture upon updating. While computing G3 is fast, it is still
slow enough to hamper the frame rate. In section 5, we develop a
strategy to reject most of this GPU-side computation with a small
amount of mask computation and transfer it from the CPU to the
GPU.

5. Dynamic Octree Update With Low-Latency and Consistent

Frame Rates

The importance of avoiding nausea, sickness, and postural instabil-
ity [Reg95,HVP02,PWP06] is escalated in VR painting lasting sev-
eral hours. Among factors on those symptoms, little delay in sync
between the rendered scene and the head motion is an minimum re-
quirement that cannot be compromised. However, simply copying
an octree to a texture will take 222ms even with full bandwidths
of a CPU, a PCIe, and a GPU. Therefore, instead of updating the

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

: Block

: Staged Block

Parent ID

Child0 ID

Field:
RGBA

Flags

Field:
temp0

…
…
…
…
…

Mem. Pool
Linked List

Tree CellsRoot Array

…
…
…
…
…
…

Block #0 Block #1 Block #2 …

…

Octree on a CPU

(3) 3-Neighbor Computation

(1) Staging

Brushing in a 3D space

: Updated Cell

: Not Updated Cell

Staged Block

Neighbor Mask

… …… …………………
Octree on a GPU

…… ……

Block #0
Block #1
Block #2

…

Block #1
Block #2

Block #0

(a)

(b)

(2) Uploading

Figure 7: Staged updates with a neighbor computation mask. (a) Brushing a stroke in a 3D space is local not only in the space but also in the
memory (red cells in the 3D space and the octree on a CPU). Therefore, we divide the octree into blocks shown as sky blue and orange boxes.
(b) Among blocks, we find a block (orange box) containing updated cells (dotted ellipse). In the middle of the painting, (1) the block on the
CPU is staged with a neighbor computation mask and (2) uploaded to the GPU. (3) Note that G3 is not uploaded, but is rather computed on
the GPU.

entire tree (for example, 134M cells which is equivalent to 2.15GB
memory in Fig. 1), we incrementally and dynamically update the
underlying octree.

5.1. Incremental Tree Adjustment

Although we can effectively reject cells that do not intersect with
brush stamps, painting an octree can still be expensive. A broad
brush stroke can be applied near a highly-refine region or a fine
brush stroke can be applied near a coarsened region. To address a
sharp change in the depth of cells, we develop a multi-step strategy.
In a CPU-thread separate from rendering, we first paint on the CPU
tree without tree adjustment and update on the GPU. The next step
is a tree-adjustment stage where we mark cells that should be re-
fined or coarsened and perform one-level refinement or coarsening
per frame. After one-level tree adjustment, we reflect these changes
to the GPU. We repeat this process until no cell needs to be refined
or coarsened. In the next section, we propose algorithms for dy-
namic low-latency updating to the GPU while keeping the frame
rate constant for VR.

5.2. Block-based Update using Staging

Since the stroke diameter is set to be approximately 10 cells, for
a stroke length of one, about up to 1,000 cells per stroke would
require updates. Since uploading a 1,000 times to the GPU would
also be prohibitively slow, we use large blocks to reduce the upload
counts. Since our CPU-side memory manager maintains a free pool
in the last-in-first-out (LIFO) manner, texture memory Gp tends to
be filled from bottom to top in the texture space. Therefore, we use
a block, which refers to linear pitched packing that divides texture
horizontally, where the width of the texture of each block is equal
to 16,384 with a relatively smaller height shown as translucent
boxes on octree textures in Fig. 7.

If we directly upload updated blocks to the GPU, the whole
CPU-based tree would be locked and the painting thread would
stall. To avoid this painting interruption, we first copy the block to
a staging buffer, designed for CPU-side hazard control, that serves
as an update queue. A block copied to a staging buffer is called a
staged block. We collect the staged blocks in a separate thread us-
ing only small atomic sections during tree adjustments (see section
5.4 for discussion on hazards), and queue them in the LIFO queues
with upload-to-GPU tasks. We then simply stage and upload one
block per rendering frame.

To verify that the algorithms we develop in this section satisfy
the hard frame rate and latency requirements, we develop custom
benchmark tests. To reproduce painting practice in the real use case,
we first load a pre-painted scene and play a pre-recorded set of
painting strokes. We fix the head mounted display (HMD) posi-
tion to make rendering time nearly constant. Dominant variables
are thus controlled variables: updating parameters such as the num-
ber of blocks per frame, block sizes, and the granularity of neigh-
bor computation mask for selective G3 rendering. The only uncon-
trolled variables are the CPU thread allocations, the GPU com-
mand dispatches, and other minor random system interventions.
Our painting stroke sequences are sufficiently long to minimize the
impacts of these variables, shown as minor fluctuations in Fig. 8.

On CPU side, table 1 shows the average staging time and the
maximum number of updated cells per second. Staging larger
blocks tends to increase the maximum number of updated cells per
second and reduces the number of updates. Although larger blocks
can update more cells per second, latency tends to increase and
it would be inefficient to upload a large block when only a small
number of cells have changed. On the other hand, staging smaller
blocks decreases the staging time and provides frequent updates,
although bandwidth utilization may be lower. For example, when
the size of the block is 16,384×4 (i.e. the number of cells per block
is equal to 65K), blocks can be updated 77 times per second and

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

Table 1: Average staging time (second column), the maximum num-
ber of staged blocks (third column), and staged cells (last column)
that can be processed per second.

Block Size
(cells/block)

Staging
Time
(ms)

of Staged
Blocks

(blocks/sec)

of Staged
Cells

(cells/sec)
No Block 585.50 1 36.3M

65K 12.91 77 5.0M
131K 23.36 42 5.5M
262K 37.32 26 6.8M
524K 66.82 14 7.3M
1M 129.76 7 7.3M
2M 248.52 4 8.4M

the maximum number of uploaded cells per second is five million
cells. The average bandwidth of block size under two million cells
is less than 5ms, therefore this is sufficient to stage blocks at the
refresh rate of 60 or higher, corresponding to a rather long draw-
ing sequence. While a block-based upload improves the frame rate
from 5 frames per second (FPS) up to 22 FPS, this rate is still not
acceptable. The next bottleneck is neighbor connectivity update,
which will be discussed in the next section.

5.3. Neighbor Computation Mask

Even though a neighbor computation on the GPU corresponds to a
simple computation of the graph G3, the resolution of the texture
can be large (16384×8192) which affects the interactivity (See the
no mask case in Fig. 8(a)). Therefore, we develop a simple and
efficient method to dramatically reduce this rendering cost.

Once a cell is created or deleted, not only the cell but also its
neighbors should be updated in G3. Since neighbors may not be
inside a block that contains the cell, updating G3 within the block
would not be sufficient. One solution would be to have an additional
list of expanded blocks for neighbor update. Since this will increase
complexity in the system, we instead propose a simpler approach.
We compute a very small mask in the CPU that contains dirty bits
indicating which cells need to recompute their neighbors due to
the tree topology change. While staging the cells on the CPU, we
upload this small mask to the GPU, and perform a neighbor com-
putation only on the cells in the marked area.

We tested various mask sizes. If the size of the neighbor com-
putation mask is over 64 by 32 (which takes only 256 bytes), the
overall frame rate stays around 90 FPS, which is a lower bound of
frame rate, as shown in Fig. 8(a). We also further tested the degree
to which the size of blocks affects the frame rates with lightweight
neighbor precomputation cost. Fig. 8(b) shows that the frame rates
stay stable when the number of cells per block is under 524K.

5.4. Immediate Visual Feedback

We write and read the tree simultaneously in painting and staging
threads. To minimize waits between painting and staging threads,
we divide the painting task into finer grained jobs. We adjust the
tree by one level in the stroke thread (Fig. 4). This ensures that the
CPU-side tree is valid without orphan cells or balancing violations.

0 20 40 60 80 100 120
Frame Number

20

30

40

50

60

70

80

90

100

Fr
am

es
 P

er
 S

ec
on

d
(F

PS
)

NoMask
4X2
16X8
64X32
256X128
1024X512

(a) Performance results with different sizes of neighbor compu-
tation mask (excluding effect of the block size). No neighbor
computation mask (no mask) or a low resolution mask (the mask
size of 4x2) does not show the stable frame rate because of heavy
neighbor computation. When the resolution of a neighbor com-
putation mask increases, the frame rate becomes more stable.

0 20 40 60 80 100 120 140 160
Frame Number

40

50

60

70

80

90

100

Fr
am

es
 P

er
 S

ec
on

d
(F

PS
)

2097K
1048K
524K
262K
131K

(b) Performance results with staged blocks of different sizes (ex-
cluding the effect of neighbor precomputation). While the neigh-
bor computation is reduced enough, the size of staged blocks still
affects the frame rate.

Figure 8: Performance tests with two controlled variables, the size
of block and granularity of neighbor computation mask. In order
to observe the effects of each independent variable, (a) we fixed
the block size to contain 262K cells and (b) we fix the neighbor
computation mask to 64 by 32 and update the total 57K cells with
a single stroke.

Staging blocks may depend on each other and hence dependent
blocks may be grouped, uploaded to GPU-side staging buffers, and
then copied together in GPU at the beginning of rendering. How-
ever, in our experiment, GPU-side staging buffer always yielded
greater latency. More importantly, the dependency chain between
staging buffers can be very large, resulting in much higher latency.
Therefore, we experiment strategies to ignore dependency between
staging blocks. As a result, artists can see the strokes at lower la-
tency at the cost of temporal GPU-side violations. First, 2:1 balanc-
ing can be violated to 3:1 balancing. This can cause minor temporal
visual artifacts in our ray caster that assumes 2:1 balancing. Second,

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

since parent-child referencing is valid only inside a block, some of
inter-block parent and child indices can be invalid. This causes vis-
ible artifacts. We now design two strategies that reduce these arti-
facts: aggressive staging and handling invalid parent/child. For the
purpose of this experiment, we develop a stroke replay system to
render frames with and without corruptions. We then compute the
number of rendered frames that have mismatching pixels.

By just ignoring inter-staging buffer dependency, corruption oc-
curs in 33.3% of the total frames. The corruption lasts up to 450ms.
Aggressive staging is to use smaller atomic sections that can even
temporally break the CPU-side 2:1 balancing to 3:1. However since
staging happens earlier, the corruption goes away faster. The cor-
ruption rate falls to 21.7%. Handling invalid parent/child is simply
to check whether parent and child mutually point to each other, and
if fails, to ignore visiting such cells. This way, the corruption rate
goes further down to 3.62% (Fig.9).

(a) Naively ignoring staging block dependencies.

(b) Aggressive staging.

(c) Aggressive staging and preventing access to invalid
parent/child.

Figure 9: Frames with corruptions (yellow circle). (a) Artifacts oc-
cur rather frequently (33.3% of frames have corrupted pixels), and
corruptions remain for 0.45s. (b) 21.7% frames have corruptions.
(c) Only 3.62% of frames have corrupted pixels. Corruption disap-
pears within 0.03s.

6. Accurate Volume Rendering with High-depth Octree

Rendering 3D volumetric fields poses another challenge. One vi-
able solution involves extracting voxel faces and rendering them
through raster graphics pipeline using, for example, OpenGL sim-
ilarly to Minecraft [MOJ17]. However, as the number of grids in
the non-uniform size increases, the extracted vertex positions, par-
ticularly far from the origin, may not be accurate due to numerical
error. More significantly, geometric extraction requires a substan-
tial amount of computational time, as the number of voxels grows.
Consequently, we explore an alternative approach of ray casting
through octree volumetric field.

6.1. Accurate Ray Starting Point

When editing fine detail, users should be able to zoom in to observe
the cells that have the highest depth (e.g. 24). However, the size of

pright-eye

αℎ ti
p1

p′1

pleft-eye

peye-center
pi

p′i

Figure 10: A 2D illustration of ray casting on adaptive grids. A ray
is fired from the right eye of the user at pright-eye along d, and the
first cell-entry and exit points p1 and p′1, respectively, are calcu-
lated for the ray. This process continues for other cells until the ray
is terminated.

these tree cells can be even smaller than the single-precision float-
ing point granularity except near the origin. For example, in a VR
environment, naively using the floating point for the eye position
in a world coordinate will force the head positions to jump towards
nearby floating point values, and more significantly, the eye dis-
tance will be erratic. This leads to extreme discomfort. Therefore,
we carefully maintain canvas-to-VR, VR-to-HMD, and HMD-to-
eye coordinate transformations to avoid loss of the eye position
precision. We propose computing the ray starting point in a cell-
local coordinate frame, and keep the positioning error of the start-
ing point sufficiently small for the above reasons. Our cell-local
coordinate system is a barycentric coordinate system that has the
origin at the cell center with a size of one. The range of coordinates
inside the cell is [-0.5, 0.5]. Consequently, the finest resolution in-
side a cell is 0.5×2−23 in single-precision floating point regardless
of the size of the cell. If a ray starts from a leaf cell of depth 24, its
resolution inside the leaf becomes extremely high.

6.2. Accurate Ray Traversal

As illustrated in Fig. 10, given a ray and its direction d, and a
cell-entry point pi of the ray into the ith cell, we compute the cell-
traversal distance ti and the cell-exit point pi′ as well as a neighbor-
ing cell containing pi′. Since our volumetric canvas covers a large
space and the cell sizes vary by a large magnitude, using a global
coordinate system to calculate pi′ and the ray traversal length t can
be inaccurate. In contrast, the cell-local coordinate system can pro-
duce accurate results regardless of the zoom level. We represent pi

and p′i with respect to the frame whose origin is located at the cell
center and the size is normalized to one. Using the intersecting face
which contains pi′ and the neighbor texture described in section
4.3, we choose the neighbor cell (the i+ 1th cell) to visit, and set
pi′ to pi+1′. This process is repeated until the ray terminates after
accumulating full opacity or exits the canvas.

6.3. Analysis

As illustrated in Fig. 10, in the ith cell, if the ray hits the top sur-
face, the ray traversal-length ti is computed as ti = (0.5− py)/dy,
where py is the y coordinate of pi, and dy is the y component of
d. The error in ti will be proportional to ti. Take the machine ep-
silon ε = 2−23 for single precision. Let x,y be arbitrarily accurate
real numbers, and f (x) be a floating point representation of x. Then

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

(a) Test Scene (b) Errors in Ray Angle (c) # Of Crossed Cells

Er
ro

r i
n

R
ay

 A
ng

le
(d

eg
re

es
)

Ray Length (meters)

(d) Ray Length VS Angle Error

Er
ro

r i
n

R
ay

 A
ng

le
(d

eg
re

es
)

Number of Cells Crossed

(e) Crossed Cells VS Angle Error

Figure 11: A ray traversal using local coordinate system. The maximum level of the octree reaches to 24. (a) Test Scene, (b) Error angle
between the final ray location and the initial ray direction, magnified by 109 for display in gray. (c) The number of cells crossed in gray. (d)
and (e) show that the ray-angle error does not grow as the ray traverses. In (d), the initial error e0/L is dominant when L is small. In (e), as
the number of cells crossed by the ray increases, the stochastic decay increases. The red line in (d) is the worst case error bound.

f (x+ y) = (x+ y)(1+ ε+), with some ε+ ≤ ε. Similarly, the error
in ti is computed as

f (ti) = f
(

f (0.5− py)

dy

)
=

(0.5− py)(1+ ε1)

dy
(1+ ε2)

= ti(1+ ε1 + ε2 + ε1ε2) = ti(1+2εt), ε1,ε2 ≤ ε.
(1)

Note that ignoring ε1ε2, we have εt ≤ ε. We then compute f (pi′) =
f (pi + f (ti)) = f (pi + ti(1+ 2εt)) = (pi + ti(1+ 2εt))(1+ ε3)) =
(pi + ti)(1+ 3εp), for some εp ≤ ε, ignoring ε3εt . Next, we trans-
form the coordinates of f (pi′) to the neighboring i+1th cell where
the ray continues. This point is computed as pi+1 = f (f (f (pi′)s)+
c) = ((pi + ti)s+ c)(1+ 5εi) for some εi ≤ ε, where scale s and
shift c depends on the depth and location. Therefore, f (˜pi+1) =
p̃i+1(1 + 5ε), where p̃i+1 is the exact value computed from pi.
Thus, the numerical error added during the traversal point is pro-
portional to the coordinate values, the number of floating point op-
erations 5, and ε.

Since we are using a cell coordinate system, each coordinate
of pi is in [-0.5,0.5]. Therefore, the error is always bounded by
2.5ε. In a global coordinate system, the error is bounded by 2.5εwi,
where wi is the size of the ith cell along the ray. Let e0 be the er-
ror in the eye location, i.e., the error introduced to compute pright-eye

in the cell-local coordinate frame. Starting from this initial error
e0, traversing n cells results in total error e0 +∑n

i=0 2.5εwi = e0 +
2.5ε∑n

i=0 wi ≤ e0+2.5
√

3εL < e0+5εL, where L is the ray length.
Note that ∑n

i=0 wi ≤
√

3L. Thus, by using the cell coordinate system
for a ray/voxel traversal, we have shown that the error is propor-
tional to L. Moreover, the error bound in angle sin−1(e0/L+ 5ε)
does not increase as a function of L, and consequently the ray does
not deviate from the pixel center by more than a small fixed angle,
regardless of the length of the ray L. See Fig. 11(d).

To verify our analysis, we performed an experiment, as demon-
strated in Fig. 11. We show that the screen-space ray-deviation from
pixel center, formulated as the ray-angle error, does not accumulate
during ray traversal. In fact, the error is indeed very small and is
relatively larger in the nearby pixels (the maximum ray-angle error
is 7.5× 10−9 degrees) due to the initial position error (the posi-
tion error is 2.5× 10−7 in L2 norm), and then slightly decays as
L increases. This experimental result implies that we can perform
the ray casting even on mobile GPUs with only half-precision floats

(ε= 1/1024) using fragment shaders. We compare the results using
the world coordinate and local coordinate in Fig. 12.

(a) World Coordinate (b) Cell Coordinate

Figure 12: When a world coordinate system was used, the ray drifts
while traversing cells even with regular 32-bit floats. This results in
a large angle error (a). We show that this problem is solved by using
cell-local coordinates (b).

7. Extending 2D Digital Painting to 3D Volumetric Painting

In 2D painting, artists apply brush strokes fast and react to imme-
diate feedback. Modern CPUs can handle reasonably large brush
sizes of up to a few hundred pixels at interactive rates, but for a
larger brush, interactivity starts to diminish. This can be quite re-
strictive to artists since the artist must tolerate the delay or switch
to a smaller brush to fill in the large area. In 3D painting, this delay
can be felt even at a much smaller brush scale. A solution is to use
adaptive brush strokes, where we refine the grid only up to a reso-
lution sufficient to represent the brush details. For a smaller brush,
we further refine the adaptive grid, and for a larger brush, we stop
at a certain resolution, which is roughly ten voxels corresponding
to the brush radius. The sky in Fig. 1 was painted with a very large
brush (spanning about one kilometer in size), the effective radius
of which in the finest resolution is millions of voxels.

In digital painting, pigment deposition from the brush and mix-
ing with the canvas color is a separate topic and is beyond the scope
of this paper. Fortunately, color flow, deposition, and mixing meth-
ods developed in 2D digital painting applications are directly ap-
plicable to our 3D volumetric painting. In this study, we implement
the popular per-stroke maximum blending mode found in paint-
ing applications [Inc16] to extend 2D digital painting to 3D. Note

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

that many other alternatives are available, such as physically-based
pigment mixing using Kubelka-Munk mode [BWL04], RYB mix-
ing [CKIW15], or advanced RGB-space color mixing [LDC∗14].

2D brush stamping methods (another orthogonal topic) can also
be directly applied to 3D painting. We currently support multiple
stamp shapes: sphere, cylinder, box, cone, and procedural Perlin
noise. For spherical stamping, our system supports the sweeping
tool, resulting in tapered capsules. We place these tapered capsules
to connect the two consecutive samples of a stroke path (the swept
stroke algorithm in [DiV13]).

Another common 2D painting practice is color pick-up. We im-
plement a simple color pick-up method as follows. At each sam-
pling point, a brush can pick up color from the canvas and blend it
with the current brush color. As shown in Fig. 2 (a), surface-based
painting systems such as Tilt Brush do not have color mixing be-
tween strokes. In contrast, color pick-up automatically generates
spatially-varying colors, and this is a popular method that artists
use to generate color gradation in painting as shown in Fig. 2 (b).

8. Results and Discussion

We use C++ programming language with Visual Studio 2015,
OpenGL 4.3, OpenVR, and the Grizzly library [KTHS15] under
Windows 10 OS to implement our system. Our hardware setup in-
cludes Nvidia GTX Titan Xp GPU and Intel Core i7-4790 CPU
with 16GB RAM for rendering computation and HTC Vive for in-
terfacing immersive and personal VR environments.

8.1. Volumetric Painting Results

We invited digital-painting artists to produce volumetric paintings.
Island (Fig. 13) represents a good example as an extension of 2D
painting to 3D. The artist painted the scene with three distinct loca-
tions, with a large sky background. Semi-transparent objects such
as cloud and smoke and detailed objects such as wires and lamb
also show the benefits of our system. The artist uses recolor mode
and color mix mode for adding rough shades on buildings and on
the island. Similar to Island, the artist explores a much larger paint-
ing space in Flying Dragons (Fig. 15). Rougher and more colorful
shades on the dragon’s body-surface were used, but fine details on
the eyes, teeth, and horns were maintained.

Our system shows development possibility to a serious 3D dig-
ital painting tool as well. Each images of A Sneaker (Fig. 1(a))
seems like the results of 2D digital painting, except that the paint-
ing can be appreciated from any view point. Another example with
various size of objects is Fig. 14. In Music (Fig. 1(b)), the artist not
only did a digital painting, but also developed a story of full 3D
scene with retouched chipmunks, tiny bees with a detailed score,
and translucent, green spring haze. From this aspect, we anticipate
that many 2D digital artists can extend their existing techniques to
3D.

The artists interestingly remarked that they needed to change the
way they had previously perceived painting and that they needed
to step away from the familiarity of perspectives on the 2D canvas.
The second remark is very interesting, as it appears to be the result
of being able to paint in very large 3D canvas. We believe future

explorations with artists will reveal how perspectives can be painted
on 3D canvases. For example, recoloring remote mountains from a
foreground location would be an interesting approach.

8.2. Qualitative Comparisons of Using Dynamic Deep Octree

for Volume Painting

For volumetric painting, we need to locate parent cells that contain
a brush, and from these parents (not from roots) we then refine,
coarsen, or compute blending. For rendering, we visit cells from
a child to its neighbor using our novel memory-efficient neigh-
bor representation and dynamic and incremental tree-update strat-
egy. Thus volumetric painting application does not require traversal
from a root, and shallow tree benefits [Mus13, LSK∗06] are there-
fore minimal. In addition, shallow N-trees would require selecting
the depth and the tile size N (per level or cell) at an early stage. This
priory requirement is hard for artists to understand and modify at
a later stage. We claim that the simple octree, which has uniform
adaptivity and painting quality in the canvas regardless of zoom
levels, is a more viable approach to volume painting.

Incremental dynamic update while maintaining high rendering
frame rates is essential for volume painting, but not a key require-
ment in existing dynamic tree update techniques. In simulation
problems [Hoe16, SABS14], trees are updated globally since they
are often adjusted based on velocity, smoke, proximity to liquid sur-
face, or details on the liquid surface. Also, rendering is not required
and the frame rate is less demanding than the VR painting appli-
cations. In another study [LSK∗06, CNS∗11], heavy updating was
allowed in a GPU-only dynamic tree, where the CPU cannot be in-
volved in painting. Because Octomap [HWB∗13] does not require
immediate visual feedback, a low latency visualization method has
not been studied, and thus Octomap cannot be used for volume
painting.

8.3. Limitations

While painting a large stroke over a detailed complex area, a large
number of octree cell should be deleted. In this case, although the
frame rate is still constant, the delay can be quite large. An indi-
cator would notify that a heavy-weight operation is taking place.
Our system can also eventually suffer from out-of-memory. Al-
though the memory size available in modern GPU is increasing
over time, artists can indeed consume all the GPU memory. This
can be greatly relieved in future automatically by using topology-
cleaning operations. In addition, a memory plan-ahead interface
would be required. Digital artists usually create multiple layers.
Therefore multiple layer support that compromises memory and
performance would be required. Finally, since artists spend long
time wearing VR headset, the weight of headset is currently the
dominating discomfort factor. One way of reducing such discom-
fort is to move some tasks, such as recoloring, from VR to conven-
tional 2D monitor.

9. Conclusions

We proposed a volumetric VR painting system that can paint volu-
metric strokes, mix colors, recolor existing strokes, erase, and de-
pict semi-transparency at a very large scale and with high details.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

To achieve this goal, we used octree with high depth and perform
ray casting to render the volume. We used a CPU to implement dy-
namic tree adjustment, and proposed low latency update methods
that keep the rendering frame rate at highly interactive rates. We
showed that small staged blocks and neighbor computation masks
maintain the system performance while the latency and artifacts
are well suppressed. To reduce memory footprint, we showed that
three neighbors per cell are sufficient for efficient neighbor access
in an octree. Finally, we provided a ray-traversal error bound using
posterior error analysis and verified the bound with experiments.

In future, we intend to explore various volume-specific painting
models, user interfaces, and combining these with geometry-based
paintings to shift to a more complete 3D volume painting system.
Error analysis suggests that ray-casting can be performed even in
half-float precision of ε = 1/1024. Therefore, we plan to examine
the performance and accuracy implications of using half precision
for ray casting and tracing applications.

Acknowledgements

We appreciate all artists who evaluate our system, especially Daichi
Ito, Jini Kwon, Yun-hyeong Kim, and Jaehyun Kim for their paint-
ings in this paper. This project was supported in part by the NRF in
Korea (2017R1A2B3012701) and Adobe gift funds.

References

[BD02] BENSON D., DAVIS J.: Octree textures. ACM Transactions on
Graphics (TOG) 21, 3 (July 2002), 785–790. 3

[BNS01] BOADA I., NAVAZO I., SCOPIGNO R.: Multiresolution volume
visualization with a texture-based octree. The Visual Computer 17, 3
(May 2001), 185–197. 3

[BWL04] BAXTER W. V., WENDT J., LIN M. C.: IMPaSTo: A realistic,
interactive model for paint. In Proceedings of the International Sym-
posium on Non-Photorealistic Animation and Rendering (NPAR) (June
2004), Spencer S. N., (Ed.), pp. 45–56. 10

[CBI13] CHEN J., BAUTEMBACH D., IZADI S.: Scalable real-time vol-
umetric surface reconstruction. ACM Transactions on Graphics (TOG)
32, 4 (July 2013), 113:1–113:16. 3

[CKIW15] CHEN Z., KIM B., ITO D., WANG H.: Wetbrush: Gpu-based
3d painting simulation at the bristle level. ACM Transactions on Graph-
ics (TOG) 34, 6 (Oct. 2015), 200:1–200:11. 10

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: Gi-
gavoxels : Ray-guided streaming for efficient and detailed voxel render-
ing. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (I3D) (Feb. 2009). 3

[CNS∗11] CRASSIN C., NEYRET F., SAINZ M., GREEN S., EISEMANN
E.: Interactive indirect illumination using voxel cone tracing. Computer
Graphics Forum (Proceedings of Pacific Graphics 2011) 30, 7 (Sep.
2011). 3, 10

[DGPR02] DEBRY D. G., GIBBS J., PETTY D. D., ROBINS N.: Painting
and rendering textures on unparameterized models. ACM Transactions
on Graphics (TOG) 21, 3 (July 2002), 763–768. 3

[DiV13] DIVERDI S.: A Brush Stroke Synthesis Toolbox. Springer Lon-
don, London, 2013, pp. 23–44. 10

[DKB∗16] DADO B., KOL T. R., BAUSZAT P., THIERY J.-M., EISE-
MANN E.: Geometry and attribute compression for voxel scenes. Com-
puter Graphics Forum 35, 2 (2016), 397–407. 3

[DSKA18] DOLONIUS D., SINTORN E., KÄMPE V., ASSARSSON U.:
Compressing color data for voxelized surface geometry. IEEE Transac-
tions on Visualization and Computer Graphics (TVCG) (2018). 3

[EHK∗06] ENGEL K., HADWIGER M., KNISS J., REZK-SALAMA C.,
WEISKOPF D.: Real-time volume graphics. CRC Press, 2006. 3

[FPRJ00] FRISKEN S. F., PERRY R. N., ROCKWOOD A. P., JONES
T. R.: Adaptively sampled distance fields: A general representation of
shape for computer graphics. In Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques (2000), SIG-
GRAPH ’00, ACM Press, pp. 249–254. 3

[GMG08] GOBBETTI E., MARTON F., GUITIÁN J. A. I.: A single-pass
gpu ray casting framework for interactive out-of-core rendering of mas-
sive volumetric datasets. The Visual Computer 24, 7-9 (2008), 797–806.
3, 5

[Goo15] GOOGLE: Tilt brush by google. https://www.
tiltbrush.com/, 2015. 2

[HBJP12] HADWIGER M., BEYER J., JEONG W., PFISTER H.: Inter-
active volume exploration of petascale microscopy data streams using
a visualization-driven virtual memory approach. IEEE Transactions on
Visualization and Computer Graphics 18, 12 (Dec 2012). 3

[HBv98] HAVRAN V., BITTNER J., ŽÁRA J.: Ray tracing with rope
trees. In 14th Spring Conference on Computer Graphics (1998), pp. 130–
140. 3, 5

[HLSR09] HADWIGER M., LJUNG P., SALAMA C. R., ROPINSKI T.:
Advanced illumination techniques for gpu-based volume raycasting.
In ACM SIGGRAPH 2009 Courses (2009), SIGGRAPH ’09, ACM,
pp. 2:1–2:166. 3

[Hoe16] HOETZLEIN R. K.: Gvdb: Raytracing sparse voxel database
structures on the gpu. In Proceedings of High Performance Graphics
(2016), HPG ’16, Eurographics Association, pp. 109–117. 3, 10

[HVP02] HAKKINEN J., VUORI T., PAAKKA M.: Postural stability and
sickness symptoms after hmd use. In IEEE International Conference on
Systems, Man and Cybernetics (2002), vol. 1, pp. 147–152. 5

[HWB∗13] HORNUNG A., WURM K. M., BENNEWITZ M., STACHNISS
C., BURGARD W.: Octomap: An efficient probabilistic 3d mapping
framework based on octrees. Autonomous Robots 34, 3 (2013), 189–
206. 3, 10

[Inc16] INCORPORATED A. S.: Adobe photoshop user guide, 2016.
URL: http://www.photoshop.com/. 9

[Ize13] IZE T.: Robust bvh ray traversal-revised. Journal of Computer
Graphics Techniques (JCGT) 2, 2 (2013), 12–27. 3

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN J.: Dual con-
touring of hermite data. ACM Transactions on Graphics (TOG) 21, 3
(2002), 339–346. 3

[JMH15] JOHANNA B., MARKUS H., HANSPETER P.: State-of-the-art
gpu-based large-scale volume visualization. Computer Graphics Forum
34, 8 (2015), 13–37. 3

[Kat17] KATAOKA D.: Art and virtual reality, new tools, new horizons.
Silicon Valley VR Expo., 2017. 1

[KBSS01] KOBBELT L. P., BOTSCH M., SCHWANECKE U., SEIDEL
H.-P.: Feature sensitive surface extraction from volume data. In Pro-
ceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques (New York, NY, USA, 2001), SIGGRAPH ’01,
ACM, pp. 57–66. 3

[KH13] KAZHDAN M., HOPPE H.: Screened poisson surface reconstruc-
tion. ACM Transactions on Graphics (TOG) 32, 3 (2013), 29. 3

[KLS∗05] KNISS J., LEFOHN A., STRZODKA R., SENGUPTA S.,
OWENS J. D.: Octree textures on graphics hardware. In ACM SIG-
GRAPH 2005 Sketches (2005), SIGGRAPH ’05, ACM. 3

[KTHS15] KIM B., TSIOTRAS P., HONG J., SONG O.: Interpolation
and parallel adjustment of center-sampled trees with new balancing con-
straints. The Visual Computer 31, 10 (2015), 1351–1363. 4, 10

[KW03] KRUGER J., WESTERMANN R.: Acceleration techniques for
gpu-based volume rendering. In Proceedings of the 14th IEEE Visual-
ization 2003 (VIS’03) (2003), IEEE Computer Society, p. 38. 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Kim, B. Kim, & Y. J. Kim / Dynamic Deep Octree for High-resolution Volumetric Painting in Virtual Reality

Figure 13: "Island" from different view points.

Figure 14: "Nature" from different view points.

Figure 15: "Flying dragons" from different view points.

[LDC∗14] LU J., DIVERDI S., CHEN W., BARNES C., FINKELSTEIN
A.: RealPigment: Paint compositing by example. NPAR 2014, Proceed-
ings of the 12th International Symposium on Non-photorealistic Anima-
tion and Rendering (Jun 2014). 10

[LGF04] LOSASSO F., GIBOU F., FEDKIW R.: Simulating water and
smoke with an octree data structure. ACM Transactions on Graphics
(TOG) 23, 3 (Aug. 2004), 457–462. 3

[LHN05] LEFEBVRE S., HORNUS S., NEYRET F.: Octree textures on the
gpu. In GPU Gems 2, Pharr M., (Ed.). Addison-Wesley, 2005, pp. 595–
613. 3

[LK10] LAINE S., KARRAS T.: Efficient sparse voxel octrees. In Pro-
ceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games (2010), I3D ’10, ACM, pp. 55–63. 3, 5

[LSK∗06] LEFOHN A. E., SENGUPTA S., KNISS J., STRZODKA R.,
OWENS J. D.: Glift: Generic, efficient, random-access gpu data struc-
tures. ACM Transactions on Graphics (TOG) 25, 1 (2006), 60–99. 3, 5,
10

[MB90] MACDONALD J. D., BOOTH K. S.: Heuristics for ray tracing
using space subdivision. The Visual Computer 6, 3 (1990), 153–166. 3,
5

[MOJ17] MOJANG: Official site | minecraft. https://minecraft.
net/en-us/?ref=m, 2009-2017. 8

[Mus13] MUSETH K.: Vdb: High-resolution sparse volumes with dy-
namic topology. ACM Transactions on Graphics (TOG) 32, 3 (2013),
27. 3, 10

[Ocu16] OCULUS: Quill by story studio. https://storystudio.
oculus.com/en-us/, 2016. 2

[PGSS07] POPOV S., GÜNTHER J., SEIDEL H.-P., SLUSALLEK P.:
Stackless kd-tree traversal for high performance gpu ray tracing. Com-
puter Graphics Forum 26, 3 (2007), 415–424. 3, 5

[PWP06] PATTERSON R., WINTERBOTTOM M. D., PIERCE B. J.: Per-
ceptual issues in the use of head-mounted visual displays. Human factors
48, 3 (2006), 555–573. 5

[Reg95] REGAN C.: An investigation into nausea and other side-effects
of head-coupled immersive virtual reality. Virtual Reality 1, 1 (1995),
17–31. 5

[RTW13] REICHL F., TREIB M., WESTERMANN R.: Visualization of
big sph simulations via compressed octree grids. In 2013 IEEE Interna-
tional Conference on Big Data (2013), pp. 71–78. 3

[SABS14] SETALURI R., AANJANEYA M., BAUER S., SIFAKIS E.: Sp-
grid: A sparse paged grid structure applied to adaptive smoke simulation.
ACM Transactions on Graphics (TOG) 33, 6 (2014), 205. 10

[Sam89] SAMET H.: Implementing ray tracing with octrees and neighbor
finding. Computers & Graphics 13, 4 (1989), 445–460. 3, 5

[ZGHG11] ZHOU K., GONG M., HUANG X., GUO B.: Data-parallel
octrees for surface reconstruction. IEEE Transactions on Visualization
and Computer Graphics 17, 5 (2011), 669–681. 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

