
HCI 2007 튜토리얼

General Purpose Computation using Graphics Processing Units (GPGPU)

개요

최근들어 그래픽스 하드웨어 (GPU)의 계산 대역폭 및 데이터 전송 대역폭 증가와

GPU의 스트리밍 계산 능력의 덕택으로 많은 연구자들이 GPU를 그래피컬 데이터 처

리외에 일반적인 연산 (General purpose computation)에 적용하는 방법을 연구해왔

다. 이런 연구를 흔히 GPGPU라고 부른다. 본 튜토리얼에서는 GPGPU의 일반적인 접

근법에 대한 소개와, 개발 과정에 필요한 각종 툴들과 연구자들의 시행착오, 그리

고 국내의 GPGPU연구자들의 현황등을 살펴보고, GPU의 대표적인 벤더인 nVIDIA의

G80 GPU 아키텍쳐및 CUDA technology에 대한 소개를 겸한다. 본 튜토리얼의 목차는

다음과 같다.

1. GPGPU 연구의 배경

2. GPGPU 기본적 접근 방법 및 고려사항

3. GPGPU 개발을 위한 팁

4. nVIDIA GPU 소개

a. G80 architecture
b. CUDA technology

5. 국내 GPGPU연구 사례

a. 변형 모델의 충돌검사

b. 물리 시뮬레이션

c. 뉴럴 넷웍, 4진 트리 탐색, 이미지 피라미드

d. 스키닝 에니메이션

강사 소개

김영준 교수

이화여대 공과대학 컴퓨터학과

kimy@ewha.ac.kr

김영준 교수는 현재 이화여자대학교 공과대학 컴퓨터정보통신학과의 조교수로 근무중으로,

1993, 1996 년 서울대학교 계산통계학과에서 각각 학사, 석사 학위를 수여하였고, 2000 년

미국의 Purdue University 에서 박사학위를 수여하였다. 김 교수는 이화여대에

부임하기전에, 미국의 University of North Carolina at Chapel Hill 의 컴퓨터학과의

GAMMA 연구그룹에서 박사후 과정을 수행하였다. 김교수의 연구 분야는 interactive

computer graphics, GPGPU, haptics, geometric and physically-based modeling, robot

motion planning 등의 넓은 분야를 포함하고 있고, 이 분야의 저명 논문지에 45 편 가량의

논문을 발표하였다. 김교수는 2003 년에 ACM Solid Modeling 학회에서 최우수 논문상을

수상하였고, 2004 년에 과학기술부 주관의 젊은 과학자 연구자로 지정 되었으며,

2006 년에는 Geometric Modeling and Processing 학회에서 최우수 포스터 상을

수상하였으며, 2007 년에는 Geometric and physical modeling 분야의 연구업적으로

세계적인 인명사전인 Marquis who’s who in the world 2007 에 등재되었다.

한정현 교수

고려대학교 정보통신대학

jhan@korea.ac.kr

한정현 교수는 현재 고려대학교 정보통신대학에 재직 중으로, Interactive 3D Media Lab 을

지도하고 있다. 1986 년 서울대학교 컴퓨터공학과에서 학사, 1991 년 University of

Cincinnati Computer Science 에서 석사, 1996 년 USC Computer Science 에서 박사 학위를

수여하였으며, 1996 년부터 1997 년 사이에 미국 상무성 National Institute of Standards

and Technology (NIST) 연구원으로 근무하였고, 1997 년부터 2004 년까지 성균관대학교

정보통신공학부에서 전임강사, 조교수, 부교수로 근무하였다. 한정현 교수는 2001 년부터

2004 년까지 산업자원부 지정 게임기술개발지원센터의 연구책임자였고, 현재는 문화관광부

지정 게임연구센터 연구책임자이다.

mailto:kimy@ewha.ac.kr
mailto:jhan@korea.ac.kr

오경수 교수

숭실대학교 미디어학부

oks@ssu.ac.kr

2001 서울대학교 전기컴퓨터공학부 박사

2000~2002 조이멘트 개발팀장

2003~현재 숭실대학교 조교수

김진욱 박사

한국과학기술연구원(KIST), Imaging and Media Research Center

jwkim@imrc.kist.re.kr

Research Interests

Real-time Physics based Animation, Human Modeling, Haptics, Robotics

Education

1995, B.S. Mechanical Design and Production Engineering, Seoul National University

1997, M.S. Mechanical and Aerospace Engineering, Seoul National University

2002, Ph.D. Mechanical and Aerospace Engineering, Seoul National University

Jeffrey Yen

nVIDIA APAC Technical Marketing Manager

mailto:oks@ssu.ac.kr
mailto:jwkim@imrc.kist.re.kr

강의 내용 1

GPU를 이용한 Proximity Computation

본 튜토리얼에서는 GPGPU의 일반적인 접근법에 대한 소개와, 이를 penetration depth

computation, avatar interaction in virtual environments, self-collision detection

between deformable bodies, streaming AABB collision detection, arrangement

computation과 같은 다양한 기하 문제에 적용하는 방법을 소개한다. 특히, 이런 문제들에

GPU의 fast rasterization, occlusion query, fast texture lookup등의 방법이 어떻게 이용

되었는지를 설명한다.

본 튜토리얼에서 참조한 논문들은 다음과 같다.

Young J. Kim, Miguel A. Otaduy, Ming C. Lin and Dinesh Manocha, Fast penetration

depth computation for physically-based animation, ACM Symposium on Computer Animation,

July 2002

Young J. Kim, Gokul Varadhan, Ming C. Lin and Dinesh Manocha, Fast swept volume

approximation of complex polyhedral models, ACM Symposium on Solid Modeling and

Applications, June 2003

Yoo-Joo Choi, Young J. Kim, Myoung-Hee Kim, Rapid pairwise Intersection tests using

programmable GPUs, Visual Computer, 22(2), 2006

Xinyu Zhang, Young J. Kim, Interactive collision detection for deformable models

using streaming AABBs, IEEE Transactions on Visualization and Computer Graphics,

13(2), Mar/Apr,2007

Young J. Kim, Stephane Redon, Ming C. Lin, Dinesh Manocha, Jim Templeman, Interactive

continuous collision detection using swept volume for Avatars, Presence:

Teleoperators and Virtual Environments* Vol. 16.2, April 2007

강의 내용 2

GPU기반의 스키닝 에니메이션

본 강의는 GPU를 이용해 대규모 군중의 실시간 스키닝 애니메이션을 구현하는 기법을

소개한다. 픽셀 쉐이더, 렌더 타켓 텍스처, 정점 버퍼를 이용한 스키닝 애니메이션은 수만

군중 각각에 대해 독립적인 동작을 부여할 수 있다. 여기에 스프라이트 등을 사용한 LOD

기법을 적용하면 실시간 애니메이션 대상 객체의 수는 수십만으로 불어날 수 있다. 한편,

대규모 군중 렌더링 알고리즘은 행동 제어 기법과도 용이하게 통합된다.

본 튜토리얼에서 참조한 논문은 다음과 같다.

I. Kang and J. Han, “Real-Time Animation of Large Crowds,” Proc. of 5th International Conference on

Entertainment Computing, 20-22 September 2006, Cambridge, UK, pp. 382–385.

강의 내용 3

GPU를 이용한 신경망, 4진트리 서치, 이미지 피라미드 구현

1 GPU를 이용한 신경망 구현

신경망 중 하나인 MLP(Multi Layer Perceptron)은 행렬곱으로 구현할수 있다. GPU로 행렬을

곱하는 법을 설명하고 MLP의 개념에 대한 설명, MLP를 행렬곱으로 구현하는 법, MLP를

GPU로 구현하기 유리한 상황을 설명하겠다.

2 GPU를 이용한 트리의 계층적 탐색

트리의 탐색은 GPGPU에서 중요한 topic이다. 4진 트리의 계층적 탐색방법을 설명하고 이를

이용한 간접조명 렌더링, subsurface scattering등의 렌더링 알고리즘들을 demo중심으로

설명한다.

3 Image Pyramid 기타 자료구조

Image Pyramid는 영상처리, 컴퓨터 그래픽스에서 유용한 자료구조이다. 이를 이용한 변위

매핑(displacement mapping)기법을 설명한다. 이 외에도 Octree, Quad Tree를 GPU상에서

구현한 예를 보인다. function을 texture에 저장하기, random number를 생성해서 texture에

저장하기등 기본적인 GPGPU 기술들에 대해서도 설명한다.

4 GPU프로그래밍시 디버깅 팁

화면에 찍어보기, depth buffer를 사용한 if문 제거, alpha blending을 이용한 코드 단순화

등의 코딩 팁과 컴파일 에러시 대처하는 팁들에 대해 알아본다.

관련 논문

Kyoung-Su Oh, Keechul Jung: GPU implementation of neural networks, International Journal of

Pattern Recognition, Vol. 37, Issue 6, Pages 1311-1314, June 2004

Oh, K., Ki, H., and Lee, C. 2006. Pyramidal displacement mapping: a GPU based artifacts-free

ray tracing through an image pyramid. In Proceedings of the ACM Symposium on Virtual Reality

Software and Technology (Limassol, Cyprus, November 01 - 03, 2006). VRST '06. ACM Press,

New York, NY, 75-82.

기현우, 오경수. 계층적 접근을 통한 반투명한 물체의 실시간 렌더링과 적응적인 화면 보간

기법. 2006년 하계 한국게임학회 학술발표대회, p.217-224. (Best Paper Award)

강의 내용 4

GPU를 이용한 non-convex geometry의 관성행렬 연산 및 부력

시뮬레이션

강체 동역학 시뮬레이션을 수행하기 위해서는, 강체의 질량, 질량중심, 관성행렬 등의 물성

치를 알아야한다. 이러한 질량특성은 시뮬레이션을 수행함에 있어 변하지 않는 경우가 많기

때문에, 시뮬레이션을 수행하기 이전 초기화 단계에서 한번 구하는 것으로 충분하다. 그러

나 강체를 표현하는 geometry가 시뮬레이션을 수행함에 따라 변하는 경우, 강체의 질량특

성을 매 시뮬레이션단계마다 구해야하며, 만일 질량특성을 구하는 알고리즘이 효율적이지

못할경우, 전체적인 시뮬레이션 성능을 저하시킬수있다.

본 튜토리얼에서는 GPU를 이용하여 임의의 형상으로 표현된 강체의 질량특성을 효율적으

로 근사하는 방법에 대하여 생각해보고, CPU를 이용한 해석적 알고리즘과 정확도 및 연산

성능 측면에서 비교해본다. 또한 제안된 알고리즘을 확장하여, 부력 시뮬레이션에 적용시키

는 문제를 다룬다.

튜토리얼은 다음과 같이 구성된다.

1. 강체의 질량특성 및 동역학 시뮬레이션

2. GPU를 이용한 질량특성 연산

3. Depth-peeling을 이용한 non-convex geometry 처리

4. CPU기반 알고리즘과 성능비교

5. 부력 시뮬레이션에의 적용

6. GPU 구현상의 몇가지 이슈들

관련 논문

Jinwook Kim , Soojae Kim , Heedong Ko and Demetri Terzopoulos, "Fast GPU computation of

the mass properties of a general shape and its application to buoyancy simulation", The Visual

Computer. Vol.22. No.8. 2006.

강의 내용 5

NVIDIA의 new 하드웨어 (8800 시리즈)와 CUDA

IEEE TVCG 1

Interactive Collision Detection for
Deformable Models using Streaming AABBs

Xinyu Zhang and Young J. Kim

Abstract—We present an interactive and accurate collision detection algorithm for deformable, polygonal objects based on the

streaming computational model. Our algorithm can detect all possible pairwise primitive-level intersections between two severely

deforming models at highly interactive rates. In our streaming computational model, we consider a set of axis aligned bounding

boxes (AABBs) that bound each of the given deformable objects as an input stream and perform massively-parallel pairwise,

overlapping tests onto the incoming streams. As a result, we are able to prevent performance stalls in the streaming pipeline that

can be caused by expensive indexing mechanism required by bounding volume hierarchy-based streaming algorithms. At run-time,

as the underlying models deform over time, we employ a novel, streaming algorithm to update the geometric changes in the AABB

streams. Moreover, in order to get only the computed result (i.e., collision results between AABBs) without reading back the entire

output streams, we propose a streaming en/decoding strategy that can be performed in a hierarchical fashion. After determining

overlapped AABBs, we perform a primitive-level (e.g., triangle) intersection checking on a serial computational model such as

CPUs. We implemented the entire pipeline of our algorithm using off-the-shelf graphics processors (GPUs), such as nVIDIA

GeForce 7800 GTX, for streaming computations, and Intel Dual Core 3.4G processors for serial computations. We benchmarked our

algorithm with different models of varying complexities, ranging from 15K up to 50K triangles, under various deformation motions,

and the timings were obtained as 30∼100 FPS depending on the complexity of models and their relative configurations. Finally, we

made comparisons with a well-known GPU-based collision detection algorithm, CULLIDE [4] and observed about three times

performance improvement over the earlier approach. We also made comparisons with a SW-based AABB culling algorithm [2] and

observed about two times improvement.

Index Terms—Collision Detection, Deformable Models, Programmable Graphics Hardware, Streaming Computations, AABB.

◆

1 Introduction

The goal of collision detection is to determine whether
one or more geometric objects overlap in space and, if they
do, identify overlapping features, also known as collision
witness features. Collision detection has been used for a
wide variety of applications that attempt to mimic the
physical presence of real world objects. The types of these
applications include physically-based animation, geometric
modelling, 6DOF haptic rendering, robotic path planning,
medical imaging, interactive computer games, etc. As a
result, many researchers have extensively studied the col-
lision detection problems over the past two decades. An
excellent survey of the filed is available in the work by Lin
and Manocha [1].

At a broad level, the field of collision detection can be
categorized differently depending on the nature of input
models (rigid vs. deformable, linear vs. curved, or surface
vs. volumetric), the existence of motion (static vs. dy-
namic), the type of collision query (discrete or continuous),
and the type of computing resources that collision query
utilizes(CPUs vs. GPUs). In principle, it is well known
that the worst case computational complexity of any col-
lision detection algorithm can be as high as quadratic in
terms of the number of primitives contained in the input
models. In practice, however, the actual number of col-
liding primitives tends to be a relatively small number.

• The authors are with the department of computer science and
engineering at Ewha womans university in Seoul, Korea. Email:
{zhangxy, kimy}@ewha.ac.kr

Therefore, the major efforts in most of existing collision
detection algorithms have been focused on reducing the
number of collision checkings between colliding primitives
(e.g., triangles). Often, this goal is achieved through the
use of bounding volume hierarchies (BVHs) such as axis
aligned bounding box (AABB) trees, sphere trees, oriented
bounding box (OBB) trees, discrete orientation polytopes
(DOPs) or convex hull trees, or through the use of modern
rasterization hardware.

Even though some researchers believe that collision de-
tection is a solved problem, there are still quite a few chal-
lenges left. In particular, collision detection of deformable
bodies is one of the remaining yet difficult challenges. The
major difficulty of devising an efficient solution for de-
formable models lies in the fact that it is quite expensive
to update the auxiliary collision querying structure such
as BVH as the underlying model deforms over time. In or-
der to address this issue, researchers have suggested a lazy
update of BVHs [2], reduced deformation of models [3], or
the use of GPUs based on image space computations [4],
[5], [6], [7], [8]. However, the accuracy or the performance
of the first three techniques are governed by image-space
resolution and viewing directions. The efficiency of the
GPU-based technique depends on the resolution of image
space and it may not work well for highly deforming models
that have many overlapping primitives and it often misses
many colliding pairwise primitives. In-depth discussion of
these challenges for collision detection of deformable ob-
jects can be also found in Teschner et al.’s work [9].

2 IEEE TVCG

(a) Intersecting bunny models (b) AABB streams of bunny models (c) Intersected AABBs

Fig. 1. Collision Detection using Streaming AABBs. (a) shows intersecting two bunny models (blue and cyan); (b) two bounding AABB streams
(white and light blue boxes) are superimposed on the bunny models that they bound respectively; (c) highlights intersecting AABBs (shown as
orange and yellow boxes). Using commodity graphics processors, our algorithm is able to find all the intersecting AABBs in the object space;
using CPUs, the algorithm reports actually colliding triangles contained in the intersecting AABBs.

Recently, the streaming computation model has drawn
much attention from different areas like computer graphics,
image processing, geometric modelling, and even database
[10]. The concept of a streaming model is not novel but
it has been around for more than four decades. However,
the recent introduction of powerful streaming architecture
like GPUs revitalize the new era of streaming computa-
tions. This research trend is expected to continue and grow
thanks to other emerging, new streaming processors like
CELL processors[11], [12]. In contrast to the traditional,
serial computation model like CPUs, a streaming compu-
tation model represents all data as one or more streams,
which are defined as one or more ordered sets of the same
data type. Allowed operations on streams include copying
them, deriving sub-streams from them, indexing into them
with a separate index stream, and performing computation
on them with kernels. A kernel operates on entire streams,
taking one or more streams as inputs and producing one or
more streams as outputs. Moreover, computations on one
stream element are never dependent on computations on
another element [13], [14], [15], and thus can be performed
in parallel with the same instructions.

1.1 Main Results

In this paper, based on the powerful concept of stream-
ing computations, we present a novel collision detection
algorithm for severely deforming objects. At a high level,
the streaming computations in our algorithm can be split
into three stages:

1. Stream Setup: As preprocess, for each deformable
object, we calculate a set of axis aligned bounding
boxes (AABBs) that bounds the object, and consider
each set as an input stream to our collision detection
algorithm.

2. Stream Calculation: At run-time, we perform
massively-parallel pairwise, overlapping tests onto the
incoming streams. Moreover, we use a streaming
en/decoding strategy to get only the computed re-
sult (i.e., collisions between AABBs) without actually
reading back the entire output streams

3. Stream Update: As the underlying models deform
over time, we employ a novel, streaming algorithm to

update the geometric changes in the AABB streams.
After determining overlapping AABBs at the stream cal-

culation stage (step 2), we perform a primitive-level (e.g.,
triangle) intersection checking on a serial computational
model, implemented using CPUs. The entire streaming
computations are implemented using one of the highly suc-
cessful streaming architecture of modern era, graphics pro-
cessing units (GPUs).

One of the major distinctions between our algorithm and
other GPU-based algorithms is that the entire pipeline of
our approach performs collision detection in object space
and never misses any pairwise, colliding primitives. More
specifically, the main advantages of our approach include:

• Streaming computations: our algorithm performs
massively parallel overlap tests on streaming AABBs
by utilizing the high floating bandwidth of modern
GPUs.

• Tile-based rendering: To cope with the limited
memory (i.e., texture) size available in modern GPUs,
our algorithm uses a tile-based rendering technique to
handle a large AABB stream.

• Hierarchical stream readback: As a remedy for
slow downstream bandwidth from GPUs to CPUs, the
algorithm fetches minimal stream data from GPUs to
CPUs using a hierarchical en/decoding stream read-
back strategy.

• Generality of input models: The algorithm can
handle general polyhedral models and makes no as-
sumptions about their topology and connectivity.

• Accurate results: The entire pipeline of our algo-
rithm is performed in object space and can report all
colliding primitives within a floating point precision of
the underlying CPUs and GPUs.

• Interactive performance: Our extensive experi-
ments show that the algorithm is robust and is able to
report collision results of deformable models at highly
interactive rates.

1.2 Organization

The rest of the paper is organized in the following man-
ner. Section 2 surveys related work on collision detection
of deformable objects. Section 3 gives a brief overview

STREAMING COLLISION DETECTION 3

of our approach. Section 4 describes the precomputation
stage of our algorithm and section 5 presents our stream-
ing collision detection algorithm. Section 6 provides our
streaming update scheme and section 7 highlights our algo-
rithm’s performance on different benchmarks and analyzes
its efficiency compared to other algorithms. In section 8,
we conclude the paper and discuss a few limitations of the
algorithm and suggest possible future work.

2 Previous Work

In this section, we give a brief overview of related work
in collision detection for deformable objects. A more thor-
ough, recent survey on collision detection for deformable
models is available in [9].

2.1 CPU-based Algorithms

At a high level, collision detection (CD) algorithms can
be classified into two categories: broad phase object-level
CD and narrow phase primitive-level CD. For the broad
phase CD, algorithms based on sweep-and-prune have
been proposed in I-COLLIDE [16], V-COLLIDE [17] and
SWIFT/SWIFT++ [18]. However, these techniques are
designed mainly for rigid models. It is not clear whether
they can handle large deformable models at interactive up-
date rates.

For the narrow phase of CD algorithms, a variety of
techniques have been presented such as the use of BVHs,
geometry reasoning, algebraic formulations, space parti-
tions, parse methods and optimization techniques [1], [19].
In particular, BVHs have been proven efficient and suc-
cessful in collision detection. Examples of typical bound-
ing volumes used in the literature are AABBs [2], [20],
[21], spheres [22], [23], OBBs [24], DOPs [25]. By intro-
ducing AABB trees, the accurate algorithm suggested in
[2] for deformable models has special advantages for slight
deformations, because refitting AABB trees is much faster
than rebuilding them. Recently, by combining BVHs with
a cache-oblivious layout, the query time of collision detec-
tion for rigid bodies can be reduced significantly [26].

2.2 GPU-based Algorithms

CD algorithms based on GPUs can be classified into two
different categories: image space- and object space-based
approaches. The former approach exploits the powerful
rasterization capability available in modern GPUs to per-
form intersection tests between object primitives in image
space. The effectiveness of the approach is often limited
by the image space resolution. The latter approach utilizes
the high floating point bandwidth and programmability of
GPUs and all the computations are performed in object
space and thus are limited by the floating point precision
of GPUs.

2.2.1 Image Space-based Techniques

The pioneering work of image-based collision detection
has been introduced by [27] for convex objects. In this
method, two depth layers of convex objects are rendered
into two depth buffers and an interval between the smaller

depth value and the larger depth value at each pixel is used
for interference checking [9]. The work by [28] is able to
detect collision for arbitrary-shaped objects, but the max-
imum depth complexity is limited and object primitives
must be pre-sorted.

For cloth simulation, the first image-based collision de-
tection algorithm has been presented in [29]. The al-
gorithm generates an approximate representation of an
avatar by rendering it from front to back and reports pen-
etrating cloth particles. [8] uses a voxel-based AABB hi-
erarchical method for highly compressed models.

The algorithm for virtual surgery operations [30] has
been introduced to detect intersections between a surgi-
cal tool and deformable tissues by rendering the interior
of the tool based on the selection and feedback mechanism
available in OpenGL. However, selection and feedback can
cause stalls in the graphics pipeline because it relies on
the use of expensive picking matrices, thus resulting in a
worse performance. The algorithms based on distance field
computations [31] can report various proximity informa-
tion such as interference detection, separation distance and
penetration depth. In [32], they have presented a method
to detect an edge/surface intersection in multi-object en-
vironments.

Layered Depth Images (LDIs) is used in [33] to approxi-
mately represent objects’ volume and perform CD for mod-
els with closed surfaces. A method using GPUs-assisted
voxelization is introduced in [34]. The approaches utiliz-
ing hardware-supported visibility queries [4], [6] have been
proposed to significantly improve the efficiency of colli-
sion culling. However, the accuracy is governed by the
image-space resolution and viewing directions. The issue
of accuracy has been resolved by their improved algorithm,
R-CULLIDE [5], but its performance is still governed by
the resolution and viewing directions. A more recent al-
gorithm [35] precomputes a chromatic decomposition of a
model into non-adjacent primitives using an extended-dual
graph. However, it requires a fixed connectivity for a model
and can not be applicable to models with an arbitrary con-
nectivity.

2.2.2 Object Space-based Techniques

Utilizing the high floating point bandwidth and pro-
grammability of modern GPUs, a hierarchical collision de-
tection method for rigid bodies using balanced AABB trees
has been devised in [36]. The algorithm maps AABB trees
onto GPUs and performs a breadth-first search on the
trees. During the traversal of hierarchy, occlusion query
is used to count the number of overlapping AABB pairs
and recursive AABB overlapping tests in object space is
implemented using GPUs. However, traversing hierarchi-
cal structure on GPUs turns out to be a huge overhead
for GPUs and this algorithm does not work at interactive
rates. Moreover, the algorithm is designed only for rigid
models, not for deformable models. A similar work using
filtering operation has been suggested by [37]. [38] has pro-
posed a GPU-based method to perform self-intersections
between deformable objects. This method also fully uti-

4 IEEE TVCG

I. Stream Setup

1. AABB tree building
2. AABB texture preparation

III. Stream Update

1. Texture Download
2. Stream update

II. Stream Calculation

1. Global AABB overlap test
2. Streaming AABB overlap test
3. Stream reduction
4. Primitive-level intersection test

Deformation Simulation

Fig. 2. The Streaming Collision Detection Pipeline. Stage I performs AABB stream setups. Stage II executes massively-parallel overlap test between
AABB streams. Stage III updates the AABB streams as the underlying model deforms. The steps associated with streaming computations are
italicized.

lizes the floating point bandwidth and programmability of
modern GPUs but the input models are limited to around
1K triangles.

3 Algorithm Overview

The pipeline of our algorithm involves the following three
steps to perform streaming collision detection between two
deformable objects. The first step is performed as prepro-
cess whereas the last two steps at run-time.

1. Stream Setup: (also see Section 4)
(a) As preprocess, the 1D stream, SX , of AABBs is

pre-built by building an AABB tree of a given model
X in a top down manner such that each leaf node
in the tree respectively corresponds to a unique el-
ement, �X

i , in SX (i.e., SX = ∪�X
i). �X

i may
contain more than one triangle but each triangle
belongs to a unique �X

i in SX .
(b) On GPUs, each �X

i requires two texels to repre-
sent the bound (min/max) of an AABB and, as a
result, SX is stored at two floating point 1D tex-
tures {T X

min, T X
max}.

2. Stream Calculation: (also see Section 5)
(a) Global AABB Overlap Test: We check for an

intersection between the global AABB pairs of mod-
els. We further continue the following steps only
if there occurs an intersection between the global
bounding boxes.

(b) Streaming AABB Test: All possible pairwise
combinations between �X

i and �Y
j from models

X, Y are examined for their possible overlap. This
process is enabled by rendering a two dimensional
rectangle onto an off-screen buffer while invoking a
fragment shader to actually perform an AABB over-
lap test. More specifically, the rectangle is textured
periodically with two 1D textures {T X

min, T X
max} in

vertical direction and two 1D textures {T Y
min, T Y

max}
in horizontal direction. The Boolean results of
the above computation are stored at the off-screen
buffer.

(c) Stream Reduction: Our algorithm encodes the
Boolean results into a packed representation to
speed up the reading performance from GPUs back
to CPUs. Based on a multi-pass rendering tech-
nique on off-screen buffers, we employ a hierarchi-

cal readback strategy that is a variant of [38]. The
hierarchical readback structure is constructed in a
bottom-up manner such that a single pixel in a
higher level off-screen buffer encodes the Boolean re-
sults of a group of neighboring pixels in a lower level
off-screen buffer. When we decode the Boolean re-
sults, we traverse the hierarchy in a top-down man-
ner.

(d) Primitive-level Intersection Test: Exact
primitive-level intersection tests are performed on
CPUs only for overlapping �X

i ,�Y
j pairs. We use a

standard triangle/triangle intersection test such as
[39]. This test does not rely on streaming compu-
tations.

3. Stream Update: (also see Section 6)
As the underlying models X, Y deform, their associ-
ated AABB streams SX ,SY should be updated. In
our case, each of SX ,SY is stored at two 1D min/max
textures (e.g., T X

min, T X
max for SX). Each texel in

T X
min (or T X

max) represents the lower bound (or up-
per bound) of associated geometry. We update T X

min

(or T X
max) by rendering a single 1D line and invoking

a simple fragment program that performs pixel-wise
min and max operations.

4 Stream Setup

An input stream SX to our CD algorithm consists of an
ordered set of AABBs �X

i ’s that bound a given deformable
model X. In this section, we explain how we initially create
SX and later describe in Section 6 how we update SX as
X deforms.

4.1 AABB Stream Construction

We start building an AABB tree using the method sug-
gested in [2]. An AABB tree is built by recursively sub-
dividing the given model in a top down manner. Each
leaf AABB node in the tree contains no more than a user-
provided, number of triangles and each triangle belongs
to only one leaf AABB node. Fig. 3-(a) illustrates the
structure of a typical AABB tree for a model X. Parts
of actual model geometry (e.g., triangle list) are kept in
each leaf node. Then, each leaf node produces one AABB,
�X

i , and we collect these �X
i ’s to form an AABB stream

SX . Note that ∪�X
i bounds X, but �X

i is not necessarily

STREAMING COLLISION DETECTION 5

disjoint to each other; i.e., �X
i ∩ �X

j may not be empty.
Besides, we also maintain a vertex list for all the vertices
contained in �X

i . As we will see in Sections 4.2.2 and 6,
these vertex lists are used to accelerate updating AABB
textures on GPUs.

Virtual Leaf Internal nodesLeaf
(a) (b)

Pull Down

Fig. 3. Pulling Down Operation. (a) An original AABB tree before
adjustment; (b) A complete binary AABB tree after adjustment by
adding virtual leaves using pulling down operations.

In order to adequately map SX to modern GPUs’ ar-
chitecture, however, we adjust each AABB tree to form
a complete binary tree by generating extraneous, virtual
nodes for a leaf level AABB node that does not exist in
the original tree. Although latest GPUs support textures
in non-power-of-two, power-of-two texture is still required
for the stream reduction technique, described in Section
5.3. We illustrate the adjustment scheme in Fig. 3. To
generate virtual leaves, we pull down a leaf node that is
not located at a bottom level and create its virtual chil-
dren. The values of the virtual children nodes are copied
from their parent. We simply call these virtual children
nodes, virtual nodes.

After the adjustment, at each level in the hierarchy, a
complete binary tree has 2d nodes including virtual ones,
where d is the depth of the given level. The leaf level
node of such a complete binary AABB tree corresponds to
�X

i and their union forms an AABB stream SX . SX is
represented as textures on GPUs.

4.2 Mapping AABB Streams to GPUs

The target streaming architecture on which we wish to
implement our CD algorithms is the most successful and
popular streaming architecture of all time, GPUs. Com-
pared to CPUs, the floating point performance of GPUs
has increased dramatically over the last four years. It has
been reported that GPUs’ performance doubles every six
month. Moreover, GPUs has a full programmability that
supports vectorized floating point operations at a quasi
full IEEE single precision. The raw speed, increased preci-
sion, and rapidly expanding programmability make GPUs
attractive platform for general purpose computation. On
GPUs, stream data are subject to be bound to textures
[40]. Now we explain how to prepare such textures on
GPUs to represent AABB streams.

4.2.1 1D AABB Textures

Modern GPUs can support four color channels RGBA
for textures where each color channel can be a floating
point number. As a result, in order to store the bound

(min/max) of each AABB element �X
i contained in a

AABB stream SX at textures, we require two 1D textures
T X

min, T X
max; let us call these textures T X

min, T X
max AABB

textures. More precisely, for each �X
i , its lower bound

(xmin, ymin, zmin) is stored at one texel in T X
min and its

upper bound (xmax, ymax, zmax) at one texel in T X
max. Fig.

4-(a) illustrates a brief description of this procedure.
Meanwhile, for each AABB stream SX , we also prepare

its corresponding 1D stencil array whose dimension is the
same as the associated AABB texture, T X

min or T X
max. Each

element in the stencil array indicates whether correspond-
ing AABB node (i.e., �X

i) is real or virtual: following the
common OpenGL convention, zero denotes a virtual node
such that the pairs with zeroed �X

i will not be further
considered being update in frame buffer after the AABB
overlap test. However, notice that for a pair of virtual
AABB nodes (say �X

i ,�X
i+1) that share a common real

AABB parent node, at least one of them should be con-
sidered for an overlapping test, but not necessarily both
since they contain the same AABB value. Therefore, we
mark the first virtual AABB node as one while keeping the
second one as zero. For example, in Fig. 4-(a), the third
and fourth nodes are virtual nodes sharing the same, real
parent node in Fig. 3-(a). In this case, the third node will
be marked as one while the fourth will be as zero. The
created 1D stencil array fills up the stencil buffer that will
be used to prevent the frame buffer from unnecessary up-
date after the fragment processing in GPUs which actually
performs an AABB overlapping test (see Section 5.2).

Stencil 1 1 1 0 1 0 1 1

……

(a) (b)

Fig. 4. Preparation of AABB Textures. (a) 1D AABB textures storing
the upper and lower bounds of AABBs and a stencil array; (b) 1D
vertex textures for unique vertices contained in AABB nodes.

4.2.2 Vertex Textures

As will be explained in Section 6 in detail, as a model
X deforms, its geometry as well as its AABB stream SX

should be updated. The geometry of X, in our case, is rep-
resented using a list of triangles. These triangles are par-
titioned into a separate group and each group is bounded
by different �X

i ’s. Therefore, �X
i can contain more than a

single triangle. To update �X
i under deformation, we need

to store the triangles at separate textures, called vertex
textures1.

Let us denote nmax as the maximum number of trian-
gles that any �X

i can contain; i.e., nmax = max(|�X
i |),∀i.

Then, we prepare nmax 1D vertex textures whose size is
the same as that of an AABB texture. For example, as
illustrated in Fig. 4-(b), the ith vertex contained in the

1. The vertex texture in our paper is a different notion from
nVIDIA’s vertex texture

6 IEEE TVCG

jth AABB node is stored at the jth texel of the ith vertex
texture; however, here, we use only RGB channels of the
jth texel. The alpha channel (A) is reserved for represent-
ing an empty texel. In other words, if the size of �X

i , say
ni = |�X

i |, is smaller than nmax, we set the alpha channels
of texels between ni + 1 and nmax to zero and set the rest
as one.

In practice, working with 1D textures on GPUs turns
out to be less efficient than 2D textures. The main reasons
are: (a) GPUs are equipped with 2D frame buffers, so 2D
textures tend to be updated more rapidly than 1D textures
[40] and (b) the maximum number of possible multiple
1D textures is limited by underlying hardware. Thus, we
pack nmax 1D vertex textures into a 2D texture whose
dimension is 2dmax ×nmax where dmax is the height of the
complete binary AABB tree.

5 Streaming Collision Detection

At run-time, our streaming CD algorithm reports all in-
tersecting triangles between two deforming models. This
run-time process can be subdivided into three stages:
global AABB overlap test, streaming AABB overlap test,
and fast readback of colliding results.

5.1 Global AABB Overlap Test

Let us denote the global AABBs that bound the entire
models X and Y as �X

G ,�Y
G, respectively. As trivial re-

jection, if �X
G ∩ �Y

G = ∅, we immediately terminate the
algorithm and report no collision between X and Y ; other-
wise, we continue the next steps described in Section 5.2.
This test does not require a streaming computation and
thus can be simply implemented on CPUs.

5.2 Streaming AABB Overlap Tests

The process of checking for overlaps between two AABB
streams SX ,SY proceeds in two steps:

1. Stream Pairing: we represent all possible pairwise
combinations between �X

i ,�Y
j in SX ,SY by textur-

ing a squared rectangle with T X
min, T X

max in vertical
direction and with T Y

min, T Y
max in horizontal direction.

2. Elementary AABB Overlap Test: rendering the tex-
tured rectangle invokes a fragment program on GPUs
for each pixel that performs a simple interval overlap-
ping test between �X

i ,�Y
j .

More precisely, for the step (1), we render a 2dX
max ×

2dY
max rectangle, where dX

max and dY
max are, respectively, the

heights of the AABB tree X and Y that were precomputed
as preprocess. We texture-map the rectangle with four 1D
textures T X

min, T X
max, T Y

min, T Y
max, as illustrated in Fig. 5.

T X
min, T X

max from X are used to periodically texture the
rectangle in vertical direction and T Y

min, T Y
max from Y in

horizontal direction.
For the step (2), rendering the above textured rectangle

invokes a same fragment program on every pixel in a SIMD
fashion on GPUs. The fragment program performs an el-
ementary overlap test for the corresponding pixel, which
represents a pair of AABBs, �X

i ,�Y
j . The overlap test is a

simple interval overlap test along three principal axes of an
AABB. However, as explained in Section 4.2.1, we prevent
some fragments from being updated in the frame buffer
since their associated AABB pairs are virtual nodes. We
use two 1D stencil arrays from model X and Y to set up
the stencil buffer to disable unnecessary update of frame
buffer after the fragment processing for those pairs. For ex-
ample, as illustrated in Fig. 5, the white blocks marked as
’-’ represent prevented AABB pairs (PAPs) by the stencil
buffer.

The streaming
AABBs of the
model X

- -

- -

- - - - - - - -

- -

- - - - - - - -

- -

- -

- -

The streaming AABBs of the model Y

1 1 1 0 1 0 1 1

1

1

0

1

0

1

1

1

stencil (X)
↓

stencil (Y) →

-

CAP

NCAP

PAP

Fig. 5. AABB pair overlap tests on GPUs. The red blocks represent
colliding AABB pairs (CAPs) and the blue blocks represent non-
colliding AABB pairs (NCAPs). The white blocks marked as ’-’
represent prevented AABB pairs (PAPs) by the stencil buffer that is
defined by the stencil array of the model X (the right column) and
that of the model Y (the bottom row). The left AABB textures
correspond to an AABB stream SX of the model X and the top
AABB textures to SY of the model Y .

void streamingAABBTest (float uvA: TEXCOORD0,
float uvB: TEXCOORD1,
out float4 color: COLOR,
uniform sampler1D minTextureA,
uniform sampler1D maxTextureA,
uniform sampler1D minTextureB,
uniform sampler1D maxTextureB)

{
float3 aabbMinA = (float3) tex1D(minTextureA, uvA).xyz;
float3 aabbMaxA = (float3) tex1D(maxTextureA, uvA).xyz;
float3 aabbMinB = (float3) tex1D(minTextureB, uvB).xyz;
float3 aabbMaxB = (float3) tex1D(maxTextureB, uvB).xyz;

if(aabbMinA.x > aabbMaxB.x || aabbMaxA.x < aabbMinB.x ||
aabbMinA.y > aabbMaxB.y || aabbMaxA.y < aabbMinB.y ||
aabbMinA.z > aabbMaxB.z || aabbMaxA.z < aabbMinB.z)
discard; //no overlap

color= float4(1.0, 0.0, 0.0, 0.0);
}

TABLE I

Elementary AABB Overlap Test in Cg
The code implements a simple interval overlap test between AABB tex-
tures addressed by uvA, uvB, and returns its Boolean result as color.

The rendering result of the fragment program contains a
Boolean result of collision between a pair of AABBs: col-
liding AABB pairs (CAPs) and non-colliding AABB pairs
(NCAPs). For example, in Fig. 5, the red blocks repre-
sent CAPs and the blue ones represent NCAPs. Note that
PAPs are always NCAPs. Table I shows a simple, fragment

STREAMING COLLISION DETECTION 7

(a) Two intersecting models (b) Reduced hierarchical encoding (c) Hierarchical encoding

Fig. 6. Snapshots of streaming AABB overlap tests on GPUs and the hierarchical readbacks. (a) Snapshot of two intersecting models with CAPs
in wire-framed boxes. (b) Reduced hierarchical readback. Left: collision result of AABB pairs stored at an off-screen buffer P0; the red pixels
indicate the CAPs. Right: encoded off-screen buffer by a 8 × 8 kernel P ′

1. (c) Hierarchical readback. Left most: the same AABB collision
results P0. Right three images: hierarchically encoded off-screen buffers P1, P2, P3.

program in Cg performing an elementary AABB overlap
test for each pixel.

In Fig. 6, we show snapshots of our CD algorithm in
action. In Fig. 6-(a), two deformable models X and Y
intersect with each other. The left image in Fig. 6-(b) is a
snapshot of a textured rectangle, where the red pixels are
CAPs and the black ones are NCAPs.

5.3 Stream Reduction

5.3.1 Hierarchical Readback

One of the limitations to map the concept of streaming
computations to GPUs is the limited bandwidth of data
transmission between GPUs and CPUs, especially reading
the stream data from GPUs back to CPUs, also known as
downstream bandwidth. Therefore, when mapping stream-
ing computations to GPUs, we need to carefully design the
algorithm in such a way that the number of readbacks from
GPUs should be minimized. In general, the readback time
increases linearly in proportion to the size of a readback.
For example, on nVIDIA GeForce 6800 with PCI express
bus architecture, it takes 96.97 ms to read the entire con-
tents of a 2048 × 2048 floating point color buffer whereas
it takes only 6.58 ms to read a 512× 512 color buffer [41].

To speed up the readback performance, a straightfor-
ward idea will be to split a readback buffer into smaller
ones and read only relevant parts. A more intelligent way
is to read the data in a hierarchical fashion, assuming that
the relevant data is grouped together. In practice, collision
results show a spatial coherence; i.e., colliding triangles
tend to be in close proximity with one another. Based on
this observation, in [38], a hierarchical en/decoding strat-
egy has been suggested to speed up the readback perfor-
mance. We use a variant of this approach.

In our readback scheme, we consecutively reduce the size
of output stream in a hierarchical fashion. Initially, the
2D output stream whose element represents a Boolean col-
lision result is stored at a textured rectangular buffer P0,
i.e., off-screen color buffer, as shown in Fig. 5. We ren-
der this buffer Pi to another 4 × 4 times smaller buffer
Pi+1 until the size of the rendered buffer Pi+1 reaches a
certain value; in practice, we use three layers of off-screen

buffers to encode the original off-screen color buffer (i.e.,
imax = 3). We encode a set of 4 × 4 adjacent pixels in a
higher level buffer Pi as a single pixel in a lower level buffer
Pi+1.

When we decode the encoded streaming CD result, we
move backward from Pi+1 to Pi, starting from reading the
entire contents of Pimax

. Since each pixel in Pi+1 indicates
the contents of 4 × 4 pixels in Pi, we read only relevant
portion of pixels in the hierarchy. In practice, this ap-
proach works quite well when the ratio ,η , of CAPs to the
number of all AABB pairs is relatively small (say, 0.095%
in our implementation). However, as the ratio increases,
we might as well reduce the level of hierarchy. In fact, we
maintain only a single level in the hierarchy. More pre-
cisely, if η is smaller than a certain threshold, we perform
the hierarchical encoding strategy with imax > 1. Other-
wise, we encode P0 into P ′

1 whose size is 8×8 times smaller
than P0, but with imax = 1. As a result, a single pixel in
P ′

1 encodes 8× 8 adjacent pixels in P0.
Our experiment has shown that a variable hierarchical

method can provide a better readback timing than the
fixed hierarchy. Fig. 6 shows snapshots of the contents
in the hierarchical encoding at run-time. The left images
in 6-(b) and 6-(c) are both P0. The right image in 6-(b) is
P ′

1, and the right three images in 6-(c), from left to right,
denotes P1, P2, P3, respectively (we also refer the readers
to see the accompanying video).

5.3.2 Analysis

Now, we give a brief analysis of the variable hierarchical
en/decoding strategy. Fig. 7 shows the performance of
the variable hierarchical strategy. The x axis denotes the
ratio η and the y axis is the encoding/decoding timing for
different η’s.

The hierarchical readback consists of two steps: encod-
ing P0 into three layers P1, P2, P3 followed by decoding all
the layers backwards. In Fig. 7, the readback time is a
linear function of η. Moreover, encoding timing is almost
constant if the size of P0 is fixed whereas the decoding
time is also a linear function of η. However, the encod-
ing or decoding time of the reduced hierarchical readback

8 IEEE TVCG

scheme takes a constant time since there is only one level
of hierarchy.

Fig. 7. Performance of variable hierarchical readback. Encoding(H) and
Decoding(H) are the timings of encoding and decoding using the hi-
erarchical readback scheme with three levels. Total(H) is their sum.
Encoding(RH), Reading(RH) and Decoding(RH) are the timings of
encoding, reading P ′

1, and decoding using the reduced hierarchical
readback scheme with a single level. Total(RH) is their sum.

In order to improve the readback performance, when η
reaches a threshold indicated by the dotted line (0.095%) in
Fig. 7, we switch from a hierarchical scheme to a reduced
one. As a result, in our implementation, we can always
read 2048 × 2048 data in less than 7.2 ms. Note that
an optimal threshold value η should be recalculated for
different sizes of P0.

5.4 Primitive-level Intersection Test

Once we find CAPs (say �X
i ,�Y

j), we perform a trian-
gle/triangle intersection checking for all pairs of triangles
contained in �X

i ,�Y
j . We do not use streaming compu-

tations for this primitive-level checking unlike [36], [38];
instead, we use a classical, CPU-based method suggested
by Möller [39]. The main reason why we use a serial, CPU-
based method is that a set of triangles contained in CAPs
can be arbitrary such that the setup time to map the po-
tentially colliding triangles to textures can be quite expen-
sive [38] and this process can not be executed as prepro-
cess. Moreover, since the number of triangles contained in
CAPs is relatively small, the overhead of streaming compu-
tations for a primitive-level intersection checking can not
be compensated for.

5.5 Handling Large Models

The maximum texture size specified by GPUs limits the
maximum resolution of an AABB texture [14]. On modern
GPUs like nVIDIA GeForce 7800, for example, the maxi-
mum texture size is 4096×4096. That means that the max-
imum height of the complete binary AABB tree in Section
4.1 is limited to 12. To overcome this limitation, we pro-
pose a tile-based method to render a large rectangle with as
many as max{1, dA

max − 12}×max{1, dB
max − 12} texturing

tiles. Each tile is rendered and read back independently.

However, since the typical size of GPU memory is limited
to 256MB or 512MB, it is difficult to allocate these many
textures at one time. Thus, we create only a single render-
ing target (i.e., off-screen buffer) that can be used by all the
tiles. In theory, the tile-based rendering should perform
linearly with a respect to the number of tiles. However,
due to the GPU memory/cache coherence and parallelism
efficiency [42], the performance of tile-based rendering in
our test increases super-linearly. We anticipate that this
issue can be resolved in the future release of new GPU
architectures and drivers.

6 Stream Update

void streamUpdate (float2 uv: TEXCOORD0,
out float4 color0: COLOR0,
out float4 color1: COLOR1,
uniform samplerRECT vertexT,
uniform float nmax)

{
float3 vmin = float3(1.0, 1.0, 1.0);
float3 vmax = float3(0.0, 0.0, 0.0);
float3 v;

for (int row=0; row<nmax; row++)
{

v = texRECT(vertexT, uv + float2(0.0, row)).xyz;
vmin = min(vmin, v);
vmax = max(vmax, v);

}
color0 = float4(vmin, 0.0);
color1 = float4(vmax, 0.0);

}

TABLE II

Stream Update using A Min/Max Operation in CG
The code implements a simple min/max operation for a 2D vertex texture,
and returns its result as colors.

As a model deforms, its associated AABB stream should
reflect the deformation. An earlier BVH-based algorithm
such as [2] refits an entire AABB tree after each deforma-
tion step. Our approach does not maintain such hierarchy
but has only an AABB stream (i.e., SX) corresponding to
the leaf nodes in AABB hierarchy. In our case, this stream
is mapped to AABB textures and the underlying trian-
gle geometry is mapped to vertex textures. For a given
model X, our goal is to store the element-wise minimums
of vertex textures (T X

i , 1 ≤ i ≤ nmax) at T X
min and the

element-wise maximums at T X
max; i.e.,

T X
min[k] = min1≤i≤nmax

T X
i [k] (1)

T X
max[k] = max1≤i≤nmax T X

i [k]
and 1 ≤ k ≤ 2dmax

In order to perform element-wise min/max, we pack
nmax of individual 1D vertex texture, T X

i , into a sep-
arate column i in one 2D vertex texture whose size is
nmax × 2dmax . Then, we render a single line and texture
map it with the 2D vertex texture, while redirecting its
output to two different render targets (for min and max, re-
spectively) using multiple render target technique (MRT)
available in OpenGL 2.0 and DirectX 9.0. A fragment
program is invoked to actually perform column-wise min
and max operations for the 2D vertex texture, as shown
in Tab. II. Utilizing MRT, we can calculate min and max
concurrently. After rendering is completed, T X

min and T X
max

STREAMING COLLISION DETECTION 9

are respectively stored in the first and second render tar-
gets. The first render target is named as COLOR0 and the
second render target as COLOR1 in the code.

7 Experimental Results and Analysis

7.1 Implementation

We implemented the entire pipeline of our algorithm on
a PC equipped with a Intel Dual Core 3.4GHz Processor,
2.75GB of main memory and nVIDIA GeForce 7800 GTX
GPUs with 512M video memory and PCI-Express inter-
faces. As a choice for programming languages, we used Mi-
crosoft Visual C++, nVIDIA’s Cg shading language with
vp40 and fp40 profiles, and OpenGL 2.0 graphics library.
Because no GPUs currently provide double-precision float-
ing point numbers or double-precision arithmetic, for the
purpose of fair comparison, we have used 32-bit floating
point for both CPU and GPU computations throughout
the entire paper. However, even though the storage for-
mat of floating point in GPU is the same as the IEEE 754
standard, the arithmetic operation might produce slightly
different results.

7.2 Collision Benchmarking Scenario

In order to measure the performance of our streaming
CD algorithm, we employ six different deformable bodies
whose triangle count ranges from 15K to 50K triangles
(as shown in Table III). Such complex models can model
deformable simulation in most of applications. Also, we
apply two different kinds of deformations to the deformable
bodies to simulate their collisions:

• Wavy Deformation: Random bumps with wave
functions are generated on the surfaces of the de-
formable bodies and the bumps are propagated to the
entire surfaces. In our scenarios, sine and cosine func-
tions are used to simulate wavy bumps. Local poten-
tial energy introduced will be damped out while the
energy is being propagated to neighboring parts of the
surface.

• Pulsating Deformation: Vertex positions periodi-
cally move up and down in the direction of a surface
normal (bulging effect). Any random pulsating func-
tion can be chosen at user’s discretion.

7.3 Performance Analysis

The statistics and some snapshots of our experiments
are shown in Table III and Fig. 8-Fig. 9.

Table III shows the performance statistics of our algo-
rithm (all timings were measured in ms). The first four
columns indicate the triangle count of the tested models,
the number of CAPs, the number of the potential collid-
ing triangle pairs (PCTPs) and the number of actual col-
liding triangle pairs (CTPs), respectively. The following
five columns are the timings of streaming AABB overlap
tests, readback (encoding/decoding) by streaming reduc-
tion, primitive-level (i.e., triangle-level) intersection tests,
texture download and stream update (i.e., AABB textures

update). The last column indicates the total time includ-
ing all the steps used in our algorithm.

In Fig. 8, we used two deforming torii to simulate three
different configurations of deformations commonly occur-
ring in many applications: interlocking bodies, touching
bodies and merging bodies. Each torus consists of 15K
triangles. The timing in our experimental results shows
that the CD checking can be executed at the rates of 60-
80 frames per second (FPS) for the interlocking torii (Fig.
8-(a)), 90-100 FPS for the touching torii (Fig. 8-(b)) and
around 30 FPS for the merging torii (Fig. 8-(c)). For
these benchmarks, the wave deformation was adopted to
simulate the deformation.

We also have tested our algorithm with other models.
The snapshots of these benchmarks are highlighted in Fig.
9. For these benchmarks, the pulsating deformation has
been adopted. We refer to the accompanying video for a
better visualization of our experiments. The experimental
results have shown that our algorithm can be applied to
highly real-time applications that need to return all collid-
ing triangle pairs, accurately.

We analyze the time complexity of each step in our al-
gorithm. The streaming AABB overlap test takes a con-
stant time when the scenario is given. The hierarchical
readback takes a linear time in terms of the number of
CAPs when it is less than the precalculated threshold, and
takes a constant time when it is greater than the threshold,
as shown in Fig. 7. The primitive-level intersection test
takes a quadratic time in terms of the number of triangles
in AABBs. However, because each AABB �X

i contains
ni(ni < nmax) primitives where nmax is a fixed small con-
stant number, the primitive-level intersection test is sen-
sitive to the number of PCTPs in practice. The stream
update takes always a constant time. As a result, the en-
tire algorithm is sensitive to the number of PCTPs or the
number of CAPs in practice.

7.4 Comparisons with Other Approaches

Collision detection is well-studied in the literature and
a number of algorithms and public domain systems are
available. However, none of the earlier algorithms provide
the same capabilities or features as our streaming CD al-
gorithm does. We compare some of the features of our
approach with the earlier algorithms.

7.4.1 CPU-Based Algorithms

BVHs have been widely used for CD algorithms such as
I-COLLIDE, RAPID, V-COLLIDE, SWIFT, SOLID 1.0,
QuickCD, etc. However, these algorithms are designed for
rigid bodies. In SOLID [2], AABB trees are used to handle
collisions for deformable bodies. However, its timing statis-
tics have showed that updating the entire AABB tree can
be a bottleneck of the algorithm, because it uses a lazy re-
fitting method to recalculate the new bounding box of each
leaf AABB node and recalculate internal AABB nodes in
a bottom-up manner. Our approach also uses AABB as
a bounding volume, but does not keep any hierarchy at
run-time unlike [2] such that we do not need to update

10 IEEE TVCG

nTris nCAPs nPCTPs nCTPs Overlap Test Readback Tri Test Texture Download Stream Update Total
1 15000×2 475 129884 429 0.10 0.23/1.38 15.19 2.43 0.70 20.03
2 15000×2 167 30108 214 0.11 0.22/0.59 3.77 2.46 0.71 7.86
3 15000×2 781 204848 748 0.12 0.21/1.94 23.94 2.45 0.69 29.35
4 15000×2 743 41921 473 0.11 0.24/2.52 5.70 3.62 1.00 13.19
5 20000×2 1372 166600 865 0.10 0.24/3.24 22.27 5.45 1.18 32.49
6 50000×2 306 233104 416 0.11 0.24/0.75 26.28 10.34 1.48 39.20

TABLE III

Performance Statistics of Our Algorithm.

The benchmark models from 1 to 6 are interlocking torii, touching torii, merging torii, bump bunnies, happy buddhas and intimate animals.
The first four columns: the triangle count of models, the number of CAPs, the number of potentially colliding triangle pairs (PCTPs) in
CAPs, and the number of actual colliding triangle pairs (CTPs). The next four columns of timings measured in msec: streaming AABB
overlap tests, readback by streaming reduction, primitive-level intersection tests and stream update. The last column: the total CD time.

(a) (b) (c)

Fig. 8. Benchmark Set I: Each torus consists of 15K triangles and
the wave deformation is adopted to simulate the deformation. (a)
Interlocking torii (60-80 FPS). (b) Touching torii (90-100 FPS). (c)
Merging torii (25-30 FPS).

(a) (b) (c)

Fig. 9. Benchmark Set II: The pulsating deformation is adopted to
simulate the deformation. (a) Bump Bunnies (15K triangles/each,
50-60 FPS). (b) Happy Buddhas (20K triangles/each, 25-40 FPS).
(c) Intimate Animals (50K triangles/each, 20-35 FPS).

20 40 60 80
0

5

10

15

20 40 60 80
0

5

10

15

20 40 60 80
0

5

10

15

Ti
m

e
(m

s)

(c)(a)

 CPU-based Computation
 Streaming Computation
 Texture Download

(b)
Fig. 10. Our Algorithm (StreamingCD) vs CPU-based AABB-tree Algorithm (SOLID). The graph compares the performance of SOLID [3] with

ours for benchmarking set I: (a) Interlocking torii. (b) Touching torii. (c) Merging torii.

0 20 40 60 80 100
0
5

10
15
20
25
30

0 20 40 60 80 100
0
5

10
15
20
25
30

0 20 40 60 80 100
0
5

10
15
20
25
30

(c)(b)(a)

Ti
m

e
(m

s)

 CPU-based Computation
 Streaming Computation
 Texture Download

Fig. 11. Our Algorithm (StreamingCD) vs SOLID for Benchmarking Set II: (a) Bump Bunnies. (b) Happy Buddhas. (c) Intimate Animals.

such hierarchy. As a result, our update operation is more
efficient and faster than [2] where AABB trees need to be
updated in a bottom-up and serial manner on CPUs. An-
other bottleneck of the AABB tree scheme is in the process
of traversal if two objects have many overlapping AABB
nodes, for example, in severely deforming objects.

We have implemented the lazy AABB-update scheme
employed in SOLID [2] and compare its AABB culling
and AABB-tree update performance with our algorithm
as shown in Fig.’s 10 and 11. In the figures, we did not
include triangle-level intersection tests as they are used in
both schemes. Moreover, in order to highlight the perfor-
mance of our streaming algorithm, we separated the tim-

ing of texture download from CPU to GPU. Excluding
the downloading time, our algorithm is 2∼10 times faster
than SOLID. Including everything together, our algorithm
is 1.4∼2 times than SOLID. Notice that for more complex
benchmarking models such as Intimate Animals, our algo-
rithm performs even better. Considering the performance
growth rates of GPU compared to CPU, we expect that
the performance gap of collision detection observed in this
paper will be even wider in the future.

Finally, as new processors like CELL processors [11], [12]
are being equipped with streaming computation capabili-
ties, our algorithm can be adapted to other streaming pro-
cessors in the future, not just for GPUs. Compared to our

STREAMING COLLISION DETECTION 11

algorithm, BD-tree [3] is an algorithm that is limited to
reduced deformable models and suitable for only small de-
formations, whereas ours can handle severe deformations.

7.4.2 CULLIDE

The CULLIDE [4], [5], [6] uses GPU-supported, image-
space visibility queries to perform visibility culling for po-
tentially colliding sets. Since these methods are image-
based methods, their effectiveness are subject to the ras-
terization resolution; however, to maintain a higher resolu-
tion in CULLIDE decreases the performance significantly
[5]. In addition, the collision culling efficiency is also sen-
sitive to the specified viewing directions. Finally, the orig-
inal and quick CULLIDE [4], [6] may miss many colliding
triangle pairs.

Pruning Tri Test # of PCTPs # of CTPs Missing
1 61.01 1.91 13915 101 63%
2 35.66 4.88 36270 117 44%
3 79.87 13.13 100254 330 74%
4 64.45 6.40 291890 327 32%
5 65.50 10.67 71760 377 26%
6 127.60 21.52 165166 91 68%

TABLE IV

Performance statistics of CULLIDE. (See text for the

explanation of the abbreviations)

Fig. 12. Performance Comparison: Our Streaming CD vs CULLIDE.
The graph compares the performance of CULLIDE with that of our
algorithm to compute all the intersecting triangles under a same de-
formation scenario. On average, we have observed more than three
times performance improvement of our algorithm over CULLIDE.

As an exact collision algorithm, however, our approach
report all geometric contacts between deformable objects
within a floating point precision. We have compared the
performance of our algorithm with that of CULLIDE [4]
on the benchmarks proposed in Table III. The CULLIDE
library was provided by the authors of [4] and further
optimized for better performance. Table IV shows the
performance statistics of CULLIDE on our benchmarking
models. In this table, ’Pruning’ denotes the time spent
on pruning (occlusion query) using the nVIDIA OpenGL
extension GL NV occlusion query; ’Tri Test’ denotes the
time spent on the exact pairwise triangle intersection test
for the left triangles after Pruning; ’# of PCTPs’ denotes

the potential colliding triangles; ’# of CTPs’ denotes the
colliding triangles and ’Missing’ denotes the percentage of
the missing collisions. We test the performance of CUL-
LIDE at an image space resolution of 512×512. During
the tests, we observed that many missing collisions (30%-
70%) arise in CULLIDE due to the image space resolu-
tion, even though we optimized visibility query by provid-
ing manually-optimized view directions. As mentioned in
CULLIDE [4], the pruning efficiency largely depends upon
the choice of view direction for orthographic projection. A
view direction randomly selected will cause worse pruning
performance in our scenarios. A higher image space res-
olution can reduce missing collisions, but then it require
more time on visibility culling and pairwise exact trian-
gle tests. Fig. 12 shows the performance results. In our
experimental setting, we have observed about three times
performance improvement over CULLIDE. As we increase
the image space resolution for CULLIDE, we expect even
higher performance gaps between ours and CULLIDE.

We expect better performance and higher accuracy from
the improved versions of CULLIDE such as R-CULLIDE
[5] or Quick-CULLIDE [6]. But since these methods rely on
AABB-tree culling to narrow down the potentially colliding
sets, a combination of our techniques with these methods
is expected to provide even better performance.

7.4.3 Other Related Algorithms

Based on chromatic decomposition, CDCD [35] performs
graph coloring on a polygonal mesh model that requires a
fixed connectivity. Whereas, our approach makes no as-
sumptions about input geometry and topology and works
on arbitrary polygonal models, i.e., polygon soups. In [36],
mapping AABB trees onto GPUs has been proposed by
progressively building tree structure on GPUs and issuing
HW-supported queries to check for the number of primi-
tives to be read into the frame buffer. But this algorithm
shows a poor performance because it relies on multi-pass
rendering and a brute force readback from GPU memory.
Moreover, this algorithm [36] is designed for only rigid bod-
ies, and it is not clear whether it can handle severely de-
formable bodies because updating the entire AABB trees
on GPUs can be a huge bottleneck.

8 Conclusion and Future Work

We have presented a fast, exact collision detection al-
gorithm for severely deformable models using streaming
AABBs. This approach has been implemented on pro-
grammable GPUs that perform massively-parallel stream-
ing computations very rapidly. Our approach is applica-
ble to arbitrary triangular models. The algorithm involves
streaming AABB overlap tests and stream update using
SIMD computations available on modern GPUs. In addi-
tion, to improve the performance and scalability of the al-
gorithm, we have presented a stream reduction technique
for efficient readback and a tile-based rendering. Com-
pared to the earlier algorithms, our approach provides
highly interactive update rates while being able to report
all the colliding triangles in the deformable models.

12 IEEE TVCG

Our algorithm has a few limitations. One of them is that
the algorithm requires pre-setup time to prepare AABB
streams and to map them onto textures in GPU’s memory.
Moreover, our algorithm may need more texture memory
than other GPU-based CD algorithms. Finally, our algo-
rithm can not report self-intersections occurring inside a
model.

For future work, we want to extend our algorithm to pro-
vide separation distance and penetration depth to better
support physically-based simulation. We would also like to
investigate a possibility of haptic rendering of deformable
models using our algorithm.

References
[1] M.C. Lin and D. Manocha, “Collision detection and proximity

queries,” in Handbook of Discrete and Computation Geometry,
2nd Ed., 2004, pp. 787–807.

[2] G. van den Bergen, “Efficient collision detection of complex
deformable models using AABB trees,” Graphics Tools, vol. 2,
no. 4, pp. 1–13, 1997.

[3] D.L. James and D.K. Pai, “BD-Tree: Output-sensitive collision
detection for reduced deformable models,” Trans. Graphics, vol.
23, no. 3, 2004.

[4] N.K. Govindaraju, S. Redon, M.C. Lin, and D. Manocha, “CUL-
LIDE: Interactive collision detection between complex models in
large environments using graphics hardware,” in Proc. Graphics
Hardware, 2003, pp. 25–32.

[5] N.K. Govindaraju, M.C. Lin, and D. Manocha, “Fast and reli-
able collision culling using graphics processors,” in Proc. ACM
Symp. VRST, 2004, pp. 2–9.

[6] N.K. Govindaraju, S. Redonn, M.C. Lin, and D. Manocha,
“Quick-CULLIDE: Efficient inter- and intra-object collision
culling using graphics hardware,” in Proc. IEEE Virtual Re-
ality, 2005, pp. 59–66,319.

[7] G. Baciu and W. Wong, “Image-based techniques in a hybrid
collision detector,” IEEE Trans. Visualization and Computer
Graphics, vol. 9, no. 2, pp. 254–271, 2003.

[8] G. Baciu and W. Wong, “Image-based collision detection for de-
formable cloth models,” IEEE Trans. Visualization and Com-
puter Graphics, vol. 10, no. 6, pp. 649–663, 2004.

[9] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zach-
mann, L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure,
N. Magnenat-Thalmann, W. Strasser, and P. Volino, “Colli-
sion detection for deformable objects,” in Proc. Eurographics,
2004, pp. 119–135.

[10] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,
A.E. Lefohn, and T.J. Purcell, “A survey of general-purpose
computation on graphics hardware,” in Proc. Eurographics,
2005, pp. 21–51.

[11] D. Pham, S. Asano, M. Bolliger, M.N. Day, H.P. Hofstee,
C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masub-
uchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang,
J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and
K. Yazawa, “The design and implementation of a first-
generation CELL processor,” in IEEE Int’l Conf. Solid-State
Circuits, 2005, pp. 184–185,592.

[12] B. Flachs, S. Asano, S.H. Dhong, P. Hofstee, G. Gervais, R. Kim,
T. Le, P. Liu, J. Leenstra, J. Liberty, B. Michael, H. Oh,
S.M. Mueller, O. Takahashi, A. Hatakeyama, Y. Watanabe, and
N. Yano, “The microarchitecture of the streaming processor for
a CELL processor,” in IEEE Int’l Conf. Solid-State Circuits,
2005, pp. 134–135.

[13] J. Owens, “Streaming architectures and technology trends,” in
GPU Gems 2, 2005, pp. 457–470.

[14] M. Pharr, GPU Gems 2: Programming techniques for
high-performance graphics and general-purpose computation,
Addison-Wesley, 2005.

[15] R. Fernando, GPU Gems: Programming techniques, tips, and
tricks for real-time graphics, Addison-Wesley, 2004.

[16] J.D. Cohen, M.C. Lin, D. Manocha, and M.K. Ponamgi, “I-
COLLIDE: An interactive and exact collision detection system
for large-scale environments,” in Symp. Interactive 3D Graph-
ics, 1995, pp. 189–196.

[17] T.C. Hudson, M.C. Lin, J. Cohen, S. Gottschalk, and
D. Manocha, “V-COLLIDE: Accelerated collision detection for
VRML,” in Proc. Symp. VRML, 1997, pp. 117–125.

[18] S.A. Ehmann and M.C. Lin, “Accurate and fast proximity
queries between polyhedra using surface decomposition,” Com-
puter Graphics Forum, vol. 20, no. 3, pp. 500–510, 2001.

[19] P. Jimenez, F. Thomas, and C. Torras, “3D collision detection:
A survey,” Computers and Graphics, vol. 25, no. 2, pp. 269–285,
2001.

[20] R. Bridson, R. Fredkiw, and J. Anderson, “Robust treatment
for collisions, contact and friction for cloth animation,” in Proc.
SIGGRAPH, 2002, pp. 594–603.

[21] D. Baraff, A. Witkin, and M. Kass, “Untangling cloth,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 862–870, 2003.

[22] I. J. Palmer and R. L. Grimsdale, “Collision detection for ani-
mation using sphere-trees,” Computer Graphics Forum, vol. 14,
no. 2, pp. 105–116, 1995.

[23] Philip M. Hubbard, “Collision detection for interactive graphics
applications,” IEEE Trans. Visualization and Computer Graph-
ics, vol. 1, no. 3, pp. 218–230, 1995.

[24] S. Gottschalk, M.C. Lin, and D. Manocha, “OBB-Tree: A hi-
erarchical structure for rapid interference detection,” in Proc.
SIGGRAPH, 1996, pp. 171–180.

[25] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and
K. Zikan, “Efficient collision detection using bounding volume
hierarchies of k-DOPs,” IEEE Trans. Visualization and Com-
puter Graphics, vol. 4, no. 1, pp. 21–36, 1998.

[26] S.E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha, “Cache-
oblivious mesh layouts,” Trans. Graphics, vol. 24, no. 3, pp.
886–893, 2005.

[27] M. Shinya and M. C. Forgue, “Interference detection through
rasterization,” Visualization and Computer Animation, vol. 2,
no. 4, pp. 132–134, 1991.

[28] K. Myszkowski, O. G. Okunev, and T. L. Kunii, “Fast colli-
sion detection between complex solids using rasterizing graphics
hardware,” Visual Computer, vol. 11, no. 9, pp. 497–512, 1995.

[29] T. Vassilev, B. Spanlang, and Y. Chrysanthou, “Fast cloth an-
imation on walking avatars,” Computer Graphics Forum, vol.
20, no. 3, pp. 260–267, 2001.

[30] J.C. Lombardo, M.P. Cani, and F. Neyret, “Real-time collision
detection for virtual surgery,” in Proc. Computer Animation,
1999, pp. 33–39.

[31] K. Hoff, A. Zaferakis, M.C. Lin, and D. Manocha, “Fast and sim-
ple 2D geometric proximity queries using graphics hardware,” in
Proc. ACM Symp. Interactive 3D Graphics, 2001, pp. 277–286.

[32] D. Knott and D. Pai, “CInDeR: Collision and interference de-
tection in real-time using graphics hardware,” in Proc. Graphics
Interface, 2003, pp. 73–80.

[33] B. Heidelberger, M. Tescher, and M. Gross, “Detection of colli-
sions and self-collisions using image-space techniques,” Journal
of WSCG, vol. 12, no. 3, pp. 145–152, 2004.

[34] W. Chen, H. Wan, H. Zhang, H. Bao, and Q. Peng, “Inter-
active collision detection for complex and deformable models
using programmable graphics hardware,” in Proc. ACM Symp.
VRST, 2004, pp. 10–15.

[35] N.K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf,
R. Gayle, M.C. Lin, and D. Manocha, “Interactive collision
detection between deformable models using chromatic decom-
position,” Trans. Graphics, vol. 24, no. 3, pp. 991–999, 2005.

[36] A. Gress and G. Zachmann, “Object-space interference detec-
tion on programmable graphics hardware,” in Proc. SIAM Conf.
Geometric Design and Computing, 2003, pp. 311–328.

[37] D. Horn, “Stream reduction operations for GPGPU applica-
tions,” in GPU Gems 2, 2005, pp. 573–589.

[38] Y.J. Choi, Y.J. Kim, and M.H. Kim, “Self-CD: Interactive self-
collision detection for deformable body simulation using GPUs,”
in Proc. Asian Simulation, 2004, pp. 187–196.

[39] T. Moller, “A fast triangle-triangle intersection test,” Graphics
Tools, vol. 2, no. 2, pp. 25–30, 1997.

[40] M. Harris, “Mapping computational concepts to GPUs,” in
GPU Gems 2, 2005, pp. 493–508.

[41] I. Buck, K. Fatahalian, and P. Hanrahan, “GPUBench: Evaluat-
ing GPU performance for numerical and scientifc applications,”
in http://graphics.stanford.edu/projects/gpubench/.

[42] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding
the efficiency of GPU algorithms for matrix-matrix multiplica-
tion,” in Proc. Graphics Hardware, 2004, pp. 133–137.

Real-Time Animation of Large Crowds

In-Gu Kang and JungHyun Han�

Game Research Center, College of Information and Communications,
Korea University, Seoul, Korea

kangin9@paran.com, jhan@korea.ac.kr

Abstract. This paper proposes a GPU-based approach to real-time
skinning animation of large crowds, where each character is animated
independently of the others. In the first pass of the proposed approach,
skinning is done by a pixel shader and the transformed vertex data are
written into the render target texture. With the transformed vertices,
the second pass renders the large crowds. The proposed approach is at-
tractive for real-time applications such as video games.

Keywords: character animation, skinning, large crowds rendering, GPU.

1 Introduction

In the real-time application areas such as video games, the most popular tech-
nique for character animation is skinning[1]. The skinning algorithm works effi-
ciently for a small number of characters. On the other hand, emerging techniques
for rendering large crowds[2, 3] show satisfactory performances, but do not han-
dle skinning meshes. The skinning algorithm can be implemented using a vertex
shader[4]. Due to the limited number of constant registers, however, the vertex
shader-based skinning is not good for rendering large crowds. There has been no
good solution to real-time skinning animation of large crowds, where each char-
acter is animated independently of the others. This paper proposes a GPU-based
approach to independent skinning animation of large crowds.

2 Pixel Shader-Based Skinning

This paper proposes a two-pass algorithm for rendering large crowds[5, 6]. In the
first pass, skinning is done using a pixel shader and the transformed vertex data
are written into the render target texture. With the transformed vertices, the
second pass renders the large crowds.

The skinning data for a vertex consist of position, normal, bone indices and
weights, and bone matrices. Fig. 1-(a) shows that position, normal, bone indices
and weights are recorded in 1D textures. A vertex is influenced by up to 4 bones.
The bone matrices are computed every frame, and each row of the 3×4 matrix
is recorded in a separate texture, as shown in Fig. 1-(b).
� Corresponding author.

R. Harper, M. Rauterberg, M. Combetto (Eds.): ICEC 2006, LNCS 4161, pp. 382–385, 2006.
c© IFIP International Federation for Information Processing 2006

Real-Time Animation of Large Crowds 383

(a) vertex textures (b) bone matrix textures

Fig. 1. Texture structures for vertex and matrix data

Fig. 2. Skinning and render target texture

Through a single drawcall, all vertices of all characters are transformed into
the world coordinates, and then written into the render target texture. Shown
in the middle of Fig. 2 is the render target texture for n characters each with
m vertices. For implementing the skinning algorithm in the pixel shader, the
vertex shader renders a quad covering the render target. Then, the pixel shader
fills each texel of the render target texture, which corresponds to a vertex of a
character.

The render target texture in Fig. 2 is filled row by row. All vertices in a row
have the identical vertex index. Therefore, the vertex data from the vertex tex-
tures are fetched just once, and the cached data are repeatedly hit for processing
n-1 characters.

When skinning is done, the render target texture is copied to a vertex buffer
object (VBO)[7], and then each character is rendered by the vertex shader using
a given index buffer. For all of the render target texture, VBO and pixel buffer
object (PBO)[8], 32-bit float format is used for each of RGBA/xyzw for the sake
of accuracy.

3 Implementation and Result

The proposed algorithm has been implemented in C++, OpenGL and Cg on
a PC with 3.2 GHz Intel Pentium4 CPU, 2GB memory, and NVIDIA Geforce
7800GTX 256MB. Table 1 compares the frame rates of the vertex shader skin-
ning and the proposed 2-pass skinning. For performance evaluation, view frustum
culling is disabled and ‘all’ characters are processed by GPU. Fig. 3 shows snap-

384 I.-G. Kang and J. Han

Table 1. FPS comparison of vertex shader (VS) skinning and proposed 2-pass skinning

soldier horse
characters VS 2-pass VS 2-pass

1 2340 1545 2688 1571
16 580 1057 575 1179
64 200 565 163 649
256 56 200 42 219
1024 14 55 10 58
2048 7 27 5 29
4096 3 13 2 14

Fig. 3. Rendering 1,024 soldiers without LOD and frustum culling

Fig. 4. Rendering 10,240 soldiers with LOD and frustum culling

Fig. 5. Rendering 5,120 horses with LOD and frustum culling

shots of rendering 1,024 soldiers. The average FPS is 55, as shown in Table 1. In
the current implementation, 3 LOD meshes are used: each with 1,084, 544 and
312 polygons, respectively. Fig. 4 shows snapshots of rendering 10,240 soldiers
with LOD applied. The average FPS is 60 with view frustum culling enabled.

Real-Time Animation of Large Crowds 385

Finally, Fig. 5 shows snapshots of rendering 5,120 horses with LOD applied. The
average FPS is 62 with view frustum culling enabled.

4 Conclusion

This paper presented a pixel shader-based approach to real-time skinning anima-
tion of large crowds. The experiment results show that the proposed approach
is attractive for real-time applications such as games, for example, for rendering
huge NPCs (non-player characters) such as thousands of soldiers or animals.
With appropriate adjustments, the proposed approach can be used for imple-
menting MMOGs (Massively Multi-player Online Games).

Acknowledgements

This research was supported by the Ministry of Information and Communica-
tion, Korea under the Information Technology Research Center support program
supervised by the Institute of Information Technology Assessment, IITA-2005-
(C1090-0501-0019).

References

1. Lewis, J.P., Cordner, M., Fong, N.: Pose Space Deformations: A Unified Approach to
Shape Interpoalation and Skeleton-driven Deformation. SIGGRAPH2000 165–172

2. Microsoft: Instancing Sample. DirectX SDK. February 2006
3. Zelsnack, J.: GLSL Pseudo-Instancing. NVIDIA Technical Report. November 2004
4. Gosselin, D. R., Sander, P. V., Mitchell, J. L.: Drawing a Crowd. ShaderX3.

CHARLES RIVER MEDIA. (2004) 505–517
5. James, D. L., Twigg, C. D.: Skinning Mesh Animations. SIGGRAPH2005 399–407
6. Dobbyn, S., Hamill, J., O’Conor, K., O’Sullivan, C.: Geopostors : A Real-Time Ge-

ometry / Impostor Crowd Rendering System. ACM Transactions on Graphics(2005)
933

7. NVIDIA: Using Vertex Buffer Objects. NVIDIA White Paper. October 2003
8. NVIDIA: Fast Texture Downloads and Readbacks using Pixel Buffer Objects in

OpenGL. NVIDIA User Guide. August 2005

Pattern Recognition 37 (2004) 1311–1314
www.elsevier.com/locate/patcog

Rapid and Brief Communication

GPU implementation of neural networks

Kyoung-Su Oh∗, Keechul Jung
School of Media, College of Information Science, Soongsil University, 1, SangDo-Dong, DongJak-Gu, Seoul, 156-743, Republic of Korea

Received 6 January 2004; accepted 14 January 2004

Abstract

Graphics processing unit (GPU) is used for a faster arti/cial neural network. It is used to implement the matrix multiplication
of a neural network to enhance the time performance of a text detection system. Preliminary results produced a 20-fold
performance enhancement using an ATI RADEON 9700 PRO board. The parallelism of a GPU is fully utilized by accumulating
a lot of input feature vectors and weight vectors, then converting the many inner-product operations into one matrix operation.
Further research areas include benchmarking the performance with various hardware and GPU-aware learning algorithms.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Graphics processing unit(GPU); Neural network(NN); Multi-layer perceptron; Text detection

1. Introduction

Recently graphics hardware has become increasingly
competitive as regards speed, programmability, and price.
Besides, graphics processing units (GPUs) have already
been used to implement many algorithms in various areas,
including computational geometry, scienti/c computa-
tion, and image processing, as well as computer graphics
[1,2].
In the case of using a neural network (NN) for image

processing and pattern recognition, the main problem is the
computational complexity in the testing stage, which ac-
counts for most of the processing time. Moreover, NN-based
image convolution has to exhaustively scan an input im-
age in order to process an entire image [3]. Although an
NN can be simulated using software, many potential NN
applications require real-time processing, which means
fully parallel specially designed hardware implementations,
such as an FPGA-based realization of an NN. However,
this is somewhat expensive and involves extra design
overheads [4].

∗ Corresponding author. Tel.: +82-2-828-7260;
Fax: +82-2-822-3622.

E-mail addresses: oks@ssu.ac.kr (K.-S. Oh), kcjung@ssu.ac.kr
(K. Jung).

Accordingly, the current paper presents a faster NN us-
ing common graphics hardware GPU. Although no graph-
ics hardware is dedicated to NN computation, it can still be
adapted to many pattern recognition problems with an inex-
pensive and minimal hardware overhead. The essential oper-
ation in an NN is the inner-product between a weight vector
and an input vector in each layer. Therefore, to utilize the
parallelism of a GPU, lots of input feature vectors and weight
vectors are accumulated, then the many inner-product op-
erations are converted into one matrix operation. As such,
‘multiplication’ and a ‘non-linear threshold function, such
as a sigmoid’ can be eHectively implemented using the ver-
tex shader and pixel shader in a GPU.

2. Neural network architecture

An arti/cial neural network, usually referred to as ‘neural
network’, is based on the concept of the workings of the
human brain. There are many diHerent types of NN, with the
more popular being a multilayer perceptron, learning vector
quantization, radial basis function, Hop/eld, and Kohonen.
The current study focuses on using a GPU to implement

a multilayer perceptron, which is usually fully connected
between adjacent layers. The input layer receives the in-
put features of a given application. Although the network

0031-3203/$30.00 ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2004.01.013

mailto:oks@ssu.ac.kr
mailto:kcjung@ssu.ac.kr

1312 K.-S. Oh, K. Jung / Pattern Recognition 37 (2004) 1311–1314

structure can vary as regards the number of layers, number of
nodes in each layer, and input mask size, each layer performs
the same inner-product operation between the given input
vectors and the weight vectors, followed by a non-linear
function. Moreover, many inner-product operations can be
replaced with a matrix multiplication, which is more appro-
priate for GPU implementation.

3. GPU processing

Graphics hardware has only been used for rendering
within the last few decades, however, its extended capabil-
ities in supporting complex operations have also become
useful in non-graphics applications. In particular, the advent
of a programmable vertex shader and pixel shader enables
Jexible functions for general computation. Since GPUs are
designed for high-performance rendering where repeated
operations are common, they are more eHective in utilizing
parallelism and more pipelined than general purpose CPUs.
Therefore, in areas where repeated operations are common,
a GPU can produce a better performance than a CPU.
The mechanism of general computation using a GPU is

as follows. The input is transferred to the GPU as textures
or vertex values. The computation is then performed by the
vertex shader and pixel shader during a number of rendering
passes. The vertex shader performs a routine for every ver-
tex that involves computing its position, color, and texture
coordinates, while the pixel shader is performed for every
pixel covered by polygons and outputs the color of the pixel.
As described above, the inner-product operation for each

layer of an NN can be replaced with a matrix multiplication
based on accumulating the input vectors and weight vec-
tors. As such, the computation-per-layer can be written as
follows:

W =

w11 w12 w13 : : : w1N

w21 w22 w23 : : : w2N

: : : : : : : : : : : : : : :

wM1 wM2 wM3 : : : wMN

=

W1

W2

: : :

WM

;

X =

x11 x12 x13 : : : x1L

x21 x22 x23 : : : x2L

: : : : : : : : : : : : : : :

xN1 xN2 xN3 : : : xNL

=
[
X1 X2 X3 · · · XL

]
;

B =

b1 b1 b1 : : : b1

b2 b2 b2 : : : b2

: : : : : : : : : : : : : : :

bM bM bM : : : bM

; (1)

M =W × X + B

=

W1 · X1 W1 · X2 W1 · X3 : : : W1 · XN
W2 · X1 W2 · X2 W2 · X3 : : : W2 · XN
: : : : : : : : : : : : : : :

WM · X1 WM · X2 WM · X3 : : : WM · XN

+

b1 b1 b1 : : : b1

b2 b2 b2 : : : b2

: : : : : : : : : : : : : : :

bM bM bM : : : bM

=

m11 m12 m13 : : : m1L

m21 m22 m23 : : : m2L

m31 m32 m33 : : : m3L

: : : : : : : : : : : : : : :

mM1 mM2 mM3 : : : mML

; (2)

R= sigmoid(M)

=

1+e−m11 1+e−m12 1+e−m13 : : : 1+e−m1L

1+e−m21 1+e−m22 1+e−m23 : : : 1+e−m2L

: : : : : : : : : : : : : : :

1+e−mM1 1+e−mM2 1+e−mM3 : : : 1+e−mML

;

(3)

where wij denotes the weight at the connection between the
ith node of the output layer and the jth node of the input
layer, M is the number of nodes in the output layer, and N
is the number of nodes in the input layer. In addition, xij
is the ith feature value of the jth input vector and bi is the
bias term for the ith output node from L input vectors. The
/nal result Rij is the output of the ith output node for the
jth input vector.
The above computation comprises of a matrix multiplica-

tion followed by a bias factor addition and sigmoid opera-
tion. The matrix multiplication is explained /rst. The method
proposed by Moravanszky [1] is used to implement the ma-
trix multiplication. The two matrices are converted into tex-
tures, denoted by texture W and texture X , then the matrix
multiplication is performed by rendering. A rectangle is ren-
dered to cover the whole screen. The vertex shader outputs
the position and texture coordinates for each vertex of the
rectangle, where each vertex has two texture coordinates:
one for the row of texture W and the other for the column
of texture X . For example, the upper left vertex will have
the texture coordinates of the /rst row of texture W and the
/rst column of texture X , while the upper right vertex will
have the texture coordinates of the /rst row of texture W
and the last column of texture X , and so on. As a result of

K.-S. Oh, K. Jung / Pattern Recognition 37 (2004) 1311–1314 1313

Render

Pixel shader
performs inner product of

row and column

texture W

*= N

N

texture X

Vertex shader
Generates full screen rectangle

Each of four vertices has
texture coordinates

corresponding to a row in W
and a column in X

N

M

L

L

M

N

texture X × Y

Fig. 1. Overview of matrix multiplication using GPU.

the vertex shader, every pixel (i; j) has texture coordinates
corresponding to the ith row of W and the jth column of X .
The pixel shader then performs the inner-product between
the row of W and the column of X speci/ed by the texture
coordinates. Fig. 1 shows an example of matrix multiplica-
tion using a GPU. The number of rendering passes required
for matrix multiplication depends on the capability of the
GPU, including the number of pixel shader operations and
number of texture load operations.
The bias term addition and sigmoid operation can be per-

formed in one rendering pass. The bias texture and texture
that contains the result of the matrix multiplication, texture
W ×X , are set as the active texture. The vertex shader then
outputs a full-screen rectangle as before. Each vertex’s tex-
ture coordinate for the texture W × X correspond to its
position. For example, the upper left vertex has the texture
coordinate (0; 0), while the texture coordinate for the upper
right vertex is (1; 0). As the bias term is identical for one
row, the bias term matrix is one-dimensional and the bias
texture coordinates for each vertex correspond to its vertical
position. The pixel shader adds two textures and performs a
sigmoid operation.
If there is more than one layer in an NN, the above pro-

cedure is repeated for each layer. The result of the previous
layer is saved in the form of a render target texture, which
is then used as an input for the next layer. Note that, even
though an NN may have multiple layers, the GPU can per-
form all the operations after texture creation.

4. Application to pattern recognition

Recently, researchers have attempted text-based retrieval
of image and video data using several image processing

techniques [3]. As such, an automatic text detection algo-
rithm for image data and video documents is important as
a preprocessing stage for optical character recognition, and
an NN-based text detection method has several advantages
over other methods [3].
Therefore, this paper brieJy describes such a text detec-

tion method, and readers are referred to the author’s previous
publication for more details [3]. In the proposed method, an
NN is used to classify the pixels of input images, whereby
the feature extraction and pattern recognition stage are inte-
grated in the neural network. The NN then examines local
regions looking for text pixels that may be contained in a
text region. Therefore, an M × M pixel region in the im-
age is received as the input and a classi/ed image is gen-
erated as the output. After the pattern passes the network,
the value of the output node is compared with a threshold
value and the class of each pixel determined, resulting in a
classi/ed image. GPU-based pipelining processing is used
to reduce the processing time, and the GPU’s performance
is maximized by accumulating a large number of input vec-
tors 1 to create a two-dimensional texture. The input layer
then receives the grey values for the pixels at prede/ned po-
sitions inside an M×M window over the input image. Ex-
periments were conducted using an 11 × 11 input window
size, with the number of nodes in each hidden layer set at
30. As a result, the processing time for pixel classi/cation
was signi/cantly reduced using a GPU. Fig. 2(b) shows the
pixel classi/cation result for the left input image, where a
black pixel denotes a text pixel. The classi/cation using a
GPU produced almost the same result as without a GPU.

1 It is dependent on the GPU con/guration. The maximum tex-
ture size of an ATI RADEON 9700 PRO board is 2048.

1314 K.-S. Oh, K. Jung / Pattern Recognition 37 (2004) 1311–1314

Fig. 2. Experimental Results: (a) test image, (b) result of MLP with GPU.

Table 1
Processing times per elementary operations

Texture creation Matrix multiplication Sigmoid

GPU 0.469000 0.030000 0.031000
CPU 11.743

As shown in Table 1, we get a 20-fold performance enhance-
ment using an ATI RADEON 9700 PRO board compared
to CPU-only processing.

Acknowledgements

This work was supported by the Soongsil University Re-
search Fund.

References

[1] A. Moravanszky, Linear algebra on the GPU, in: W.F. Engel
(Ed.), Shader X 2, Wordware Publishing, Texas, 2003.

[2] D. Manocha, Interactive geometric & scienti/c computations
using graphics hardware, SIGGRAPH 2003 Tutorial Course
#11.

[3] K. Jung, Neural network-based text location in color images,
Pattern Recog. Lett. 22 (14) (2001) 1503–1515.

[4] J. Zhu, P. Sutton, FPGA implementation of neural networks
—a survey of a decade of progress, Proceedings of the 13th
International Conference on Field Programmable Logic and
Applications (FPL 2003), Lisbon, 2003, pp. 1062–1066.

Jinwook Kim · Soojae Kim · Heedong Ko · Demetri Terzopoulos

Fast GPU Computation of the Mass Properties of a
General Shape and its Application to Buoyancy Simulation

Abstract To simulate solid dynamics, we must com-
pute the mass, the center of mass, and the products of
inertia about the axes of the body of interest. These
mass property computations must be continuously re-
peated for certain simulations with rigid bodies or as
the shape of the body changes. We introduce a GPU-
friendly algorithm to approximate the mass properties
for an arbitrarily shaped body. Our algorithm converts
the necessary volume integrals into surface integrals on
a projected plane. It then maps the plane into a frame-
buffer in order to perform the surface integrals rapidly
on the GPU. To deal with non-convex shapes, we use a
depth-peeling algorithm. Our approach is image-based;
hence, it is not restricted by the mathematical or geo-
metric representation of the body, which means that it
can efficiently compute the mass properties of any ob-
ject that can be rendered on the graphics hardware. We
compare the speed and accuracy of our algorithm with an
analytic algorithm, and demonstrate it in a hydrostatic
buoyancy simulation for real-time applications, such as
interactive games.

Keywords General-purpose computation on GPUs ·
Mass property computation · Physics-based animation ·
Rigid-body dynamics · Buoyancy simulation

J. Kim, S. Kim, H. Ko
Imaging Media Research Center
Korea Institute of Science and Technology
39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, Korea
E-mail: {jwkim, lono, ko}@imrc.kist.re.kr

D. Terzopoulos
Department of Computer Science
University of California
Los Angeles, CA 90095, USA
E-mail: dt@cs.ucla.edu

1 Introduction

The fast calculation of mass properties, including the
mass, center of mass, and products of inertia, is neces-
sary for the dynamic simulation of solids. In rigid body
dynamics, the mass properties are usually assumed to
be constant during the simulation. Therefore, the com-
putation can be performed in an initialization step and
the computed values are used in the subsequent simu-
lation. Hence, the computational cost to calculate mass
properties is often negligible. In certain important cases,
however, the mass properties can change during the sim-
ulation and complex geometric shapes may require ex-
pensive mass property computations.

Among these cases is the simulation of hydrostatic
buoyancy. Buoyancy is a natural phenomenon resulting
from the interplay between a fluid system and a floating
rigid body system. If we assume a hydrostatic pressure
condition for the fluid system, then we can simulate the
motion of the rigid body floating in the fluid by applying
a buoyant force to the center of mass of the instanta-
neous submerged volume, which is known as the center
of buoyancy. The buoyant force itself is proportional to
the instantaneous submerged volume. A problem here,
of course, is that the submerged volume changes contin-
uously. Consequently, the computation of its mass prop-
erties can be a major bottleneck of the simulation.

Most of the research in computing the mass proper-
ties of solid shapes can be applied only to specific solid
representation schemes and, therefore, it may involve an
expensive representation conversion process [11]. Gon-
zalez et al. [6] combined a polynomial free-form surface
representation with the Gauss divergence theorem to ef-
ficiently calculate the moments of the enclosed object.
However, their approach allows only piecewise polyno-
mial surface patches. Mirtich [13] proposed an efficient
method to compute the center of mass and higher-order
moments for polyhedral objects. The proposed algorithm
is based upon a three step reduction of the volume in-
tegrals to successively simpler integrals. The final step
of the algorithm computes the required integrals over a

2 Jinwook Kim et al.

face from the coordinates of the projected vertices. This
means that the computation is done by algebraic oper-
ations with vertex coordinate values. Even though this
method is computationally efficient for fixed polyhedral
objects, its efficiency can suffer if the geometric struc-
ture changes frequently as it may require an expensive
reconstruction of a set of vertices and faces. Unfortu-
nately, the typical situation in buoyancy simulations re-
quires repeated updates of vertex coordinates and even
of the number of relevant vertices. This is because the
submerged volume is defined as the intersection of a ge-
ometric object representing the fluid system with a geo-
metric object representing the floating rigid body.

In this paper, we propose a GPU-friendly algorithm
to compute the mass properties determined by general
geometries. Our approach is essentially image-based. Be-
cause of this, it is not restricted by the mathematical or
geometric representation of rigid bodies. Regardless of
the geometric representations employed, whether they be
polyhedral approximation, free-form surfaces, construc-
tive solid geometry, etc., if it is possible to render an
object of interest on the GPU, then our algorithm can
approximate the object’s mass properties, exploiting the
efficiency of the GPU.

Recent advances in the programmability of graph-
ics hardware have enabled its use for general purpose
computation, not restricted to rendering [16]. Various
problems in scientific computation, including fluid dy-
namic simulation, the solution of linear systems of al-
gebraic equations, nonlinear optimization, and volume
rendering, have been addressed by taking advantage of
the parallelism and programmability of GPUs [1,7–9,14,
17]. Moreover, programmable GPUs are getting faster
and cheaper. Our algorithm accrues these benefits by
exploiting the GPU to calculate mass properties. It first
computes the mass, the center of mass, and the products
of inertia by reducing volume integrals into surface inte-
grals. It projects surfaces of the rigid body onto a plane
that corresponds to the frame buffer of a rendering pro-
cess. Next, it computes the integrands on the GPU. Fi-
nally, it performs a summation operation using a buffer
reduction to obtain the desired result.

To perform the required integral operations over all
the surfaces representing the non-convex geometric ob-
ject, we use a depth-peeling algorithm to obtain each of
the surface patches regardless of convexity. The depth-
peeling is a fragment level depth sorting algorithm, which
achieves a correct rendering of transparent objects that
are located order independently [4,12]. The objective
of the method is to find the fragments of geometry in
a systematic manner. We focus our attention on this
method because it can access all the fragments represent-
ing the geometry regardless of its convexity. We modify
the original depth-peeling algorithm to obtain surface
peels, which are surface patches beneath the fluid in our
buoyancy simulation, as well as the intersection surface
between the fluid and the rigid body.

The remainder of the paper is organized as follows:
Section 2 reviews rigid body mass properties and derives
them in the form of surface integrals over the projected
plane. Section 3 introduces our GPU-friendly algorithm
for computing the mass properties determined by non-
convex geometry. Section 4 presents an error and perfor-
mance analysis of our approach compared to the analytic
method proposed by Mirtich [13]. Section 5 modifies an
original depth-peeling algorithm to deal with hydrostatic
buoyancy simulation and shows an example of interactive
rigid body dynamics simulation under buoyancy. Finally,
Section 6 draws conclusions from our work.

2 Rigid body mass properties

2.1 Computing mass properties with volume integrals

The mass of a rigid body is given by

m =
∫

V

ρ(x, y, z) dV, (1)

where ρ(x, y, z) is the mass distribution function of the
body and V is its volume. If we assume ρ(x, y, z) to be
constant over the volume, the expression for the mass
simplifies to m = ρV . In this paper, the mass distri-
bution function will be considered a constant value for
simplicity.

The center of mass r and the inertia tensor I are
given by

r =
1
V

∫

V

⎡
⎣

x
y
z

⎤
⎦ dV,

I = ρ

∫

V

⎡
⎣

(y2 + z2) −xy −xz
−yx (z2 + x2) −yz
−zx −zy (x2 + y2)

⎤
⎦ dV.

(2)

2.2 Reduction to surface integrals on a projected plane

To calculate the mass properties of a rigid body effi-
ciently, we exploit the divergence theorem as suggested
by Gonzalez et al. [6]. According to the divergence theo-
rem, an integral over the three-dimensional volume can
be transformed into an integral over its boundary surface
as follows:

∫

V

∇ · f dV =
∫

∂V

f · n dA, (3)

where f is a continuously differentiable vector field de-
fined on a neighborhood of V , where n = [nx, ny, nz]′
denotes the exterior normal vector of V along its bound-
ary ∂V, and where dA is the infinitesimal surface area
of the boundary. When the volume is represented by a
bounding polyhedron, its boundary is the set of planar

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation 3

polygons comprising its faces. If we set f = [0, 0, z]′, then
we obtain the volume as V =

∫
∂V

znz dA. Similarly,
setting f in turn to [0, 0, xz]′, [0, 0, yz]′, and [0, 0, 1

2z2]′

yields
∫

V
xdV =

∫
∂V

xznz dA,
∫

V
y dV =

∫
∂V

yznz dA,
and

∫
V

z dV =
∫

∂V
1
2z2nz dA, respectively.

Now, we slightly modify (3) by projecting the bound-
ary surface area element dA onto the xy plane. From Fig-
ure 1, we see that the relationship between the infinitesi-
mal surface area dA and the projected surface area dx dy
is dx dy = |nz| dA if the surface normal vector has unit
length.

Fig. 1 Projection of the infinitesimal surface area element.

Finally, we obtain the volume V and the center of
mass r = [rx, ry, rz]′ as follows:

V =
∫

∂V

sgn(nz)z dx dy,

rx =
1
V

∫

∂V

sgn(nz)xz dx dy,

ry =
1
V

∫

∂V

sgn(nz)yz dx dy,

rz =
1

2V

∫

∂V

sgn(nz)z2 dx dy,

(4)

where sgn(x) denotes the signum function which extracts
the sign of a real number x. Note that the integrals are
computed on the planar surface area, which is achieved
by projecting the surface boundary onto the xy plane.
When the surface area element dA is projected on the xy
plane, it will be singular if nz = 0. Hence, an improper
choice of f (e.g., f = [x, 0, 0]′ to compute the volume)
can lead to a singularity at the boundary of a projected
surface, where it would require division by a very small
number. Our proposed fs, however, only require multipli-
cation by sgn(nz), thus avoiding the singularity problem
at the boundaries.

The inertia tensor I is

I = ρ

⎡
⎣

Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

⎤
⎦ , (5)

where the moments and products of inertia are similarly
given as follows:

Ixx =
∫

∂V

sgn(nz)x2z dx dy,

Ixy =
∫

∂V

sgn(nz)xyz dx dy,

Iyy =
∫

∂V

sgn(nz)y2z dx dy,

Ixz =
1
2

∫

∂V

sgn(nz)xz2 dx dy,

Iyz =
1
2

∫

∂V

sgn(nz)yz2 dx dy,

Izz =
1
3

∫

∂V

sgn(nz)z3 dx dy.

(6)

3 Computing mass properties on the GPU

3.1 Shader implementation

The programmability of recent graphics hardware and
the various choices of precision and formats of frame-
buffers enable us to implement mass property compu-
tations on GPUs in an easy and flexible way. The in-
tegrands in equations (4) and (6) can be evaluated dis-
cretely at each pixel in a framebuffer by GPU program-
ming. The process is straightforward:

1. Render the geometry with an orthographic projection
onto the xy plane;

2. Evaluate the integrands on a fragment shader;
3. Encode the evaluated values at the output buffers.

The number of parameters that must be computed
is 10 in total, including 1 for volume, 3 for the center of
mass, and 6 for the moments and products of inertia. To
store these parameters, we use three framebuffers, each
of which can contain four values in the red, green, blue
and alpha channel. This can be efficiently implemented
using the “multiple render target” capability of recent
graphics hardware, which enables the fragment shader
to save per-pixel data in multiple buffers.

Hence, we obtain color buffers containing the values
of integrands in equations (4) and (6). Furthermore, the
integration of the values over the projected plane area
can be performed by reading back fragment color values
of the framebuffers and summing them up, or by using
a buffer reduction algorithm as will be explained in the
next section. A fragment shader can be implemented in
the OpenGL Shading Language [15] very easily, as fol-
lows:

4 Jinwook Kim et al.

// homogeneous coordinate of a point on the surface
varying vec4 p;

// z component of the surface normal
varying float n_z;

void main(void)
{
float c = sign(n_z) * p.z;

// (rx, ry, rz, V)
gl_FragData[0] = c * p;

// (Ixx, Ixy, Ixz, .)
gl_FragData[1] = p.x * gl_FragData[0];

// (Iyy, Iyz, Izz, .)
gl_FragData[2] = c * vec4(p.y * p.y, p.y * p.z, p.z * p.z, 0);

}

Note that the fourth components of gl FragData[1] and
gl FragData[2] are not used.

A potential problem is how to generate color buffers
covering all the surface fragments of the geometric shape.
Consider the case of a sphere. The surface of a sphere
can be divided into two patches—the north and south
hemispheres—according to the direction of surface nor-
mals. If we look at the sphere from the negative z view-
ing direction, the line of sight will intersect the sphere
twice. That is, the typical rendering pipelines will ren-
der two fragments from those two surface patches on
one pixel in the framebuffer and, therefore, the resulting
color buffer will contain only one of the fragments from
the two surface patches regardless of the choice of the
depth test function. To resolve this problem, we use the
depth-peeling algorithm discussed in the next section.

3.2 Depth-peeling

Using the standard depth test function of the 3D graph-
ics API, we can obtain the nearest surface fragment from
the eye at each pixel. Although the second nearest or
other fragments may be required in some areas, there is
no straightforward way to obtain the nth nearest frag-
ment. One possible solution is to use a depth-peeling
algorithm, which is a fragment-level depth sorting tech-
nique [12]. Depth-peeling can be implemented as a multi-
pass algorithm. In the first rendering pass, the geometries
are rendered using a normal “less-than” depth function.
This will yield a depth buffer containing the depth values
of the nearest surface of the geometry. In the next ren-
dering pass, only the fragment for which depth is greater
than the depth values in the buffer from the previous
pass are rendered. Then the depth buffer will contain the
depth values of the next nearest surface of the geometry,
and so on. The process repeats until the depth values of
all the surface fragments are found. The depth-peeling
technique introduced by Everitt [4] requires a shadow
buffer to peel away the surfaces by comparing depth
values. However, since recent GPUs and APIs support
“render-to-texture” capabilities and the direct manipula-
tion of pixel values on fragment processors using shading

languages, depth-peeling can be implemented using pro-
grammable GPUs and the modification of the algorithm
is even easier.

For our objective of computing mass properties, we
can apply the standard depth-peeling algorithm with the
shader developed in the previous section. As a result, we
obtain n textures containing the enumerated integrands
in equations (4) and (6), where n is a total number of
peels.

3.3 Two-dimensional integrals over the projected area
using buffer reduction

Using the textures obtained in the previous section, we
compute the two-dimensional integrals over the projected
surfaces in order to obtain mass properties. A straight-
forward way to perform the integration is to read all
evaluated integrands from framebuffers and sum them.
Given current graphic memory interfaces, however, read-
ing back a texture memory directly into system memory
can yield significant latency. To tackle this problem, we
use buffer reduction [2]. To summarize the buffer reduc-
tion technique, a fragment program reads two or more
values from the buffer and computes a new value using
the reduction operator, which in our case is an addition
operation. These passes continue until the output is re-
duced to a single value, the sum. In general, this process
takes O(log n) passes, where n is the number of elements
to reduce. Figure 2 illustrates a reduction operation to
calculate the sum.

2 3 4 15 6 23 24 15

14 4 3 2 3 16 13 17

12 6 5 3 8 4 12 17

3 9 8 6 14 13 15 26

5 8 9 11 8 16 18 21

11 14 12 27 24 12 23 16

23 3 6 17 24 16 5 18

19 15 13 15 4 17 24 9

23 24 48 69

30 22 39 70

38 59 60 78

60 51 61 56

8X8 4X4 2X2 1X1

Fig. 2 Summation reduction procedure.

4 Performance

In this section, we compare our algorithm in terms of ac-
curacy and speed with the analytic method developed by
Mirtich [13]. Since the analytic method used in this test
is restricted only to polyhedra, we use shapes approxi-
mated by polyhedra as test objects. Figure 3 illustrates
some of these objects. It is important to note, however,
that our algorithm can be applied to any model that can
be rendered on graphics hardware. All the tests were run
on a 2.53GHz Pentium 4 CPU with an NVIDIA GeForce
7800 GTX GPU. 32-bit floating point textures were used
for framebuffers. Table 1 lists all the geometric test ob-
jects and the number of peels for each test object.

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation 5

knot bunny pipe

Fig. 3 Some polyhedral test objects.

object vertices faces peels
cube 8 12 2

sphere 422 840 2
teapot 821 1628 6
torus 1024 1922 4
knot 1440 2880 8

bunny 2557 5110 6
pipe 4626 9252 6

Table 1 Geometric information for the test objects.

4.1 Error analysis

We measured the relative error of the mass and the mo-
ments of inertia Ixx, Iyy, and Izz at various framebuffer
resolutions. The other mass property values are very
small for our test objects, because the shapes are approx-
imately symmetric along axes. Our approach computes
integrands for each fragment on the GPU, where we use
texture memories as framebuffers. Hence, the resolutions
of the framebuffers are critical for accurate results. As
shown in Figure 4, a resolution of 32×32 was sufficient
to compute the mass properties within a 5% error bound.

4.2 Performance analysis

We now compare the performance of our algorithm and
the analytic method. If we assume that the cost of ver-
tex processing on the GPU is negligible compared to the
cost of fragment processing, the complexity of our algo-
rithm is approximately O(kn2), where k is the number
of rendering passes for the depth-peeling and n is the
framebuffer resolution along its width or height. On the
other hand, the complexity of the analytic method is
O(m), where m represents the number of faces of the
polyhedron. Figure 5 shows a comparison of the compu-
tation times for the analytic method and our GPU-based
method at three different framebuffer resolutions.

We observed that our GPU-based approach is compa-
rable to the analytic method in terms of computational
cost. At 64×64 resolution, our algorithm outperforms the
analytic method for moderately complex shapes such as
the bunny or the pipe. However it also shows the down-
side of quadratic complexity for a resolution of 128×128
or more. For example, it is obvious that the analytic
method is preferable to our GPU-based method for low-
polygon-count models such as a cube. The computational

cube mass cube Ixx cube Iyy
cube Izz sphere mass sphere Ixx
sphere Iyy sphere Izz teapot mass
teapot Ixx teapot Iyy teapot Izz

16

64

256

32

128

torus mass torus Ixx torus Iyy torus Izz
knot mass knot Ixx knot Iyy knot Izz
bunny mass bunny Ixx bunny Iyy bunny Izz
pipe mass pipe Ixx pipe Iyy pipe Izz

64
32

128
256

16

Fig. 4 Relative error comparisons.

Fig. 5 Computational time comparison of analytic method
and GPU-based method.

6 Jinwook Kim et al.

cost of the analytic method for the cube is so small that
we could not distinguishably display it in the graph.

5 Case study: Buoyancy simulation

The beauty of our image-based approach is that it is not
restricted to any particular mathematical or geometric
shape representation. It can efficiently compute the mass
properties of arbitrary objects, so long as they can be
rendered efficiently on graphics hardware. As an example
application of our algorithm, we will now demonstrate an
interactive, hydrostatic buoyancy simulation.

5.1 Hydrostatic buoyancy

One of the most popular simplifications of fluid motion
is the shallow water model [10] which assumes zero vis-
cosity and considers only two-dimensional motions. An
interesting fact of the shallow water model is that the
pressure field is characterized by the hydrostatic equilib-
rium condition:

p = ρgh, (7)

where g is the gravitational acceleration and h is the
depth of the fluid. This very simple pressure model works
well with the shallow water model, and it corresponds
exactly to the observation of Archimedes.

According to Archimedes’ principle, a body immersed
in a fluid experiences a vertical buoyant force equal to the
weight of the fluid that it displaces. The buoyant force
acts on the center of mass of the submerged volume.
Figure 6 illustrates a rigid body partially immersed in a
fluid. Assuming a stationary fluid system, two forces are
acting on the body at this instant. The first is the force
of gravity that acts downwards at the center of gravity
C, while the second is a buoyant force which acts up-
wards at the center of buoyancy B, which is the center
of mass of the immersed part of the rigid body (assum-
ing that the immersed portion consisted of fluid). The
magnitude of the buoyant force is proportional to the
weight of the submerged volume of fluid. The imbalance
between gravity and the buoyant force induces a torque
that will rotate the body to restore a static equilibrium.

The simulation of fluid motion is out of the scope of
our work.1 Instead we focus on the rigid body motion of
an object floating on fluid due to the hydrostatic buoy-
ant force. To simulate hydrostatic buoyancy, we compute
the volume and the center of mass of the submerged part

1 Foster and Metaxas [5] demonstrate a simplified scheme
for coupling buoyant objects to the results of a Navier-Stokes
fluid simulation. Carlson et al. [3] simulate the interplay be-
tween rigid bodies and viscous incompressible fluid.

Fig. 6 Buoyant force and gravity acting on a partially sub-
merged rigid body.

of the body at every simulation time instant. If the ge-
ometries of a fluid body and a rigid body are compli-
cated, calculating their intersection requires a consider-
able amount of computation and can become a bottle-
neck in the simulation process. In the following section,
we tackle this problem by modifying the depth-peeling
algorithm.

5.2 Boundary surfaces of an intersection volume of a
non-convex geometry and a fluid surface

We improve the original depth-peeling technique to ac-
count for all the projected fragments of the geometry be-
low the fluid surface. For simplicity, let us assume that
the signs of the z components of the fluid surface normal
vectors do not change. Our algorithm considers surfaces
from the rigid body and the fluid surface intersecting the
geometry separately. The multi-pass rendering procedure
to handle the surfaces of a submerged volume is as fol-
lows (note that an orthographic projection is applied to
render the scene with the negative z viewing direction as
shown in Figure 7):

Fig. 7 Multi-pass rendering to obtain all surface patches.

Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy Simulation 7

Pass 0: Render the surface of the fluid, storing its depth
values into a texture Tdw as a reference.

Pass 1: Render the object geometry to a texture T1. In
our fragment shader, the integrands in equation (4)—
i.e., sgn(nz)xz, sgn(nz)yz, sgn(nz)z2, and sgn(nz)z—
are evaluated and the output color is composed of
their values. Also, the depth values are stored in a
texture Td1. During this rendering pass, the frag-
ments whose depth value is less than the fluid sur-
face depth are discarded to inhibit the operation.
The texture Tdw generated in rendering Pass 0, is
used to lookup the depth value of the fluid surface.
In Figure 7, the solid black lines correspond to the
fragments.

Pass 2: Render the geometry to a texture T2. As in the
previous rendering pass, the integrands are evaluated
and their values are assigned to the output color.
Here, only the fragments whose depth value is greater
than the fluid surface depth and the depth value of
Td1 are accepted in order to peel away the surface
patch obtained in the previous rendering pass. In
Figure 7, the dashed lines indicate peeled away frag-
ments. A depth texture Td2 is initialized with Td1 and
overwritten with the depth values of the currently
processed fragments.

Pass n: Repeat the same process as in rendering Pass
2 until all the object fragments are found and evalu-
ated.

Thus, we obtain n textures, and the texture Tn contains
the evaluated integrands of the nth surface patch.

Now, the only remaining surface patch is the fluid
surface intersecting with the rigid body geometry. As
illustrated in Figure 8, the surface patches of rendering
Pass 1 consist of upward and downward faces. The fluid
surface intersecting with the rigid body geometry can
be obtained by drawing the fluid surface only for those
fragments having a downward normal in rendering Pass
1. Note that a more efficient implementation results if the
fragment shader can write a stencil bit into the output
framebuffer in rendering Pass 1. Finally, we evaluate the
integrand for the fluid surface patch intersecting the rigid
body geometry and write the value in a texture Tw.

In summary, our algorithm requires a total of n + 2
rendering passes to cover all the surface patches of a
partially submerged rigid body geometry, where n rep-
resents the maximum number of intersection points of
the submerged part of the geometry with the z axis. The
first rendering pass generates a reference depth texture
from the fluid surface. In the next n rendering passes, in-
tegrands are evaluated for each fragment of the geometry
surface and the resulting values are stored in textures Ti.
The final rendering pass evaluates the integrand for the
fluid surface patch that intersects the rigid body geome-
try and stores the values in a texture Tw.

Finally, we apply the summation reduction procedure
described in Section 3.3 to evaluate the integral expres-
sions for the volume of the immersed portion of the ob-

Fig. 8 Intersecting the surface of the fluid body with a rigid
body.

ject and the center of buoyancy in order to evaluate the
buoyant force and its point of application in the object.

5.3 Simulation example

Fig. 9 Interactive simulation of 50 rigid bodies floating in
water.

Figure 9 shows a typical scene from our interactive
simulations of buoyant objects. Ten spheres, 10 rectan-
gular boxes, 10 tori, 10 teapots, and 10 Stanford bun-
nies were tested. Boxes with density higher than that
of the water were observed to sink as expected. We also
modeled a viscous drag force acting at the center of buoy-
ancy with magnitude proportional to the submerged vol-
ume and the square of the body velocity. The simulation
runs on the CPU of a 2.53GHz Pentium 4 PC employ-
ing an NVIDIA GeForce 7800 GTX GPU. The average
frame rate of the example shown in the figure was 16
frames/sec. Over 90% of the computational resources
were consumed in calculating the buoyant force.

For spherical and rectangular bodies, depth-peeling
was applied twice to compute the submerged volume
of the object geometries. For the teapot and Stanford

8 Jinwook Kim et al.

bunny bodies, depth-peeling was applied a maximum of
6 times, but in most cases 3 or 4 peels sufficed to cover
the submerged volume. The framebuffer resolution used
in this example was 32×32, allowing at most 5% approx-
imation error. The leftmost images in Figure 10 show the
gravity force (downward blue arrow) and buoyant force
(upward yellow arrow) acting on a bunny, a torus, and
a teapot. The remaining images are color buffers that
encode the integrands for each peel, as described in the
previous section. Since the framebuffers use a floating
point texture format that cannot be illustrated properly,
we have transformed the values so that they map to a
color range of [0,1].

Fig. 10 Color encoded integrands of each peel for the buoy-
ant bunny, torus, and teapot (left).

6 Conclusion

We have proposed a GPU-friendly algorithm for com-
puting the mass properties of a rigid body represented
by a general geometry. We formulated the mass prop-
erties as surface integrals on a projected plane, avoid-
ing singularities at the boundaries. We also showed that
depth-peeling techniques can be exploited to tackle non-
convex geometries. Our approach is essentially image-
based. Consequently, it can efficiently compute mass prop-
erties as long as the geometries can be rendered using
graphics hardware.

We applied our algorithm to simulate rigid body mo-
tion in a real-time hydrostatic buoyancy simulation. The
mass properties of the submerged volume were efficiently
computed without an explicit reconstruction of the in-
tersecting geometry between the fluid and the rigid bod-
ies. Our algorithm approximates mass properties fairly
accurately, even using low resolution framebuffers. Our
interactive simulation demonstrates that the proposed
algorithm can be applied to animate floating rigid bod-

ies on a stationary fluid system in a fast and plausible
way.

Acknowledgements The material presented herein is based
upon work supported by the Information and Telecommuni-
cation National Scholarship Program supervised by IITA and
the Ministry of Information and Communication, Republic of
Korea.

References

1. Bolz, J., Farmer, I., Grinspun, E., Schröoder, P.: Sparse
matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Trans. Graph. 22(3), 917–924 (2003)

2. Buck, I., Purcell, T.: GPU Gems 2, chap. A toolkit for
computation on GPUs. Addison-Wesley (2004)

3. Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: Animat-
ing the interplay between rigid bodies and fluid. ACM
Transactions on Graphics 23(3), 377–384 (2004)

4. Everitt, C.: Interactive order-independent transparency
(2001). URL citeseer.ist.psu.edu/everitt01interactive.html

5. Foster, N., Metaxas, D.: Realistic animation of liquids.
Graphical Models and Image Processing 58(5), 471–483
(1996)

6. Gonzalez-Ochoa, C., McCammon, S., Peters, J.: Comput-
ing moments of objects enclosed by piecewise polynomial
surfaces. ACM Transactions on Graphics 17, 143–157
(1998)

7. Hillesland, K.E., Molinov, S., Grzeszczuk, R.: Nonlin-
ear optimization framework for image-based modeling on
programmable graphics hardware. ACM Transactions on
Graphics 22(3), 925–934 (2003)

8. Krüger, J., Westermann, R.: Acceleration techniques for
GPU-based volume rendering. In: VIS ’03: Proceedings of
the 14th IEEE Visualization 2003 (VIS’03), p. 38. IEEE
Computer Society, Washington, DC, USA (2003)

9. Krüger, J., Westermann, R.: Linear algebra operators
for GPU implementation of numerical algorithms. ACM
Transactions on Graphics (TOG) 22(3), 908–916 (2003)

10. Layton, A.T., van de Panne, M.: A numerically efficient
and stable algorithm for animating water waves. The
Visual Computer 18(1), 41–53 (2002)

11. Lee, Y.T., Requicha, A.A.: Algorithms for computing the
volume and other integral properties of solids. I. Known
methods and open issues. Communications of the ACM
25(9), 635–641 (1982)

12. Mammen, A.: Transparency and antialiasing algorithms
implemented with the virtual pixel maps technique.
IEEE Computer Graphics and Applications 9(4), 43–55
(1989)

13. Mirtich, B.: Fast and accurate computation of polyhedral
mass properties. Journal of Graphics Tools 1(2), 31–50
(1996)

14. Moreland, K., Angel, E.: The FFT on a GPU. In: HWWS
’03: Proceedings of the ACM SIGGRAPH/Eurographics
Conference on Graphics Hardware, pp. 112–119. Euro-
graphics Association, Aire-la-Ville, Switzerland (2003)

15. Rost, R.J.: OpenGL Shading Language. Addison-Wesley
Longman, Redwood City, CA (2004)

16. Thompson, C.J., Hahn, S., Oskin, M.: Using modern
graphics architectures for general purpose computing:
A framework and analysis. In: Proceedings of the
ACM/IEEE International Symposium on Microarchitec-
ture, pp. 306–317 (2002)

17. Wu, E., Liu, Y., Liu, X.: An improved study of real-
time fluid simulation on GPU. Computer Animation and
Virtual Worlds 15(3–4), 139–146 (2004)

 NVIDIA GEFORCE 8 SERIES MARKETING MATERIALS

GeForce 8800 GPUs Page 1 of 2

NVIDIA CONFIDENTIAL

RMATION
UTE

NOV 8, 2006

INFO

DO NOT DISTRIB
OR POST UNTIL

G80 Messaging – Final

NVIDIA® unified architecture revolutionizes PC graphics performance through unprecedented
processing power and efficiency
• Fully unified shader core dynamically allocates processing power to geometry, vertex, physics, or

pixel shading operations
o Ground-breaking 128 parallel 1.35GHz* stream processors deliver amazing floating point

processing power for unmatched gaming performance
o Completely unified and optimized for current DirectX 9 and next generation DirectX 10 games

and applications
• GigaThread™ technology provides extreme processing efficiency in advanced, next generation

shader programs
o Multi-threaded architecture supports thousands of independent, simultaneous threads,

maximizing GPU utilization
 NVIDIA® SLI™-Ready – Up to 2x the performance of a single graphics card

World’s first DirectX 10 GPU delivers unparalleled levels of graphics realism and film-quality
effects
 Reference GPU for industry’s DirectX 10 API development and certification
 Geometry shaders enable incredibly detailed, high polygon characters, shadows, and effects

o Geometry creation and tessellation smooth curved surfaces and enable more lifelike
character animation including realistic facial expressions and hair

o GPU-generated shadow volumes deliver amazing performance improvements for shadow
rendering

 Next generation geometry instancing provides extremely efficient batch processing of game objects
and data and allows for richer and more immersive game environments

• New graphics data path enables rapid data storage (streamed output) for advanced shader
calculations

 Full Shader Model 4.0 compliance delivers compatibility with DirectX 10 games

NVIDIA Lumenex™ engine delivers incredible image quality, floating point accuracy, and fast
frame rates
• 16x full-screen anti-aliasing technology delivers superior AA quality while providing astounding

performance
• 128-bit floating point HDR (high-dynamic range) with anti-aliasing provides twice the precision of

previous generations while obliterating jaggies
• High speed memory interface and two dual-link DVI outputs enable extreme HD gaming up to

2560x1600 resolution at amazing frame rates

NVIDIA Quantum Effects™ technology enables a new level of physics effects to be simulated and
rendered on the GPU
• Advanced shader processors architected for physics computation deliver amazing performance and

visual effects such as smoke, fire, and explosions
• Realistic movement of hair, fur, and water is completely simulated and rendered by the graphics

processor
• CPU is freed to run the game engine and AI, improving overall gameplay

PureVideo™ technology delivers the ultimate home theater experience on a PC
• Hardware acceleration for decoding H.264, VC-1, WMV and MPEG-2 movies delivers lifelike images

that have up to six times the detail of standard DVD movies
• Dedicated video processor offloads the CPU and 3D engine of complex video tasks, providing a

higher quality movie experience

 NVIDIA GEFORCE 8 SERIES MARKETING MATERIALS

GeForce 8800 GPUs Page 2 of 2

NVIDIA CONFIDENTIAL

INFORMATION

DO NOT DISTRIBUTE
OR POST UNTIL

NOV 8, 2006

• Post-processing support including advanced de-interlacing, scaling, noise reduction, and edge
enhancement provides spectacular picture clarity and detail

• Provides world-class TV-out functionality via Composite, S-Video, Component, or DVI connections.
Supports HD resolutions up to 1080p depending on connection type and TV capability

* GeForce 8800 GTX has 128 stream processors running at 1.35GHz. GeForce 8800 GTS has 96 processors running at 1.2GHz.

 NVIDIA CUDA PRODUCT STORY

1

NVIDIA CUDA for Thread Computing

NVIDIA® CUDA™ thread computing is a fundamentally new architecture to solve

complex computational problems across consumer, business, and technical industries.

CUDA technology gives data-intensive applications access to the tremendous processing

power of NVIDIA graphics processing units (GPUs) through a revolutionary computing

architecture unleashing entirely new capabilities. Providing performance increases up to

200% and simplifying software development through the standard C language, CUDA

technology enables developers to create solutions for data-intensive processing to

produce accurate answers, in less time. With the introduction of CUDA thread

computing, consumers and professionals have faster access to powerful, decision making

information that previously was simply not possible.

For more information on developing with CUDA technology, please visit

http://developer.nvidia.com .

What is CUDA technology?

CUDA thread computing is an innovative combination of computing features in next

generation NVIDIA GPUs that are accessible through a standard ‘C’ language. Where

previous generation GPUs were based on “streaming shader programs”, CUDA

programmers use ‘C’ to create programs called threads that are similar to multi-threading

programs on traditional CPUs. In contrast to multi-core CPUs, where only a few threads

execute at the same time, NVIDIA GPUs featuring CUDA technology process thousands

of threads simultaneously enabling a higher capacity of information flow.

One of the most important innovations offered by CUDA technology is the ability for

threads on NVIDIA GPUs to cooperate when solving a problem. By enabling threads to

communicate, CUDA technology allows applications to operate more efficiently.

NVIDIA GPUs featuring CUDA technology have a parallel data cache that saves

http://developer.nvidia.com/

 NVIDIA CUDA PRODUCT STORY

2

frequently used information directly on the GPU. Storing information on the GPU allows

computing threads to instantly share information rather than wait for data from much

slower, off-chip DRAMs. This advance in technology enables users to find the answers

to complex computational problems in real-time.

What applications benefit from CUDA?

CUDA thread computing is suitable for a wide range of applications that process massive

amounts of information. For example, game applications take advantage of CUDA

technology by leveraging the NVIDIA GPU to run the entire physics computation, letting

gamers experience amazing performance and visual effects. In addition, commercial

software applications used for product development or large data analysis, that previously

required a supercomputer mainframe environment to run applications, can now benefit

from using a standard workstation or server enabled with CUDA technology. This

breakthrough in technology enables customers to make real-time analysis and decisions

from anywhere. In addition, scientific applications which require the most intensive

technical computing capability are no longer constrained by compute density; CUDA

thread computing provides a platform with a higher level of performance from the same

space requirements.

Developing with CUDA

The CUDA software development kit (SDK) is a complete software development

solution for programming CUDA-enabled GPUs. The SDK includes standard FFT and

BLAS libraries, a C-compiler for the NVIDIA GPU and runtime driver. The CUDA

runtime driver is separate standalone driver that interoperates with OpenGL and

Microsoft® DirectX® drivers from NVIDIA. CUDA technology is equally supported on

both the Linux and Microsoft® Windows® XP operating system.

 NVIDIA CUDA PRODUCT STORY

3

Why Use CUDA technology?

Performance. NVIDIA GPUs offer incredible performance for data-intensive

applications. CUDA technology provides a standard, widely available solution for

delivering new applications with unprecedented capability.

Productivity. Developers wanting to tap into the NVIDIA GPU computing power can

now use the industry standard “C” language for software development. CUDA thread

computing provides a complete development solution that integrates CPU and GPU

software to enable developers to quickly provide new features and greater value for their

customers.

Scalability. CUDA technology scales performance and features across the full line of

NVIDIA GPUs from embedded form factors to high performance professional graphics

solutions. The power of CUDA performance is now available in virtually any class

system from large, computing installations to consumer products.

Technology Features

• Unified hardware and software solution for thread computing on CUDA-enabled

NVIDIA GeForce® GPUs and NVIDIA Quadro® graphics boards

• CUDA-enabled GPUs support the Parallel Data Cache and Thread Execution

Manager for high performance, thread computing

• Standard C programming language on a GPU

• Standard numerical libraries for FFT and BLAS

• Dedicated CUDA driver for computing

• Optimized upload and download path from the CPU to CUDA-enabled GPU

• CUDA driver interoperates with graphics drivers

• Supports Linux and Windows XP operating systems

 NVIDIA CUDA PRODUCT STORY

4

• Scales from high performance professional graphics solutions to mobile and

embedded GPUs

• Native multi-GPU support for high density computing

• Supports hardware debugging and profiler for program development and

optimization

	HCI김영준.pdf
	StreamingCD.pdf
	41610382.pdf
	Introduction
	Pixel Shader-Based Skinning
	Implementation and Result
	Conclusion

	gpu implementation of neural networks.pdf
	GPU implementation of neural networks
	Introduction
	Neural network architecture
	GPU processing
	Application to pattern recognition
	Acknowledgements
	References

	GPUMassProperty.pdf
	G80 Messaging Final.pdf
	CUDA_Product_story_Final2.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

