
Computation of the Upper Bound of Motion

Xinyu Zhang

October 6, 2006

The derivation ofµ on page 5 in the paper (Eq. 5) is incorrect. In this document, we give a correct derivation
and re-measure the CCD query performance for all the benchmarks based on the corrected derivation.

Motion Projection

Given the interpolating motionM(t) and a moving convex objectA and a fixed convex objectB, we wish
to calculate the tight upper boundµ of motion. Letpi be a point onA , and asA undergoesM , pi will trace
out a trajectorypi(t) in 3D Euclidean space. Consider its velocityṗi(t) = v+ω × r i(t) and notice thatv,ω
are constant between the time interval of[0,1] in our case. Then, thedirected motion boundµ of A can be
expressed as:

µ = max
i

∫ 1

0
|ṗi(t) ·n|dt

wheren is the closest direction vector betweenA andB.

Here, we give two equations to calculate the upper bound of motion. The first equation is a tighter upper
bound of motion than the second one, but involves the extremal vertex query (EVQ) and so more computa-
tion is needed than the second.

1. Equation with EVQ

The first equation of calculating the upper bound of motionµ is derived as follows:

max
i

∫ 1

0
|ṗi(t) ·n|dt

≤ max
i

∫ 1

0
|v ·n+ω × r i(t) ·n|dt

≤ |v ·n|+max
i

∫ 1

0
|ω × r i(t) ·n|dt

≤ |v ·n|+
∫ 1

0
max

i
(|ω × r i(t) ·n|)dt

= |v ·n|+
∫ 1

0
max

i
(|n×ω · r i(t)|)dt

1

Let c = n×ω and r i(t) = R(t)r i(0). The rotationR(t) is performed about the fixed axisω by an angle
θ . The rotation in the above equation can also be considered asc rotating about a fixed vector withr i(t)
fixed. However, this new rotation denoted byRc(t), is about the fixed axisω by an angle−θ . Notice that
Rc(t) = R−1(t) = RT(t). For simplicity, we denote thatRc(t)c = c(t) andr i = r i(0). Therefore, the second
term of the above equation can be rewritten as:∫ 1

0
max

i
(|n×ω · r i(t)|)dt

=
∫ 1

0
max

i
(|c·R(t)r i |)dt

=
∫ 1

0
max

i
(|RT(t)c· r i |)dt

=
∫ 1

0
max

i
(|c(t) · r i |)dt (1)

The problem of evaluating Eq. 1 is equivalent to performing the extremal vertex query for a set of directions
c(t) wheret ∈ [0,1], instead of a single direction. Moreover, notice thatc(t)’s are co-planar (the plane’s
normal isω). Therefore we havec(t) · r i = c(t) · r c

i wherer c
i is the projection onto the plane byr i . For any

givenr i , we have

|c(t) · r c
i |=

{
|c(t)||r c

i | if (c(0)× r c
i) · (c(1)× r c

i) > 0
maxi(c(0) · r c

i ,c(1) · r c
i) if (c(0)× r c

i) · (c(1)× r c
i)≤ 0

(2)

where|r c
i |= | ω

|ω| × r i |.

A simple way to evaluate Eq. 1 is to visit all the vertices (i.e., allr i ’s) of a convex polytope and findr i to
maximize Eq. 2. A more sophisticated way of evaluating Eq. 1 would be the use of quadratic programming
since|r c

i | contains quadratic terms

2. Equation without EVQ

The second equation of calculating the upper bound of motionµ is derived as follows:

max
i

∫ 1

0
|ṗi(t) ·n|dt

≤ max
i

∫ 1

0
|v ·n+ω × r i ·n|dt

≤ |v ·n|+max
i

∫ 1

0
|ω × r i ·n|dt

≤ |v ·n|+
∫ 1

0
max

i
(|ω × r i ·n|)dt

≤ |v ·n|+
∫ 1

0
max

i
(|n×ω · r i |)dt

≤ |v ·n|+ |n×ω|max
i

(|r i |)

= µ (3)

Note that maxi(|r i |) can be calculated as preprocess.

3. Performance Re-measurement

We re-tested all the benchmarks and provided the CCD query performance. The query performance by us-
ing EVQ (i.e., Eq. 1) is labelled withFAST-EVQ and the query performance without using EVQ (i.e., Eq.
3)is labelled withFAST-NEVQ (No Extremal Vertex Query). For some selected benchmarking scenarios,
we also provide the average number of iterations. The following table summarizes the performance mea-
sured using the new equations (labelled as Timing with and without EVQ) and compared it against the one
presented in the original paper (labelled as Timing old).

Benchmarks Timing (old) Timing (with EVQ) Timing (without EVQ)

Santa vs Thin Board 0.0647 0.419 0.0194
Bunny vs Bunny 8.00 9.55 9.10
Torusknot vs Torusknot (2.8K) 0.948 0.983 0.937
Torusknot vs Torusknot (11K) 2.01 2.98 2.50
Torusknot vs Torusknot (34K) 5.32 5.88 5.38
RBD for Bunnies 0.643 0.728 0.501
RBD for Rings 0.737 2.07 1.89

Table 1: Performance remeasurement of all benchmarks.

These results show that the algorithmic performance based on the motion bound equation without EVQ (Eq.
1) is better than the one with EVQ (Eq. 3) in our benchmarks. The main reasons are: (1) visiting all the
vertices in a polytope and performing EVQs on them can be costly and (2) the motion bound without EVQ
is reasonably tight in practice, even though a bit looser compared to the one with EVQ. As a result, we have
decided to use Eq. 1 without EVQ in practice, especially for complex non-convex models.

0.0
0.2
0.4
0.6
0.8
1.0

0 50 100 150 250
0.00
0.02
0.04
0.06
0.08
0.10

0.0
0.2
0.4
0.6
0.8
1.0

Time of Collision

Collision Free

Penetration

TOCCollision Free

FAST-NEVQ: Time (milliseconds)

Simulation Step

FAST-EVQ: Time (milliseconds)

Figure 1: Benchmarking 1: Santa vs Thin Board. The average CCD query time with EVQ is 0.419 ms (2439
FPS) and The average CCD query time without EVQ is 0.0194 ms (51,546 FPS).The average number of
iterations with EVQ is 3.64 and The average number of iterations without EVQ is 3.68.

0 50 100 150 200
0
2
4
6
8

10
0

20
40
60
80

100
120
140
160

0
2
4
6
8

10
0

40
80

120
160
200

FAST-NEVQ: Number of Iterations

Simulation Step

FAST-NEVQ: Time (milliseconds)

FAST-EVQ: Number of Iterations

FAST-EVQ: Time (milliseconds)

Figure 2: Benchmarking 2: Bunny vs Bunny. The average CCD query time with EVQ is 9.55 ms (105 FPS)
and The average CCD query time without EVQ is 9.10 ms (110 FPS). The average number of iterations with
EVQ is 4.32 and The average number of iterations without EVQ is 4.7

0
2
4
6
8

10
0

2

4

6
0
2
4
6
8

10
0

2

4

6

FAST-NEVQ: Number of Iterations

Simulation Step

FAST-NEVQ: time (milliseconds)

FAST-EVQ: Number of Iterations

FAST-EVQ: time (milliseconds)

0
2
4
6
8

10
0
2
4
6
8

10
12
14
16

0
2
4
6
8

10
0
2
4
6
8

10
12
14
16

FAST-NEVQ: Number of Iterations

Simulation Step

FAST-NEVQ: time (milliseconds)

FAST-EVQ: Number of Iterations

FAST-EVQ: time (milliseconds)

0
2
4
6
8

10
0

20

40

60
0
2
4
6
8

10
0

20
40
60
80

FAST-NEVQ: Number of Iterations

Simulation Step

FAST-NEVQ: time (milliseconds)

FAST-EVQ: Number of Iterations

FAST-EVQ: time (milliseconds)

Figure 3: Benchmarking 3: Torusknots vs Torusknots in different Complexities. 2.8K, 11K, 34K triangles
from left to right. The average CCD query times with EVQ are 0.983ms (1017 FPS), 2.98ms (336 FPS),
5.88ms (170 FPS), respectively. The average CCD query times without EVQ are 0.937ms (1067 FPS),
2.50ms (400 FPS), 5.38ms(186 FPS), respectively. The average number of iterations with EVQ are 4.16,
4.18, 4.16, respectively. The average number of iterations without EVQ are 4.49, 4.49, 4.46, respectively.

0 80 160 240
0
2
4
6
8

10
0
2
4
6
8

10
0
2
4
6
8

10
0
2
4
6
8

10

FAST-NEVQ: Number of Iteratons

Simulation Step

FAST-NEVQ: Time (milliseconds)

FAST-EVQ: Number of Iteratons
(c)(b)(a)

FAST-EVQ: Time (milliseconds) Collision Free
 TOC

0 60 120 180 240
0
5

10
15
20

0
20
40
60
80

0
5

10
15
20

0
20
40
60
80

FAST-NEVQ: Number of Iteratons

Simulation Step

FAST-NEVQ: Time (milliseconds)

FAST-EVQ: Number of Iteratons
(c)(b)(a)

FAST-EVQ: Time (milliseconds) Collision Free
 TOC

Figure 4: Benchmarking 4 and 5: Rigid Body Dynamics for Bunnies and Rings. For the bunny benchmark,
the average CCD query time with EVQ is 0.728ms (1374 FPS) and the average CCD query time without
EVQ is 0.501ms (1996 FPS). For the ring benchmark, the average CCD query time with EVQ is 2.07ms
(483 FPS) and the average CCD query time without EVQ is 1.89ms (529 FPS).

