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Abstract—Most techniques for real-time construction of a signed distance field, whether on a CPU or GPU, involve approximate
distances. We use a GPU to build an exact adaptive distance field, constructed from an octree by using the Morton code. We
use rectangle-swept spheres to construct a bounding volume hierarchy (BVH) around a triangulated model. To speed up BVH
construction, we can use a multi-BVH structure to improve the workload balance between GPU processors. An upper bound on
distance to the model provided by the octree itself allows us to reduce the number of BVHs involved in determining the distances
from the centers of octree nodes at successively lower levels, prior to an exact distance query involving the remaining BVHs.
Distance fields can be constructed 35-64 times as fast as a serial CPU implementation of a similar algorithm, allowing us to
simulate a piece of fabric interacting with the Stanford Bunny at 20 frames per second.

Index Terms—Distance fields, GPU, Octree, Bounding volume hierarchies, Physics simulation.
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1 INTRODUCTION

A distance field is a scalar field that represents the
shortest distance between a point in space and a
model. A scalar field is usually approximated by a
regular or adaptive grid. Applications of distance
fields include collision detection [1], physics simula-
tion [2], [3], [4], motion planning [5], mesh generation
[6] and geometric modeling [7], [8].

Brute-force computation of exact distance fields
takes a long time, and many methods have been
proposed to construct distance fields more efficiently.
However, most algorithms are not designed for GPUs,
and can not cope with adaptive grids or deformable
models. We present an efficient GPU-based method
of constructing a global signed distance field on an
adaptive grid for any model represented by a mesh of
triangles. Previous work on computing distance fields
on a GPU has mostly been based on approximate
distance computations using uniform grids, which
require a lot of memory to achieve high resolution.

We use adaptive grids in the form of octrees, like
many CPU-based algorithms for creating distance
fields. However, switching to GPUs from CPUs is
quite challenging due to the following reasons:

• Dynamic memory allocation and pointer creation
are used extensively in constructing octree on a
CPU implementation, which may not be effec-
tively implemented on a GPU.

• Fuchang Liu and Young J. Kim are with the Department of Computer
Engineering, Ewha Womans University, Seoul, South Korea. Young J.
Kim is the corresponding author.
E-mail: {liufu, kimy}@ewha.ac.kr

• Hierarchical query structures such as bounding
volume hierarchy (BVH) are often employed to
accelerate the massive number of distance queries
to construct distance fields. However, implement-
ing these structures on GPUs is non-trivial since
an intelligent load balancing mechanism is re-
quired to effectively utilize thousands of GPU
threads. Furthermore, these structures should be
able to handle dynamic models, for instance,
under deformation on GPUs.

• Efficient and parallel traversal on the above hi-
erarchical structure is similarly non-trivial due to
the same load balancing issue.

Main Results: In our paper, we address the afore-
mentioned challenges by using a novel, multi-BVH
structure and efficient, parallel distance culling tech-
niques. More specifically, we construct a set of BVH
structures (i.e. multi-BVH) by exploiting the space
coherence of the input triangles, encoded by Morton
code. Then, we employ a culling strategy to quickly
determine which BVHs can be discarded since they
do not contribute to the final distance fields.

The computational pipeline of our algorithm is
shown in Fig. 1. We begin by sorting the triangles
in the model using Morton code of their centroids
and then build an octree that indexes the triangles
by utilizing the space coherence of Morton code.
Distance queries are facilitated by a BVH of rectan-
gular swept spheres (RSSs) [9]. We also show how to
extend this approach to deformable models, using a
multi-BVH structure. We cluster the triangles based
on their Morton codes and build a BVH for each
group. Determining the optimal axis of an RSS takes
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a significant amount of time and therefore we adopt
an axis approximation method. The shortest distance
between the center of every node in octree and the
model is refined by traversing a BVH from its root to
its leaves. A tight upper bound can be determined
by a multi-resolution grid. We can spawn tens of
thousands of distance query threads concurrently on
a GPU. In order to reduce the number of BVHs to be
queried by each thread, we apply an upper bound to
cull them.

Fig. 1. Pipeline of adaptive distance fields.

The novel aspects of our work can be summarized
as follows:

• To the best of our knowledge, our work is the first
interactive-rate GPU-based algorithm for adap-
tive distance fields.

• In order to reduce the computational cost of
BVH construction which is dominant in com-
puting distance fields, we employ a multi-BVH
structure which improves parallelism efficiency
significantly when generating nodes near the top
of the BVH.

• Based on the multi-BVH structure, we develop a
new BVHs culling technique based on dimension
reduction.

• Axis approximation is adopted for effectively
constructing small nodes during multi-BVH con-
struction.

• An octree is built in a top-down way on GPUs to
represent adaptive distance fields using Morton
code.

Organization: The rest of this paper is organized as
follows. In Section 2, we will review some previous
work. In Section 3, we describe our octree structure.
Section 4 describes our method of building multi-
BVHs on a GPU. In Section 5 we describe refinement
of the upper bound in distance queries and BVH
culling to construct multi-BVHs. Finally, in Section 6
we present our results and draw conclusions.

2 PREVIOUS WORK

Algorithms for constructing a distance field from a
triangular mesh can be classified into three categories:

2.1 Methods based on Voronoi Diagrams
In these methods, a distance field is computed from
the distances between points lying in a Voronoi cell

and its Voronoi site [5], [10]. Hoff et al.[5] create gen-
eralized Voronoi diagrams using a graph-based tech-
nique which constructs graphs of the sites’ distance
fields. However, each primitive of the input surface
produces a large number of triangles to render, and
so the method is inefficient for large meshes. Mauch’s
[10] characteristics/scan-conversion (CSC) algorithm
computes the signed distance field for triangle meshes
up to a given maximum distance d. The CSC algo-
rithm does not compute exact Voronoi cells, but in-
stead uses computationally more tractable polyhedra
which contain the Voronoi cells. However, for triangu-
lar meshes and high grid resolutions, scan conversion
and distance computation are much more expensive
than construction of the Voronoi diagram. And CSC
only computes the distance field in a narrow band
around the surface. Sigg et al. [11] introduced the
hardware-assisted prism algorithm which is a faster
version of CSC. They use OpenGL’s ARB fragment
program for the nonlinear interpolation of distance
values within a single polyhedron slice. Erleben et al.
[12] eliminated artifacts due to leaking in the prism
scan. Sud et al. [13] use the properties of a Voronoi
diagram to cull primitives that do not contribute to
the distance field. All these methods are based on a
uniform grid.

2.2 Methods based on Distance Transforms

A distance transform (DT) creates distance field close
to the surface of a model from which distances else-
where may be determined [14]. DT methods can be
classified into three categories by the method of dis-
tance computation that is used: Chamfer DTs, vector
DTs and the fast marching method (FMM). Chamfer
DTs [15], [16], [17], [18] use a distance template which
is centered over each voxel.The distance from the cen-
tral voxel is set to the minimum of all of its neighbor’s
distances. The accuracy of chamfer DT gets worse
as the distance from the model surface increases.
Vector DTs [19], [20], [21] address this problem by
determining a vector to the closest point on the sur-
face of the model; those vectors are then propagated
outwards using a vector template. FMM [22], [23] is
a well-known numerical scheme which can solve the
Eikonal equation which determines the distance from
a voxel to the surface of the model by applying a first
or second order estimator to the distances from its
neighbors to the model. None of these techniques are
exact except in some special situations. Recently, Cao
et al. [24] have proposed exact Euclidean DT which
can be applied to a binary image in 2D and higher
dimensions at interactive rates on current GPUs, but
this method is not directly applicable to meshes, and
the memory overhead of distance field computation
increases as the cube of the resolution.
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2.3 Methods based on a Voxel/Triangle Overlap
List

Methods in this category reduce the cost of calculation
by constructing a list of intersecting triangle for each
voxel. Chang et al. [25] voxelize a triangular mesh
and build a list of triangles for each boundary on the
model which they use to build a local signed distance
field. Chang et al.’s method is CPU-based and their
distance field is uniform and only exists within a nar-
row band around the surface of the model. K. Yin et al.
[26] also use an intersecting triangle list for computing
distance fields. But they compute adaptive distance
fields on a GPU by generating the adaptive sampling
points using an octree, which is built in a bottom-up
way. The maximum resolution of their distance field
is limited to 5123. And they must approximate the
distance field for those points far from the surface.

More recently, [27] proposed a CUDA-based
method for signed distance field calculation using
adaptive grids on a GPU. However, this method
performs only distance query on a GPU while adap-
tive grid generation is still executed on a CPU; thus
their method may incur a communication overhead
between CPUs and GPUs. All the methods we have
reviewed here in Section 2 are approximate, local, or
executed fully or partially on a CPU. To the best of
our knowledge, ours is the only algorithm that can
compute exact adaptive signed distance fields for a
large triangle mesh at interactive rates using GPUs.

3 ADAPTIVE GRID GENERATION

Adaptive distance fields (ADFs) are usually rep-
resented hierarchically, using structures such as
quadtrees in 2D and octrees in 3D. The space occupied
by the input model is subdivided recursively using a
subdivision rule. Each quadtree or octree node stores
the distance from its center to the surface of the model,
as well as pointers to parent and child nodes. In this
section, we will discuss the generation of an octree
structure for ADFs on a GPU.

3.1 Octree Generation

Distance fields are relatively easy to implement on
GPUs using regular grids, but these require a lot of
storage. It is more efficient to use ADFs [28] which
allocate storage more effectively, favoring the regions
which contain fine detail. But problems of memory
allocation and pointer creation make it difficult to use
octrees on a GPU. Recently, octree representations,
such as the hashed octree [29], and the linear octree
[30], based on a hash table have been proposed in
which pointers to children of nodes are replaced by
lookup operation. However, these hashing strategies
are limited to static cases.

There are usually two ways to construct octrees,
either bottom-up [31] or top-down [32] approaches.

In [32] (i.e. top-down fashion), the main problem
is lack of parallelism in the initial splits that makes
most processors idle and triangle swapping during
construction of that can cause global memory read
and write overhead. For bottom-up fashion, it costs
too much memory in the initialization. Thus, the finest
grid resolution of octree is limited by GPU memory.
We use a top-down approach to subdivide grids
adaptively according to the criterion: the number of
triangles associated with each grid, as illustrated in
Fig. 2. In Fig. 2, compared to uniform grids genera-
tion, we start from a coarse level and only subdivide
grids which contain more triangles than a threshold.
The challenging issue is still how to maximally exploit
GPU’s parallelism for adaptive grids.

Fig. 2. Different grids subdivision comparison: Take 4
arbitrary triangles for example, 64 grids are generated
in uniform grids subdivision on the left. Only 13 grids
are generated in adaptive grids subdivision on the
right.

3.2 Octree Construction on the GPU using Mor-
ton Code
Morton code [33] has been used for building BVHs
[31]. Note that a recursive decomposition of 3D space
based on Morton code is equivalent to an octree
decomposition. Additionally, we have discovered that
sorting triangles on their Morton code can suggest
which nodes of the octree should be decomposed
further. Thus we can use Morton code to parallelize
adaptive grids generation and store grids into octree
data structures on a GPU.

Our octree construction algorithm has some simi-
larities with Zhou et al.’s data-parallel octree method
[34] which also uses Morton code. Zhou et al. build an
octree in a bottom-up way, because they also need to
build a vertex array for all the octree nodes, which is
subsequentially used for surface reconstruction. How-
ever, our algorithm uses top-down, starting from a
coarse grid rather than the root; we can directly build
nodes at depth of D, which corresponds to resolution
(2D)

3. Thus, we can arbitrarily define the finest res-
olution according to user-specified requirement and
easily build octree from coarsest depth to finest depth
without any intermediate nodes construction.

Morton code makes it easy to determine the number
of triangles in each node across levels; since all the
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triangles contained by the same octree node have the
same Morton code, by identifying the triangles having
the same Morton code, we can count the number of
triangles that each node contains. We use a simple
subdivision criterion: if the number of triangles is
larger than a threshold, subdivide the node, other-
wise, it is a leaf. We store the octree nodes in a node
list. A node t contains the following information:
1) The 3m-bit Morton code, where m is the depth of
the node.
2) The coordinates of the center of the node (i.e. the
sampling point).
3) Pointers to the parent and first child of the node.

Fig. 3 shows how we use Morton code to decide
which node to divide further. At level 1, two nodes
contain more than one triangle. If the division crite-
rion as one triangle, then we must divide these two
nodes containing eight nodes at level 2. But one node
still contains more than one triangle. We continue
dividing this node, and obtain four nodes at level 3.
Since all the nodes now contain one triangle or none,
division is terminated. Fig. 3 (a) shows that the order
of the triangles which is (1, 2, 3, 4) has not changed
across resolutions.

(a) triangles ordered by Morton code

(b) triangles in the quad tree

Fig. 3. The spatial coherence by sorting triangles with
Morton code and quad tree generation.

We summarize our octree construction algorithm as
Algorithm 1. Note that the octree subdivision recur-
sively continues until all the octree nodes contain less
than one triangle or the octree reaches the maximum
depth. During parallel octree subdivision, the number

of all children nodes at the same depth can be com-
puted using atomic operations available on modern
GPUs, for instance, such as AtomicInc in CUDA; refer
to line 22 in Algorithm 1.

Algorithm 1 Octree construction
Input: T : list of triangles, l: starting depth, m: maxi-
mum depth, α: subdivision threshold
Output: O: list of octree nodes

1: for i← 0 to 23l − 1 in parallel do
2: Oi.ID ← i
3: Oi.ParentID ← NULL
4: Ot.ChildID ← NULL
5: Oi.Center ← ComputeCenter(l)
6: Oi.N ← 0
7: end for
8: for input triangle Ti in parallel do
9: compute 3m-bit Morton code Cm

i

10: end for
11: sort triangles by Cm

i (0 ≤ i ≤ n) in parallel
12: j ← l, num← 0
13: while j < m do
14: for Cm

i in parallel do
15: Cl

i ← first 3j-bit Morton code Cm
i

16: if Cl
i is different from Cl

i−1 then
17: Oi.N ← i
18: end if
19: end for
20: for each node Ot in parallel do
21: if Ot.N −Ot−1.N > α then
22: AtomicOperation(num← num+ 1)
23: end if
24: end for
25: for each node Ot in parallel do
26: if Ot.N −Ot−1.N > α then
27: for i← 0 to 7 do
28: Ot

i .ID ← Ot.ID + num+ i
29: Ot

i .ParentID ← Ot.ID
30: Ot

i .Center ← ComputerCenter(j)
31: end for
32: Ot.ChildID ← Ot

0.ID
33: end if
34: end for
35: j ← j + 1
36: end while

Fig. 4 shows points at the centers of the nodes
generated by adaptive division, the nodes of an octree
from resolution 83 to 10243 using Morton Code on
GPU. The red points indicate nodes which contain
more triangles than a user-specified threshold. We can
see that adaptive grids subdivision can generate more
sampling points close to surface which contains more
details.

4 BVH CONSTRUCTION

In this section, we describe how to build a bounding
volume hierarchy (BVH) structure on a GPU, which
will be used to accelerate distance queries for octree
nodes. First we will describe the construction of a
single BVH in two steps, 1) tree construction and
2) fitting rectangular swept spheres (RSSs) [9]. Then,
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Fig. 4. Adaptive sampling using Morton code for the
Stanford bunny model.

we will describe our novel multi-BVHs construction
algorithm.

4.1 Tree Construction

In the last few years, many researchers have investi-
gated the use of tight-fitting bounding volumes (BVs)
for proximity queries. These include using orientated
bounding boxes (OBBs) [35], [36], spherical shells [37]
and k-discrete oriented polytopes (k-DOPs) [38], [39].
These tight fitting BVs give better performance than
spheres or axis-aligned bounding boxes (AABBs).
Rectangular swept sphere (RSS) is the volume filled
by a sphere whose center is swept across the surface
of a rectangle in 3D [9]. It may also be described
as a rectangle offset uniformly in all directions. An
RSS fits many models more tightly than other BVs,
and its distance from a point can be easily found
by calculating the distance from that point to the
orienting rectangle and then subtracting the radius of
the sphere. We build our BVH top-down using RSSs.
At each node, we compute the optimal axis of the
orienting rectangle of the RSS, and then determine
the sphere radius.

Building a BVH tree on a GPU poses two chal-
lenges: parallelization and fitting BVs efficiently in
parallel. In our tree construction, we split the under-
lying primitives and build the tree level by level from
top to down. We further exploit the parallelism of
GPU by constructing the tree in BFS (breadth-first) by
spawning a thread for each node at each level of the
tree; we make good use of modern GPUs’ threads re-
source (103 ∼ 104 threads available on modern GPUs).
Then, each of these threads performs the following
tasks concurrently. We compute an OBB (oriented
bounding box) for each node, and then split the node
across the longest axis of the OBB. Each triangle is
allocated to one child node by comparing its centroid
with the spatial median of the centroids of triangles
along this axis. This computation is also performed in
parallel. Fig. 5 shows our splitting scheme.

Fig. 5. Splitting nodes: triangles are allocated to child
nodes by parallel swapping.

4.2 RSSs Fitting
As we build the tree, we also fit the RSSs to enclose
the underlying triangle primitives. To fit an RSS, we
first compute an OBB from the underlying triangles,
and then choose the smallest of the three dimensions
of the OBB as the normal direction of the oriented
rectangle. The other dimensions of the OBB fix the
orientation of the rectangle and the rectangle dimen-
sions are uniformly grown until the RSS encloses all
the triangles. We accelerate computing the variance
matrix, center and extent of the OBB on GPUs by
employing stream compaction [40] to compute the
average and the minimum and maximum coordinates
of triangles vertices.

We also use the idea of large and small nodes
[32] to increase the effective use of parallelism. A
large node is associated with more primitives than
a user-specified threshold; the remaining nodes are
small. When a RSS tree is being constructed, high-
level nodes are associated with a large number of
primitives (i.e. large node), and a group of GPU
threads are spawned to handle the computational
complexity. Meanwhile, a small number of threads are
assigned to the nodes at low level (i.e. small nodes).
As a result, at least a single thread is mapped to
each node. However, for nodes near the root node,
there are a relatively small number of nodes (i.e. small
amount of workload), which makes the GPU paral-
lelism under-utilized. Take the root for example; only
a small portion of GPU threads will be needed, and
the rest of GPU threads would go idle. We address
this under-utilization problem near the root node by
utilizing a multi-BVH structure in the next section. We
summarize the splitting and fitting steps as Algorithm
2.

4.3 Multi-BVH Construction
The main problem using BVH construction algorithm
on a GPU is the lack of parallelism when generating
the nodes near the top of the tree as most of cores
are idle. For example, for a GPU equipped with n
cores, in order to make full use of this GPU, we need
to give it n tasks. For simplicity of discussion, we
consider the depth of a complete balanced binary tree
with n nodes is log2(2n − 1). Thus, a GPU with n
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Algorithm 2 RSS tree construction
Input: T : list of triangles, α: split threshold
Output: R: list of RSS tree nodes

1: //Large node construction
2: activelist← root node
3: while activelist is not empty do
4: for node i in activelist in parallel do
5: //Large nodes split
6: compute RSS of node i
7: compute split axis ri and split point P
8: ni ← the number of triangles in node i
9: for triangle Tj of nodes i in parallel do

10: Pj ← project barycenter of Tj on to ri
11: if Pj < P then
12: add Tj to left child node chi

0

13: else
14: add Tj to right child node chi

1

15: end if
16: end for
17: end for
18: //Add small nodes into smalllist
19: add new child node chi to nextlist
20: for node chi in nextlist in parallel do
21: if chi is a small node then
22: add chi to smalllist
23: delete chi to nextlist
24: end if
25: end for
26: swap nextlist and activelist
27: clear nextlist
28: end while
29: //Small node construction
30: for node i in smalllist in parallel do
31: create local stack S[]
32: S[] ← node i
33: while S[] is not empty do
34: localnode← S[]
35: if localnode contains more than α triangles then
36: do RSS fitting and node splitting in the same

way as in large node construction
37: S[] ← created children nodes
38: else
39: mark localnode as a leaf node
40: end if
41: end while
42: end for

cores can not be fully exploited unless the depth of
BVH is greater than log2(2n − 1). Other authors [31],
[41], [42] have addressed this issue by employing a
hierarchical grid decomposition for distributing the
workload. But most of these technique use AABBs to
exploit spatial coherence along the coordinate axes.
It is hard to extend those methods to tighter fitting
BVs such as RSSs, which require an optimal axis of
arbitrary orientation.

For nodes near the root node, we create a number
of work items and fill them into GPU cores to make
the GPU threads busy. Specifically, if we decompose
the BVH into many subtrees and fill each GPU core
with a root of subtree, and the performance of root-
level BVH construction would increase. To do this we
partition the model into spatially coherent groups of
triangles. For each group, we build an independent

BVH. In Section 3.2, we described ordering triangles
by their Morton codes, which positions them coher-
ently along a space-filling Morton curve. We can also
use a Morton code to group triangles into a lattice
with a user-specified resolution, such as levels 0 to
3 in Fig. 3. Fig. 6 shows that we group the triangles
along the Morton curve. Then we can build a BVH for
each group in parallel. We can create as many groups
as the number of cores in a GPU. Each individual BVH
is built using Algorithm 2.

In constructing a multi-BVH structure, we found
out that more than half of the processing time is spent
in computing the axis for splitting small nodes and
subsequent RSS fitting. We therefore approximate the
choice of axes for small nodes, as illustrated in Fig. 7.
Instead of computing the axis of an RSS for a small
node, we reuse the axis from the root of its subtree.
We summarize the multi-BVH construction process as
Algorithm 3.

Fig. 6. Grouping triangles along a Morton curve to
build a multi-BVH. Each group of triangles is associ-
ated with a node at a user-specified resolution.

Fig. 7. Optimizing the construction of small nodes by
approximating the RSS axis. We compute an RSS axis
for every large node and split it along the longest axis.
For small nodes, we approximate the RSS axis using
the root of the subtree.

5 PARALLEL DISTANCE QUERIES

A lot of the work on BVH-based distance computation
on CPUs has focused on the choice of a good upper
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Algorithm 3 Multi-BVH construction
Input: T : list of triangles which have been sorted in
Alg. 1 and l: initial resolution, α: split threshold
Output: R: list of RSS tree nodes

1: for input triangle Ti in parallel do
2: compute 3l-bit Morton code Cl

i

3: end for
4: for Cl

i in parallel do
5: if Cl

i is different from Cl
i−1 then

6: add i to list N
7: end if
8: end for
9: divide n triangles into m groups, m = |N |

10: activelist← m root nodes of groups
11: //Large nodes construction
12: while activelist is not empty do
13: for node i in activelist in parallel do
14: do RSS fitting and node splitting in the same way

as in large node construction in Alg. 2
15: end for
16: swap nextlist and activelist
17: clear nextlist
18: end while
19: //Small nodes construction
20: for node i in smalllist in parallel do
21: create local stack S[]
22: S[] ← node i
23: looptimes← 0
24: while S[] is not empty do
25: localnode← S[]
26: if looptimes < 1 then
27: if localnode contains more than α triangles then
28: fit RSS and node splitting in the same way as

in large node construction
29: S[] ← created children nodes
30: save split axis ri
31: else
32: mark localnode as leaf node
33: end if
34: end if
35: if looptimes ≥ 1 then
36: if localnode contains more than α triangles then
37: fit RSS by projecting triangles along the split-

ting axis ri
38: S[] ← created children nodes
39: else
40: mark localnode as leaf node
41: end if
42: end if
43: looptimes← looptimes+ 1
44: end while
45: end for

bound on distance [9]. Having got that, it is simple
to discard any BVH subtree that has no chance of
reducing that bound. An upper bound on distance
will be updated, if this is possible, when the traversal
of the BVH tree reaches its leaves. We will now discuss
how to compute a good upper bound on distance
when constructing a distance field in the form of an
octree and how to cull a BVH using an upper bound.

5.1 Upper Bound Refinement

Using an RSS tree, we can compute the distance
between a point at the center of an octree node and the
model by traversing the RSS tree, while continually
updating the upper bound. The upper bound u on
the distance between a point and a model is updated
as follows:

1) Add the root node t to a list l, and compute the
distance between p and any triangle enclosed in
the node t, and use this distance to initialize u.

2) Remove a node t̃ from l, and compute the dis-
tance dN between p and the left child of node
t̃. If dN is smaller than u, add the left child of
node t̃ to l. If t̃ is leaf, u is updated to dN .

3) Repeat 2) for the right child of t̃.
4) Repeat 2) and 3) until l becomes empty.
5) The actual distance between the P and the

model is equal to the upper bound u.

We perform this computation for the center of every
node in the octree in parallel. Note that we only
update the upper bound when we visit leaf nodes.

A tight upper bound can reduce the BVH traversal
time that takes significantly. We tighten this upper
bound by utilizing the space coherence in an octree.
Because each sampling point is represented by an
octree node. We can easily find the sampling point
corresponding to the parent of a node. At coarse
resolution, we use the distance between the center of
the node and an arbitrary triangle from the model as
an upper bound. For the center pb of a node at fine
resolution, we first find the center pa of the parent
node, and the triangle ta that is closest to pa, and
then we use the distance between pb and ta as an
upper bound, as illustrated in Fig. 8; here, dB is less
than dAB , but dAB is tighter than an upper bound
computed using an arbitrary triangle such as TR.
Experiments show that this approach can produce a
very tight upper bound, leading to effective culling
during traversal. We have found it around 15 times
faster than using an arbitrary triangle to initialize the
upper bound, as shown in Section 6.2.

Note that we have recorded the closest triangle for
the center of each node in the octree into a list during
the distance query. Therefore, a tight upper bound of
the center of a node can be initialized by retrieving the
closest triangle to the center of its parent. We map a
thread to perform the tight upper bound initialization
and distance query for a single sample point. In each
thread, we use a stack to perform BVH traversal.
Each node has pointers to its two children. We track
the traversal by saving the nodes which have been
traversed. We push the parent node on to the stack
and visit its left child sub-tree. Then we pop the parent
node and visit the right child. Finally, we determine
the sign of the distance field using the angle-weighted
pseudo-normal [43].
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Fig. 8. Initializing an upper bound in a multi-resolution
grid. TA and TB are the triangles closest to points
A and B. TR is any other triangle. dA, dB are the
distances between A and TA, B and TB . dAB is the
distance between B and TA.

5.2 Distance Query Using Multi-BVHs

To perform a distance query using multi-BVHs, we
find all the candidate BVHs which are near to the
query point. Then, we compute the distance between
the BVHs and the sample point in parallel, as illus-
trated in Fig. 9.

Algorithm 4 Distance query on multi-BVHs
Input: T : list of RSS tree, P : list of sampling points,
U : list of initial upper bound
Output: D: list of distances between sampling points
and the model

1: //Space culling
2: R← RSS of the root of the multi-BVH
3: for Ri in parallel do
4: Ixi ← project Ri on to the x-axis
5: end for
6: for Pi in parallel do
7: j ← 0
8: while j < |R| do
9: if [P x

i − Ux
i , P

x
i + Ux

i ] ∩ Ixi then
10: if Ui ≤ dist(Pi, Rj) then
11: add index of Rj in T to list li
12: add index of Pi to list fi
13: end if
14: end if
15: j ← j + 1
16: end while
17: end for
18: //Distance query
19: L = [l0, l1, · · · , lm], F = [f0, f1, · · · , fm], m = |P |
20: for Li in parallel do
21: do distance query between PFi and BVH whose root

is Li

22: add the distance to list disti
23: end for
24: Dist = [dist0, dist1, · · · , distm]
25: for disti in parallel do
26: Di ← compute minimum of disti
27: end for

Fig. 9. Processing a distance query with a multi-BVH.
We find the BVH related to each query point, and
spawn as many threads as the number of BVHs. We
perform the distance query for each thread and then
choose the minimum distance for the query point.

5.3 Culling BVHs Using an Upper Bound

We can increase the efficiency of a distance query by
reducing the number of candidate multi-BVHs that
we have to consider. As illustrated in Fig. 10, if we
have n BVHs, for every point we need to iterate
these n BVHs for distance query. Actually, we can
skip BVHs which are far away. The distance is only
determined by m close BVHs, and m � n. We can
use the upper bound, set as described in Section 5.1,
as a culling radius for each query point. However,
checking the overlap between culling sphere and the
root nodes of a multi-BVH involves the expense of
computing the distance between a point and a BV
(i.e. an RSS). We reduce this cost by using a two-step
overlap check along a single axis:

1) Project all the BVs on to some axis, such as the x-
axis, and check whether the culling sphere over-
laps the BVs along that axis. This only requires
a logical OR operation.

2) Only if it overlaps, then check the distance be-
tween the center of the culling sphere and the
BVs.

This space culling substantially reduces the number of
candidate BVHs for each query point. We summarize
space-based BVH culling and distance query using a
multi-BVH as Algorithm 4.

6 RESULTS AND DISCUSSION

6.1 Implementation

We have implemented our algorithm using Visual
Studio C++2008 and NVIDIA CUDA 4.2 on a PC
equipped with an Intel quad-core 2.66GHz CPU, a
4.0Gb main memory, and an NVIDIA Geforce GTX580
with 1.5Gb memory, running under Windows 7. We
tested our algorithm on six different datasets includ-
ing the Stanford Bunny, Armadillo, Hammer, Hand,
Dragon and Buddha whose combinatorial complex-
ities range from 70K to 1M triangles, as shown in
Table 2. We set the subdivision threshold α for octree
construction to one which can guarantee at least one
point is sampled if an octree node contains more than
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Fig. 10. Culling a multi-BVH using an upper bound. For
each query point, we only keep the BVHs which have
BVs at their roots that overlap with a sphere centered
on the query point and having the upper bound as its
radius.

one triangle. We also set the starting depth to three
and maximum depth to ten. During BVH construc-
tion, small nodes are associated with less than 32
triangles. We choose 32 that corresponds to the CUDA
warp size. If we choose the number less than 32, it
makes some threads idle for large node construction;
otherwise, it degrades the parallelism for small node
construction. The number of groups that we partition
the test models into for multi-BVH construction is
computed by counting the number of triangles with
different Morton code in Algorithm 3.

6.2 Experimental Results

Rigid Models: We applied our GPU-based parallel
algorithm to six geometric models as illustrated in
Figure 13, and generated adaptive distance fields with
resolutions from 83 to 10243. The implementation can
handle more than 1 million triangles and 4 million
octree nodes. The average number of BVs for each
resolution is given in Table 1. We define the average
number of BVs by using the total number of BVs to
divide the number of sampling points. We can see that
the number of BVHs quickly falls as the resolution
increases. This property improves the performance of
distance query, since the number of sampling points
in high resolution is much more than the number
of sampling points in low resolution. We give the
computation time of the distance fields, together with
the number of triangles and points in the octree for
six models in Table 2.

We compared our GPU approach to a CPU imple-
mentation using the PQP proximity library1. Our GPU
implementation is 35 to 64 faster, as shown in Fig-
ure 11, and we see that the differential increased with
the complexity of geometry. Usually more complexity
of geometry has more triangles and generates more

1. http://gamma.cs.unc.edu/SSV/

sampling points in high resolution. Our multi-BVH
construction has a good GPUs utilization for a large
number of triangles. Meanwhile, we can cull multi-
BVH to a very small number in high resolution, thus
our distance query is efficient and can get a good
performance compared to CPUs’ methods. We also
compared the time taken by a distance query with
a tight and upper bound derived from an arbitrary
triangle. On the Stanford Bunny, the query with a tight
upper bound takes 26 ms, with an arbitrary bound
takes 372 ms. Note that since our tight upper bound
can be directly derived from the sampling points’
parent nodes in octree. No extra computation time is
needed.

We also compared the performance of a single BVH
with a multi-BVH. The results are shown in Figure 12.
On a small model, such as the Bunny, a multi-BVH
is slightly faster than a single BVH. But when there
are lots of triangles, the multi-BVH outperforms a
single BVH significantly. Our method has a good
scalability with the triangles of geometry increased.
We sample points densely close to the places where
contains fine detail. And Figure 14 shows the times
required to construct a single BVH and a multi-BVH
in processing the adaptive distance fields shown in
Figure 13. In Figure 14 (a), we can see more than a half
the computation time is spent on BVH construction
when using a single BVH, but this is only 30% of the
computation time with a multi-BVH.
Deformable Models: We linked our distance field
algorithm to a physics simulation. We inflated the
Bunny (69K triangles) and dropped a cloth (4K ver-
tices) around it. In this benchmark, the distance fields
are recomputed for every simulation step. We com-
puted responsive forces using penetration depth ob-
tained from the distance field of bunny. We simulated
the response of the cloth against the bunny. Figure 15
shows frames from the resulting simulation, which
was computed at 20 frames per second.
Impact of Axis Approximation: We tested how the
axis approximation technique mentioned in Section
4.3 performs in terms of BVHs construction and dis-
tance query on the six datasets. The axis approxima-
tion for small nodes speeds up BVHs construction
about 40% on average compared to the conventional
RSS [9]. While this makes distance query about 22%
slower, it yields more than 15% overall performance
improvement implying that sacrificing the quality of
BVHs a bit shifts the bottleneck from construction
stage to distance query stage and amortizes the over-
all cost.

6.3 Comparisons
We compare our algorithm against other state-of-the-
art BVH and octrees techniques running on GPUs
qualitatively. Making quantitative comparisons is not
easy, because of differences in GPU computing plat-
forms that rapidly changes and application scenarios.
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Thus, we just describe significant differences against
several representative previous work.

LBVH [31] builds a binary tree top-down by bucket-
ing primitives based on Morton code. However, they
fit BVs by merging the nodes’ children’s BVs. This
method was originally designed for AABBs, and it
is rather non-trivial to extend to tighter BVs. This
method also has the unwanted side-effect that a par-
allel implementation can create chains of singleton
nodes in the tree, requiring an additional post-process
to walk tree and roll up these singleton chains. Indeed,
[31] has been extended to an RSS hierarchy [44] by
adding an initial step in which an RSS is fitted around
all the triangles to determine the optimal orienta-
tion of the BV in the LBVH. Then the Morton code
is computed from the positions of the transformed
triangles. However, this orientation is then fixed for
all the nodes in the BVH, whereas we build a tree
top-down and compute the optimal axis for every
node individually. Zhou et al. [32]’s method makes
poor use of the GPU when building the lower levels
of their tree, and their BV is an AABB, which has
looser fit than RSS. A similar group of authors [34]
present a GPU implementation of octrees based on
Morton code. Their methods are based on point-
sets and the build an octree in bottom-up. We also
use Morton code, but we build an octree top-down,
without the need for computing intermediate nodes
requiring extra memory.

To the best of our knowledge, no other work exists
to compute distance fields on GPUs adaptively and
exactly.

7 CONCLUSIONS

We have proposed a fast method of computing adap-
tive distance fields on a GPU. Because it takes too long
to build a single BVH on a GPU, we introduce the
multi-BVH and axis approximation for small nodes.
We use an octree data structure which is built using
Morton code, and show how to compute a very tight
upper bound for distance queries. By using space-
based BVH culling, we quickly reduce the number of
candidate BVHs for each query point.

Although our multi-BVH technique significantly
outperforms a single BVH, we have observed that
the efficiency of distance queries is reduced for a
multi-BVH, since we need to traverse more nodes,
some of which are duplicated over several BVHs.
We are considering various ways of addressing this
issue, such as caching BVHs on shared memory in
the GPU, exploiting the similarity of traversal paths
between consecutive query points, and stackless BVH
traversal. Also for future work, we would like to
apply our fast distance fields technique to various
applications such as physically-based animation, geo-
metric modeling and robot motion planning.

Fig. 11. Distance field computation times on a GPU
and a CPU.

Fig. 12. Distance field computation times using a
single-BVH and a multi-BVH. The times include adap-
tive sampling, BVH construction and distance queries.
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