
Real-time Collision Culling of a Million Bodies on Graphics Processing Units

Fuchang Liu∗ Takahiro Harada† Youngeun Lee‡ Young J. Kim§

Ewha Womans University, Seoul, Korea †Advanced Micro Devices, Inc.

Figure 1: GPU-based collision culling for massive bodies. N -body collision detection for 1M arbitrarily moving boxes (first image), real-
time simulation of 0.3M particles of random size on GPUs (second and third images), real-time rigid-body dynamics for 16K torus models
of varying sizes on GPUs (fourth and fifth images). In these challenging benchmarks, our algorithm can find all the colliding bodies at
interactive rates.

Abstract

We cull collisions between very large numbers of moving bodies
using graphics processing units (GPUs). To perform massively par-
allel sweep-and-prune (SaP), we mitigate the great density of inter-
vals along the axis of sweep by using principal component analysis
to choose the best sweep direction, together with spatial subdivi-
sions to further reduce the number of false positive overlaps. Our
algorithm implemented entirely on GPUs using the CUDA frame-
work can handle a million moving objects at interactive rates. As
application of our algorithm, we demonstrate the real-time simula-
tion of very large numbers of particles and rigid-body dynamics.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems

Keywords: Collision detection, Graphics hardware, Dynamics
simulation

1 Introduction

Collision detection (CD) is the problem of determining the interfer-
ence between objects moving in space. CD has many applications
in computer graphics, computer animation, virtual reality, geomet-
ric modeling, haptics and robotics [Lin and Manocha 2003]. Due
to its importance, CD has been extensively investigated and still
considered as an active research area.

At a high level, CD techniques can be classified into broad-phase
and narrow-phase algorithms. The former determines possible in-
tersecting pairs among n objects; the latter decides whether a pair
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of objects, usually found by a broad-phase algorithm, actually in-
tersect. This paper focuses on broad-phase CD, also called n-body
collision culling.

There is increasing demand for handling very large sets of objects
in different applications. In physically-based animation, particle-
based simulation techniques such as the distinct-element method
(DEM), smoothed particle hydrodynamics (SPH) and moving-
particle semi-implicit (MPS) require millions of particles for realis-
tic simulation of fluids and granular materials [Harada et al. 2007].
In massively multi-player online role-playing games (MMORPG),
thousands of players may be logged on to a single gaming server,
and interacting with tens of thousands of autonomous creatures and
environmental obstacles [Zerodin 2010]. In a virtual city environ-
ment [Brown 2008], tens of thousands of objects interact with each
other, and their motions need to be physically realistic. All of these
applications require a very fast broad-phase CD algorithm.

The most well-known broad-phase CD algorithms include sweep
and prune (SaP) [Baraff 1992; Cohen et al. 1995] and spatial sub-
division [Ericson 2005]. The former is essentially a dimension-
reduction approach in which objects are projected into a lower-
dimension (typically a single dimension) and then overlap tests are
performed by sweeping a hyperplane along the dimensional axis.
The latter is a spatial hashing technique in which objects are reg-
istered into some form of grid, and local intersection tests are per-
formed inside the grids. SaP is effective when moving objects have
a high spatial coherence, which can be exploited by the sweep op-
eration; otherwise, the efficiency substantially degrades. And sub-
division is effective for objects of similar size; otherwise, a sophis-
ticated hierarchical structure is required, which is hard to maintain
for moving objects.

Main Contribution We present a fast collision culling algorithm
for very large numbers of objects using graphics processing units
(GPUs). It is a hybrid SaP and subdivision method which can
perform collision culling efficiently without any restriction on the
sizes of objects or the nature of their motion. The key idea behind
our algorithm is to take advantage of the parallel nature of SaP by
performing SaP simultaneously for many objects using the many
blocks of threads available on modern GPUs. We also use princi-
pal component analysis (PCA) to choose the best sweep direction
for parallel SaP. In addition, a novel two-level spatial subdivision
technique is combined with parallel SaP to alleviate the problem
of densely projected intervals, caused by the reduction in dimen-
sionality. Our algorithm can easily handle insertion and removal of



objects and can also take advantage of motion coherence if it exists
in the simulated environment. We have implemented our algorithm
entirely on GPUs using the CUDA framework, and in practice, we
can perform collision culling for a million arbitrarily moving ob-
jects at interactive rates. We assess this to be 71 times faster than
state-of-art collision culling programs running on CPUs, and 212
times faster than methods that use GPUs. As application of our
algorithm, we demonstrate the real-time simulation of very large
numbers of particles and rigid-body dynamics completely running
on GPUs using our fast collision culling algorithm.

2 Previous Work

We will briefly survey prior work related to n-body collision
culling.

2.1 Geometric Intersection

Earlier CD algorithms considered the n-body collision detection in
terms of geometric intersections among simply-shaped objects such
as axis-aligned bounding boxes (AABBs) or spheres.

The optimal algorithm [Edelsbrunner and Maurer 1981] to find the
intersections of n AABBs in 3D is based on plane sweeps and takes
O(n log2 n+ k) where k is the number of objects that actually in-
tersect. Since then, many sweep-based algorithms continue to be
introduced. Notably, a sorting-based technique known as sweep
and prune (SaP), due to several researchers [Baraff 1992; Lin 1993;
Cohen et al. 1995], has proven to be very effective in practice, es-
pecially in an environment of high spatial coherence. The compu-
tational complexity of SaP is known to be O(n + s), where s is
the number of swapping operations required to maintain the sorted
order of the objects. Recently, [Tracy et al. 2009] have shown that
s can increase super-linearly with respect to the number of objects,
and motivating a hybrid SaP and spatial subdivision to reduce the
number of swaps [Ponamgi et al. 1995; Tracy et al. 2009]. [Com-
ing and Staadt 2006; Coming and Staadt 2008] introduce a contin-
uous version of SaP for objects that follow time-dependent paths.
No parallel algorithms are currently known for sweep-based, colli-
sion culling and it is not clear whether existing methods are able to
handle a million objects due to the super-linearity of the swapping
problem. Moreover, [Terdiman 2007] hypothesized that paralleliz-
ing the hybrid SaP and subdivision may perform poorly. [Woulfe
et al. 2007] did propose a hardware-based broad-phase CD algo-
rithm, but this takes O(n2) time and is therefore limited to a rela-
tively small number of AABBs.

Another class of collision culling algorithms are based on bounding
volume hierarchy (BVH), which is constructed by treating individ-
ual objects as leaf nodes and constructing their bounding volumes
recursively. Then, self-collision detection within the same BVH is
used to find intersecting objects [Tang et al. 2009; Tang et al. 2010].
More recently, GPU-based algorithms have been proposed to con-
struct the BVH dynamically at run-time [Lauterbach et al. 2009;
Lauterbach et al. 2010]. Even though these approaches are quite
efficient, they are mainly designed for narrow-phase CD and it is
not clear whether these are applicable to fast broad-phase CD for
massive objects.

2.2 Spatial Subdivision

In spatial subdivision, a workspace is divided into one or more
grids, which localize collision detection. Different types of uniform
and non-uniform grids such as the k-d tree, octree and BSP-tree
have been introduced [Samet 2006] and many associated CD tech-
niques have been proposed [Ericson 2005]. Uniform subdivision

is the simplest and most suitable for GPU implementation [Grand
2008; Mazhar et al. 2009], but the effectiveness of uniform grids is
severely reduced with objects of widely varying sizes.

Hierarchical subdivision methods address this problem. [Mirtich
1996] proposed a CD technique based on hierarchical spatial hash
table, but is not suitable for large inhomogeneous data-sets. Struc-
tures such as recursive grids, hierarchies of uniform grids and adap-
tive grids [Ericson 2005] are widely used in ray-tracing to localize
ray/object intersection. In particular, [Zhou et al. 2008] showed that
a k-d tree can be constructed in real-time for global illumination
using GPUs. However, these non-uniform grid structures perform
poorly when objects undergo severe transformation [Wald 2007].

3 Sweep and Prune on GPUs

We will now describe our parallel SaP algorithm. We will begin by
explaining the sequential SaP algorithm designed to run on CPUs,
and then introduce our parallel algorithm for GPUs.

3.1 Sweep and Prune

Given n objects Oi in 3D, the goal of SaP is to find all overlapping
pairs P of objects. Thus P = {(Oi, Oj)|Oi ∩ Oj 6= ∅, 1 ≤ i 6=
j ≤ n}. Often, an object Oi is a simple volume such as an AABB
or sphere that bounds more complicated geometry. We will assume
that the objects are simple enough to allow us to determine whether
Oi ∩Oj 6= ∅ in constant time.

SaP was originally designed to exploit the fact that a pair of AABBs
overlap iff their projected intervals overlap in all three dimensions.
The original SaP algorithm [Baraff 1992] can be described as fol-
lows:

1. Project the extent of each objectOi on to some principal axis,
for instance, the x-axis, producing an 1D interval of extrema,
Ii = [mi,Mi].

2. Sort mi and Mi for all i, and obtain a sorted list L.

3. Sweep L and maintain an active list A as follows:

• Add Oi to A when mi is retrieved from L and add all
Oi in A to the set of colliding pairs Px.

• Remove Oi from A when Mi is retrieved from L.

4. Repeat steps 1-3 for y−, z−axes, and obtain the colliding
pairs Py and Pz . Report the final set of colliding pairs
P = Px ∩ Py ∩ Pz .

If the motion of the objects is highly coherent, then step 2 in this
algorithm can be implemented efficiently as an insertion sort and
step 3 can be replaced by swapping operations between neighbor-
ing Oi [Cohen et al. 1995]. Note that step 4 becomes redundant
for spheres, since the exact overlap test between spheres can be im-
plemented along axial direction by comparing the distance between
the centers of two spheres with the sum of their radii. Moreover,
the intervals Ii are the diameters of the spheres positioned on their
projected centers.

3.2 Parallel Sweep and Prune

The basic SaP algorithm is not suitable for very large numbers of
objects in arbitrary motion, nor for parallel implementation, even
though the sorting step (step 1) can be efficiently parallelized on
GPUs using a radix sort [Sengupta et al. 2007]. The reasons are:

• Maintaining the active list A cannot be parallelized since it
depends on the sweeping order.



• Steps 3 and 4 have a low arithmetic intensity which fails to
amortize the costly memory accesses of current GPU archi-
tectures.

• The assumption of highly coherent motion and the associated
swapping operation are undesirable when the number of ob-
jects is really large, since the number of operations can in-
crease superlinearly.

We have designed an alternative way of performing SaP which does
not require an active list. Steps 1 and 4 remain the same, but in step
2, we now sort Oi by mi alone to obtain a sorted list L. Then, as
we sweep L, we only test whether mj ∈ Ii for some of the objects
Oj , i < j, since (Oj , Oi) can be inferred from (Oi, Oj). This
algorithm may be considered as a parallel version of that proposed
by [Terdiman 2007].

By relying on a GPU-based radix sort for step 2, we remove the
need for swaps. Then we parallelize the sweeping step 3 by in-
dependently sweeping each object Oi within its own interval Ii.
More precisely, as set out in Alg.1, we launch a GPU thread Ti for
each object Oi that sweeps a subset of the sorted list L to find a
local list of colliding pairs Pi = {(Oi, Oj)|i < j,mj ∈ Ii} until
∃j > i,Mi < mj (also see Fig. 2). To increase the arithmetic
intensity of our algorithm, we merge steps 3 and 4 by perform-
ing overlap tests in all dimensions for each pair (Oi, Oj) ∈ Pi
such that Oi ∩ Oj 6= ∅. If we are dealing with spheres rather than
AABBs, merging steps 3 and 4 is even easier because we only need
to compare the centers of two spheres with the sum of their radii.
Once all threads finish execution, we merge the local colliding pairs
to obtain a final list P = ∪Pi. In principle, modern GPUs can exe-
cute tens of thousands of threads in parallel [NVIDIA 2010]. Note
that we can easily insert and remove objects in our algorithm since
it does not require any preprocessing or additional querying struc-
tures.
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Figure 2: Parallel SaP. O1 is handled by thread1, and the over-
lapped pairs {(O1, O2), (O1, O3), (O1, O4), (O1, O5), (O1, O6)}
are tested for collisions.

Algorithm 1 GPU SaP Algorithm
1. Project each Oi onto an axis and obtain Ii.
2. Sort all theOis bymi in parallel using a radix sort, and obtain

the sorted list L.
3. For each Oi, execute the following in parallel.

(a) Sweep L in the interval Ii until Mi < mj for some
object Oj , i < j.

(b) If mj ∈ Ii for any Oj , then check whether Oi ∩Oj 6=
∅. If so, add the pair (Oi, Oj) to Pi.

4. Return P ≡ ∪Pi.

3.3 Workload Balancing

It is the extremely large number of computational threads available
on modern GPUs that makes Alg. 1 effective. However, if objects
are of dissimilar sizes, a big object may be induced in many more
colliding pairs than smaller ones. This means that a thread assigned
to this big object has more work to do than the smaller ones, while

threads assigned to small objects become idle. This unbalances the
task distribution and wastes the computing power of GPUs. We
solve this problem by assigning more threads to objects likely to
require more pairwise collision tests, thus allocating each thread
roughly the same workload. Since the actual number of collision
pairs is not known in advance, we hypothesize that this number
is proportional to the size of an object. For each such object, we
divide the pairwise collision tests into partitions containing roughly
the same number of tests, and assign one thread to each partition.
For instance, in Fig. 3, O1 needs to test for collisions with 8 other
objects, while O4 requires a single collision test with O5. But if we
divide the tasks for O1 into two partitions, each thread only needs
to process four collision tests.
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Figure 3: Distribution of unbalanced pairwise tests by parti-
tioning. The potentially colliding pairs for O1 is partitioned
into partition1 = {(O1, O2), (O1, O3), (O1, O4), (O1, O5)} and
partition2 = {(O1, O6), (O1, O7), (O1, O8), (O1, O9)}. Each of
these partitions is assigned to a separate thread.

In more detail, let us assume that an object Oi requires a set
of pairwise tests Si = {(Oi, On1), · · · , (Oi, Onj )} We parti-
tion this set into subsets Si = Pi1 ∪ Pi2 ∪ · · · ∪ Pik , where
Pik = {(Oi, On′

1
), · · · , (Oi, On′

l
)} and | Si |=

∑
| Pik |. Fur-

ther, we impose the restriction that | Pik |≤ τ , where τ is the max-
imum number of colliding pairs to be allocated to a single thread.
Then, we assign a thread Ti to perform the tests in every partition
Pi. In practice, we can determine τ from the maximum number of
active threads that can be executed by GPUs; the higher this maxi-
mum, the smaller τ should be.

We also have to determine the number of GPU threads that we need
to spawn before we run parallel SaP, since threads cannot be allo-
cated dynamically on current GPUs. To do this, we first find the
number of partitions for an object Oi, by using binary search to po-
sition Mi in L such that mp ≤ Mi ≤ mp+1. Then, d p−i

τ
e is the

number of partitions for Oi. The total number of partitions is the
number of GPU threads that need to be spawned.

3.4 Choosing the Sweep Direction

So far, we have assumed that one of the three axes is the sweep di-
rection. But this may give a poor result with SaP, as illustrated in
Fig. 4. In this example, choosing the x−axis leads to an unneces-
sarily large number of overlap tests.

The best sweep direction is the one that allows projection to sep-
arate the data as much as possible. We use principal component
analysis (PCA) [Jolliffe 2002] to find the sweep direction which
maximizes the variance of objects after projection, which corre-
sponds to the direction of the first principal component. The first
principal component w1 of a data set X with a mean of zero can be
expressed as:

w1 = arg max
‖w‖=1

V ar{wTX}

= arg max
‖w‖=1

E{wTXXTw},
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Figure 4: Best sweep direction. Projection on to the best sweep
direction, found by PCA, produces much fewer interval overlaps
than projection on to, for instance, x-axis.

where w1 is the eigenvector corresponding to the largest eigenvalue
of the covariance matrix C = XXT .

PCA has been implemented using GPUs [Andrecut 2009]. How-
ever, this algorithm is too slow for interactive applications and does
not exploit the low dimensionality of our application. We have
therefore implemented PCA as follows: We first compute the mean
of X using the reduced (up-sweep) parallel scan algorithm on GPUs
[Sengupta et al. 2007]. Then the eigenvectors of C = XXT are easy
to compute: X is 3× n and C is a 3× 3 symmetric matrix. Finally
we use the Jacobi method [Press et al. 1992] to find the eigenvalues
of the symmetric matrix C.

3.5 Motion Coherence

The swapping in the original SaP algorithm takes advantage of mo-
tion coherence. This is highly effective when only a small number
of objects are moving; however, it is not suitable for GPUs since it
requires frequent memory accesses, which are more expensive than
computation on GPUs. We now propose a GPU-friendly technique
which is especially suitable for situations in which a relatively small
proportion of the total number of objects are moving at any time.

Motion coherence is utilized by classifying the set of objects O =
{Oi} at a time t into two time-dependent disjoint subsets: a set
of moving objects Om(t) and a set of static objects Os(t), i.e.
O = Om(t) ∪ Os(t). Then we find the time-dependent colliding
pairsP(t) by performing CD forOm(t) andOs(t) separately. This
strategy is effective when |Om(t)| � |Os(t)|, since the colliding
pairs of Os(t) are not much different from those in Os(t − 1) and
thus changing from P(t− 1) to P(t) only requires a small update.

More specifically, we perform the following procedure to update
the collision pairs P(t− 1) to P(t):

1. Project the extent of Oi ∈ O and sort them by mi as before.

2. Find the set of colliding pairs PM (t) caused by the moving
objects in Om(t) as follows:

(a) For all Oi ∈ Os(t), find the set of colliding pairs
Psm(t) between the sets of staticOs(t) and moving ob-
jects Om(t) by sweeping in parallel, so that Psm(t) =
{(Oi, Oj)|Oi ∩ Oj 6= ∅ ∧ Oi ∈ Os(t), Oj ∈
Om(t) ∧ i < j}.

(b) For all Oi ∈ Om(t), find the set of colliding pairs
Pm∗(t) by comparing the set of moving objectsOm(t)
against all the other objects in O by sweeping in paral-
lel, so that Pm∗(t) = {(Oi, Oj)|Oi ∩Oj 6= ∅ ∧ Oi ∈
Om(t), Oj ∈ O ∧ i < j}.

(c) PM (t) ≡ Psm(t) ∪ Pm∗(t).

3. Find the set of interfering pairs PS(t) within the set of static
objects in Os(t) which are static after P(t − 1). This is ex-
pressed by PS(t) = P(t−1)−P ′M (t−1), where P ′M (t−1)
is the set of colliding pairs P(t−1) at time t−1 even though
one of the objects in each pair is in Om(t) at time t; thus
P ′M (t− 1) ≡ {∀(Oi, Oj) ∈ P(t− 1)|Oi ∈ Om(t) ∨ Oj ∈
Om(t)}.

4. Report the colliding pairs P(t) = PM (t) ∪ PS(t).

Note that this approach does not rely on any swapping operations
and is a recasting of the parallel SaP methods discussed in the pre-
vious sections; and thus it is quite effective.

4 Spatial Subdivision on GPUs

As observed by [Tracy et al. 2009], using the SaP for a very large
number of objects may produce a daunting number of overlaps be-
tween projected intervals in the sweep direction, even though the
actual number of interfering objects in 3D may be not excessive.
This problem can persist even if the best sweep direction is chosen
using the PCA technique, as explained in Sec. 3.4. To solve this
problem, we now propose a hybrid approach in which SaP is com-
bined with both workspace subdivision and cell subdivision, to cull
away objects that are relatively far apart.

4.1 Workspace Subdivision

The first subdivision is performed before SaP is executed, to reduce
the density of the object intervals projected on to the sweep axis.
This is a uniform subdivision, to facilitate GPU implementation.
Given a sweep direction d for SaP, we subdivide the 3D workspace
into m×m grid cells cut by planes parallel to d. A z cross-section
of a 2 × 2 subdivision is illustrated in Fig.5-(a) when x is the SaP
direction. In practice, we choose m = d n

64K
e where n is the num-

ber of objects, since we have found that the techniques described in
Sec. 3 work well for up to 64K objects using PCA. Initially we put
all the objects into two subsets: Oin = {Oi ∈ O|Oi is completely
inside some cell Cj} and Obd ≡ O − Oin. Later, Obd will be
further expanded.

If there were no object crossing the boundary of any cell (i.e. Obd =
∅), we could execute SaP in parallel across rows or columns of grid
cells. This requires each cell to have a unique index, as shown in
Fig. 5-(a), and the index assignment can be arbitrary. Then, we
can translate the interval Ii projected by each object Oi ∈ Oin by
(j − 1)× l along d, where Cj is the cell to which Oi belongs and
l is the size of the workspace along d, as illustrated in Fig. 5-(b).
This shifting technique reduces the number of overlaps in the sweep
direction and increases the effectiveness of SaP.

In practice, some objects will cross the cell boundaries; i.e. Obd 6=
∅. We find the objects that may potentially collide with those in
Obd, and call these the objects affected by the boundaries. To
find these objects, we compute the maximum extent of the ob-
jects in Obd. The extent of a sphere is its diameter and that of
an AABB is its longest dimension. Then, we estimate the regions
R = {CR1 , · · · , CRn} affected by Obd, for instanceR = Cr1 in
Fig. 5, and find all the objects that overlap withR; we add these ob-
jects to Obd. We treat each region Cri as a new cell with a unique
cell index, and associate each object in Obd with a cell Cri that
overlaps that object. For instance, in Fig. 5, initially Obd = {O3},
but expanded to Obd = {O2, O3, O5} due to Cr1 .

Then, we translate eachOi ∈ Obd along the SaP direction, just like
the objects in Oin based on its cell index ri of Cri . Notice that
some objects may be repeated if they belong to both Oin and Obd
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Figure 5: Workspace subdivision combined with SaP. (a) 2 × 2 workspace subdivision. {O1, O3, O4} ⊂ C1, {O2, O3, O5, O6} ⊂
C2, {O2, O3, O5} ⊂ Cr1 , {O1, O2, O4, O5, O6} ⊂ Oin, {O2, O3, O5} ⊂ Obd. (b) x is the SaP/shifting direction. {O1, O4} and
{O2, O5, O6} are shifted with C1 and C2, respectively, since {O1, O4} = C1 ∩ Oin, {O2, O5, O6} = C2 ∩ Oin. {O2, O3, O5} are
also shifted with Cr1 since {O2, O3, O5} = Cr1 ∩ Obd.

(e.g. O2, O5 in Fig. 5), or if they are affected by more than one cell
inR.

4.2 Cell Subdivision

Since objects within different cells in the workspace subdivision
cannot collide, these objects do not need any further collision tests.
This substantially reduces the computational overhead of parallel
SaP. However, it is still possible that some cells can contain many
objects whose projected intervals overlap, even though the associ-
ated objects do not actually intersect. To reduce the number of false
positives, we employ a second, intra-cell, subdivision during SaP.

Our intra-cell subdivision is a variant of that used by [Mazhar et al.
2009], but ours is only two-dimensional because we subdivide the
cells of the workspace subdivision parallel to the sweep direction.
We introduce a new mapping for subcells. Using an m-bit address,
wherem is the logarithm of the total number of subcells and half of
these bits correspond to each dimension, as shown in Fig. 6. This
allows SaP to be performed only for those objects which share the
same subcell. Fig.6 shows an example in which a cell is divided
into 16 subcells, eliminating the need for a collision test between
objects O1 and O4. We can find out which subcells contain an ob-
ject occupies from the extrema of that object. The extremal points
of O4 in Fig. 6 are mapped to 1010 and 1111. Then, we can use a
bitwise AND operation to check whether two objects share the same
subcell. Finally, SaP parallelized for eachOi only needs to consider
the objects that share the same subcell, which can substantially re-
duce the candidate set.
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Figure 6: Cell subdivision. Each cell is subdivided into 4 × 4
subcells and the right image is a cross-sectioned view of the left
image for C1.

5 Results and Discussion

Now we present our experimental results, discuss the performance
of our broad-phase CD algorithms, and provide an analysis of the

algorithm.

5.1 Implementation and Benchmarking Results

We implemented our algorithm using the Visual Studio C++ and
NVIDIA CUDA programming languages on a PC equipped with
Intel Quad-core 2.66GHz CPU with a 2.8 GB main memory and
an NVIDIA Tesla C1060 graphics card with a 4Gb memory, under
Windows Vista.

To implement the parallel SaP in Alg. 1, we allocated a number of
CUDA threads to each object, determined by the number of parti-
tions of that object, as explained in Sec. 3.3. Since our algorithm
is designed to deal with massive data, it is important to utilize the
memory hierarchy in CUDA effectively. Initially, we store all ob-
jects as well as the final collision results in the global memory of
the GPUs. Then we take advantage of the temporal coherence of the
parallel SaP operations by caching the positions of some objects in
the shared memory of each block1 of threads. However, only 512
objects can be cached in each thread block because the size of the
shared memory is limited and its use can also affect the number of
active threads that GPUs can spawn (i.e. GPU occupancy).

We benchmarked the performance of our algorithm in different sce-
narios including random object configurations, particle simulation
and rigid-body dynamics, and compared it against that of other al-
gorithms based on both CPUs and GPUs.

Random Configurations We used a benchmark setup similar to
the Bullet collision library2, in which a set of AABBs are uniformly
distributed in space and moving randomly. As we changed the num-
ber of AABBs from 16K to 960K, we measured the performance of
our algorithm and that of the three broad-phase CD algorithms pro-
vided in Bullet, which are BoxPruning, ArraySaP and an AABB
dynamic tree. The first two algorithms are based on SaP and the
last one using a dynamic bounding volume hierarchy. All of these
algorithms run on CPU. The size of the AABBs also varies from
0.5% to 8% to the size of the bounding box of the workspace. As
shown in Fig. 7, our algorithm outperforms the fastest of the Bullet
implementations (i.e. the AABB dynamic tree) by a factor of 71
times.

We also investigated the performance of our algorithm when only
some of the objects are moving. The objects are one million
AABBs of varying sizes, and we changed the percentage of moving
objects from 5% to 25%, and observed the performance of the tech-
nique explained in Sec. 3.5. Fig.8 shows that the number of new

1In CUDA a thread block may contain up to 512 threads.
2http://bulletphysics.org



Ours960K

AABB dynamic tree

BoxPruning

# ofo BoxPruning

ArraySap
128K

objects

Colliding Pairs16K

s

1                    100               10000            1000000
Timing (ms) or # of colliding pairs  on a log scale

Figure 7: Comparison of CD performance with the different
methods in Bullet CPU algorithms. Our algorithm takes 3 ms,
11 ms and 161 ms for 16K, 128K, and 960K objects, respectively.
Each of these results corresponds to 14, 71, and 64 times perfor-
mance improvement over the fastest method in Bullet.
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Figure 8: CD when only some objects are moving. The CD pairs
means the proportion of collisions due to moving objects. The CD
timing means the computation time relative to all objects moving.

collisions generated by moving objects, as a proportion of the to-
tal number of interferences is almost linear with computation time,
which implies that as more collision pairs are introduced by mov-
ing objects, our algorithm requires more time to process them. This
means that our algorithm efficiently utilizes the collision results in-
troduced by static objects, which are cached from the previous time
step.

Particle Simulation Many physically-based animations require
broad-phase and narrow-phase CD algorithms. However, broad-
phase CD is usually sufficient for particle simulation, since particles
are often modeled as spheres. We benchmarked on large sets of par-
ticles of varying sizes. We did this by modifying an open particle
simulation demo, originally from NVIDIA[NVIDIA 2010; Grand
2008]. This demonstration program comes with a GPU-based uni-
form subdivision collision culling algorithm. An algorithm due to
[Mazhar et al. 2009] is also similar to this algorithm, but their code
is not publicly available. As shown in Fig. 1, we introduced 100K
and 0.3M spheres of the size varying from 0.3% to 20% of the di-
mension of the workspace and simulated their motions under grav-
ity. We then measure the performance of our algorithm and that
of a uniform subdivision algorithm that also runs GPUs. While CD
takes up most of the computation, it is hard to decouple the collision
times from the simulation times using NVIDIA’s uniform subdivi-
sion method. However, for 100K and 0.3M particles, our algorithm
takes 56 ms and 252 ms on average for both collision detection and
particle simulation while uniform subdivision 4452 ms and 53464
ms; thus our algorithm outperforms uniform subdivision by a factor
of 212 times.

Approximate Rigid-Body Dynamics Accurate rigid-body dy-
namics requires narrow- as well as broad-phase CD, which can be
costly for massive objects. However, for real-time applications such

as computer games and virtual environments, it is often acceptable
to approximate the dynamics to maintain the speed of simulation.
[Harada 2007] approximated a rigid model with a set of uniform
spheres, and used a penalty-based approach running in parallel on
GPUs. This avoids narrow-phase CD. This approach is quite fast,
but many spheres are required for a reasonably good approximation
of rigid geometry, and the feasible number of colliding pairs is also
limited by the image-based CD technique. We have extended this
approach by using spheres of arbitrary sizes and our broad-phase
CD algorithm allows many more colliding pairs. We simulated 16K
torus models approximated by six spheres of varying size moving
under gravity. We were able to simulate the approximate rigid-body
dynamics entirely running on GPUs in 18 ms, including collision
detection, as shown in Fig.1.

5.2 Discussion

We compare the effectiveness of a sweep axis determined using
PCA, explained in Sec. 3.4. The objects are spheres randomly
moving inside an AABB whose aspect ratio is 1:2:3 along each di-
mension, and torus models whose motion is governed by rigid-body
dynamics. Fig. 9 shows that the use of PCA speeds up the algorithm
by a factor of more than three times. In these experiments, we do
not use subdivision.

64K h

96K spheres
Best axis

32K spheres

64K spheres
X axis

4K torus

0 20 40 60 80 100 120 Timing (ms)

Figure 9: Performance of SaP using the best axis, found by PCA,
and x axis.

We use PCA for up to 64K objects, since the performance differ-
ence with and without using PCA is becoming less significant due
to the overlap density of projected intervals. More precisely, for
more than 64K objects, we compute the variation of projected inter-
vals along x, y, z axes using GPUs and choose one of the principal
axes as sweep direction.

The timing contributions of the different components of our CD
algorithm are given in Table 1, for the random-spheres benchmark.
The timings with and without using workload balancing technique
explained in Sec. 3.3 are also given in Table 2.

Number of objects 64K 256K 1M

PCA 3% - -
Radix sort 10% 18% 6%

Subdivision - 12% 4%
Workload balancing 4% 9% 4%

Parallel SaP 79% 54% 84%
Data preparation 4% 8% 2%

Table 1: Timings of the components of our collision culling algo-
rithm.

Workload balancing With Without

64K 13.71 30.05
128K 48.16 124.11
256K 241.51 467.78

Table 2: Timings (in ms) with and without using workload bal-
ancing for a different number of random-spheres.



We also analyzed the worst-case computational complexity of our
algorithm, under the assumption that the number of active threads
on GPUs is unlimited. Given n objects, the radix sort takes O(n)
time, binary search for workload balancing takes O(logn) time,
and the parallel SaP takes O(τ(ε + ζ)) time. Here, τ is the maxi-
mum number of pairwise collision tests in each thread, as explained
in Sec. 3.3. ε is the maximum time to read data from global or
shared memory, and ζ is the maximum time to write back the col-
lision results to global memory. The finite number of actual GPU
threads limits the selection of τ and we set τ = n

2K
on Tesla C1060

where n is the number of objects and this gives good results.

There are naturally some limitations to our algorithm. Even though
it is designed to increase the arithmetic intensity, it is still affected
by the high memory latency in GPUs. In particular, due to the
CUDA architecture, it is still expensive to read object configura-
tions from, and write the collision results back, to global memory.
Thus, if the simulation is running on an associated CPU, the read-
back from the GPU to the CPU may take a substantial amount of
time, which depends on the bus architecture. Our algorithm is not
completely automatic since it relies on some parameters such as τ
and m depending on the number of active threads that GPUs can
utilize.

6 Conclusions

We have presented a parallel collision culling algorithm that runs
on GPUs. Its essence is to parallelize the SaP operations individ-
ually for different objects and then to allocate extra threads to ob-
jects likely to require many collision tests. Computation times are
further reduced by using PCA to select the sweep direction, and
two-level subdivision. Our algorithm substantially outperformed
existing CPU- and GPU-based approaches in various benchmarks.
In future work, we would like to use the improved caching capabil-
ity that will be available on future GPUs (e.g. the Fermi or Larrabee
[Seiler et al. 2008] architectures) to handle object data more rapidly.
There are many further possibilities of the use of multi-GPUs, for
instance, to perform workspace and cell subdivision simultaneously
for each graphics card. We also would like to apply our culling
algorithm to deformable models, character motion planning, and
fracture dynamics. Finally, continuous collision detection between
n-bodies based on our approach is an interesting direction to pur-
sue.
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