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Abstract— We propose a novel RGB-D camera tracking
system that robustly reconstructs hand-held RGB-D camera
sequences. The robustness of our system is achieved by two
independent features of our method: adaptive visual odometry
(VO) and integer programming-based key-frame selection. Our
VO method adaptively interpolates the camera motion results of
the direct VO (DVO) and the iterative closed point (ICP) to yield
more optimal results than existing methods such as Elastic-
Fusion. Moreover, our key-frame selection method locates
globally optimum key-frames using a comprehensive objective
function in a deterministic manner rather than heuristic or
experience-based rules that prior methods mostly rely on. As
a result, our method can complete reconstruction even if the
camera fails to be tracked due to discontinuous camera motions,
such as kidnap events, when conventional systems need to
backtrack the scene. We validated our tracking system on
25 TUM benchmark sequences against state-of-the-art works,
such as ORBSLAM2, Elastic-Fusion, and DVO SLAM, and
experimentally showed that our method has smaller and more
robust camera trajectory errors than these systems.

I. INTRODUCTION

Camera Tracking is a challenging research problem in
robotics and computer vision communities. The emergence
of the RGB-D camera made vision-based camera tracking
problems even more prevalent. The depth sensor was origi-
nally invented for gaming devices; however, its application is
now more diverse, and no longer limited to gaming devices.
Because of the accurate depth information, in particular, 3D
reconstruction results using depth sensors are much more
robust and reliable than RGB imaging.

Numerous studies have been performed on RGB-D camera
tracking [1], [2], [3], [4], [5]. The main structure of these
systems is based on real-time VSLAM where camera poses
and maps are constructed in response to the real-time cam-
era motion, followed by pose optimization for loop-closing
events. A popular approach to the VSLAM problem is the
pose-graph formulation where an edge between two vertices
represent a pose constraint including an odometry constraint
between two ordinary frames and a loop closing constraint
between two key-frames. Therefore, selecting good key-
frames and a good initial camera pose impacts the final
tracking result significantly.

Our goal in this research is proposing a robust RGB-
D camera tracking system by addressing the following two
questions:
• How to robustly perform RGB-D visual odometry

(VO)?
• How to select good key-frames from a sequence of

camera frames?
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Our answer to the first question is revisiting the hybrid VO
method, which takes advantage of both structure and texture
information in RGB-D scenes, and making it adaptive to
the tracking environment. That is, our method autonomously
determines the weighting factors to combine depth map
and image texture information in an RGB-D image without
human intervention.

In order to answer the second question, a novel integer pro-
gramming based set covering scheme is proposed to robustly
identify an optimal subset of frames to cover the entire image
frames. Specifically, we construct an affinity matrix for the
input frames by establishing semi-dense putative matches
among them, where full key-point matches are not required.
Then, the affinity relationship is fed back to the set covering
scheme to find globally optimal key-frames. Note that many
existing camera tracking systems rely on heuristic criteria
or a locally optimum decision function to determine key-
frames, but the accuracy and reliability of the reconstructed
map is rather questionable.

To measure the robustness of our tracking system, we
employed mean relative pose error (RPE) and mean absolute
trajectory error (ATE) results over the 25 TUM benchmark
sequences [6]. As shown in Section VI, our method exceeds
the baseline methods in terms of these two metrics. In
summary, the main contributions of our paper are:
• Adaptive VO method using a novel pose estimation

formulation
• Novel integer programming (IP) based formulation for

optimal key-frame selection
• More robust and accurate results compared to the state

of the art VO and SLAM systems using public bench-
mark datasets

II. RELATED WORK

An ordinary camera tracking system consists of front-
end and back-end modules that are independent of each
other. The front-end is responsible for estimating the camera
trajectory by establishing the pixel correspondences between
two consecutive frames, often referred to as visual odometry
(VO). In parallel, the back-end of the system runs to correct
the drift error possibly accumulated by the front-end of the
system.

A. The Front-end

VO dictates the overall performance of a camera tracking
system because a robust and accurate VO minimizes the drift
error accumulation which can impact on the outcome of the
entire system. VO is often categorized into two methods: di-
rect methods and feature-based methods. The direct methods
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Fig. 1: Pipeline of the proposed tracking system. The tracking phase estimates incremental camera motions and simultaneously
establishes similarities among the input frames in an affinity matrix. Then, during optimization phase, key-frames are
identified followed by a pose graph optimization.

[2] establish dense correspondences by imposing a brightness
consistency constraint. The camera pose is directly recovered
by minimizing the pixel intensity error. Conversely, the
feature-based methods [7], [4] locate salient pixels in the
image scale-space followed by a matching process, such as a
normalized cross correlation (NCC) measurement, the sum of
squared differences (SSD), or descriptor distance. Imposing
a camera epipolar constraint can further eliminate outlier
matches in order to achieve more accurate VO estimation.

When the depth information is available as prior knowl-
edge, we do not need to be confined in 2D-to-2D image
alignment. Motion estimation from 3D-to-3D correspon-
dence is feasible [8]. Furthermore, 3D point clouds can be
directly registered using ICP-like methods [9]. Besides, there
are RGB-D SLAM methods that rely on ICP registrations
[10], [11].

B. The Back-end Optimizer

The importance of back-end module cannot be overstated
because VO may accumulate the pose error for long-term
operations. One way of correcting the pose error is frequently
running non-linear optimization of cost functions built by
relative camera pose constraints or by pixel reprojection
error. The former refers to pose-graph-optimization [12], and
the latter refers to bundle adjustment [13].

C. Global Relocalization

Camera tracking systems are equipped with an additional
step for the global relocalization task. VO may lose tracking
of the camera pose owing to numerous factors, such as
insufficient feature matching or motion blur. Besides, the
camera sensor could be kidnapped, and then released at
a long base-lined location w.r.t. the kidnapped location.
Furthermore, many loop closing constraints may exist among
the key-frames with poses that must be corrected by a
back-end process. While a bag of words (BoW)[14]-based
approach is a well-known efficient method for the global
camera localization, recent approaches [15], [16] are capable
of coping with drastic appearance changes in scenes.

III. OVERVIEW

We use a sequential pipeline for our tracking system con-
sisting of two consecutive phases: tracking phase (the front-
end) and optimization phase (the back-end). The tracking
phase estimates the primitive poses of input frames and their
similarities while the optimization phase identifies a set of
key-frames and then refines their poses. Figure 1 illustrates
the proposed pipeline.

The next few sections elaborate on some crucial steps
in the pipeline. Sections IV-A and IV-B explain VO to
construct the affinity matrix and our feature matching method
in the pipeline, respectively. Section V-A explains how key-
frames are selected, and Section V-B describes our final pose
optimization procedure.

IV. TRACKING PHASE

A. Visual Odometry

1) Cost Functions: The point to plane ICP residual ρ for
the kth point Xk is defined as

ρk = (Xk − exp(ξ̂)CX′k) · nk (1)

where ξ̂ ∈ se(3) is the twist representing a rigid motion.
X′k and nk are the corresponding 3D point and the normal
vector, respectively. Then, the ICP cost function is given as:

Ei = min
ξ̂

∑
k

ψ(ρk)||ρk||2 (2)

where ψ(·) is a robust weight function which minimizes the
impact of false correspondences [17]. As for DVO, a pixel
intensity residual δ is defined as

δk = I1(xk)− I2(x′k) (3)

where x′k is the pixel correspondence of xk computed by a
warping operation; that is,

x′ = π(C, π−1(x,Z(x))). (4)

The resulting pixel intensity cost function is given as

Ed = min
ξ̂

∑
k

ψ(δk)||δk||2. (5)



Solving (2) or (5) involves iteratively running the re-weighted
least square (IRLS) algorithm. A method like [18] co-
optimizes Eq. 2 and Eq. 5 using a pre-determined weight
parameter to estimate the camera pose. Since it is known
that ICP and DVO show different characteristic behavior
depending on the availability of textures or depth structures
in an input scenario [19], our algorithm leverages this fact by
adaptively adjusting the weight parameter according to the
relative fitness between DVO and ICP at each IRLS iteration.
As a result, our VO algorithm can generate more robust and
accurate results than [18].

2) Camera Pose Estimation: We downsampled images
to four pyramid levels to implement coarse to fine search
strategy; that is, beginning from the coarsest pyramid level
(80×60 for a TUM sequence,) we iterate the IRLS to find
the best camera pose at the current pyramid level. Then, we
assess the quality of the estimated camera motions for n
number of correspondences using

ed =

n∑
k

||Xk − exp (ξ̂d)X
′
k||2

ei =

n∑
k

||Xk − exp (ξ̂i)X
′
k||2

(6)

where Xk and X′k are the corresponding pair of two 3D
points, ξ̂d and ξ̂i are the estimated camera twists from the
IRLS of DVO and ICP, respectively. Here, the subscript d
refers to DVO while i refers to ICP. Then, we introduce a
gain parameter λd

λd =

{
ei

ei+ed
if n ≥ ν

0 if n < ν
(7)

where ν is the number of meaningful Sobel responses used
for DVO process - we set ν to 2% of the image resolution.
Given λd, λi = 1 − λd, we interpolate the two camera
motions by

Cavg = I(exp (ξ̂i), exp (ξ̂d), λi , λd) (8)

where I(·) is a weighted interpolation function consisting
of two consecutive steps: 1) orientation interpolation using
quaternion Slerp [20] followed by 2) position interpolation
in Euclidean space. The interpolated camera motion is used
as an initial guess for the next pyramid level. A pseudo-code
for our pose estimation procedure is also given in Algorithm
1.

B. Feature Extraction and Matching (FEM)

Semi-Dense Frame Matching: We build an affinity matrix
by executing multiple wide baseline matchings for each
incoming frame. To speed up building the affinity matrix,
we performed a BoW match before putative matching to
locate possible image pairs. The possible image pairs fur-
ther verified by CudaSIFT [21] to complete the matching
task. Here, we run the image/feature matching task as an
independent thread in parallel to our VO thread to alleviate
the time-consuming problem of this part of the system.

1 Function RGBDODOM()
2 initialize the camera motion C;
3 for each pyramid level do
4 for each IRLS iteration do
5 solve Eq. 2 for ξd;
6 solve Eq. 5 for ξi;
7 recompute ψ(ρ) and ψ(δ)
8 end
9 compute λi and λd using Eq. 7 ;

10 estimate Cavg using Eq. 8 ;
11 C← Cavg

12 end
Algorithm 1: Camera pose estimation procedure

The result of η image matching is incorporated into the
key-frame decision module in order to select optimal key-
frames. The detailed explanation of the key-frame decision
step is presented in Section V-A.

V. OPTIMIZATION PHASE

A. Key-frame Selection

In pose-graph SLAM, the unknown camera poses are
considered a graph G = (V,E) where a set of vertices V
expresses camera poses created from its trajectory, and a
set of edges E represents visual associations between the
vertices in V . vi ∼ vj denotes that vi ∈ V and vj ∈ V
are connected by an edge eij . In our work, we measured
the number of feature matches between vi, vj to determine
if they are connected.

Set Cover Formulation: Our goal is to select a minimal
set of vertices V ∗ such that the selected vertices can cover
the entire vertex set V . The selected key-vertices would
cover their neighbors as well as themselves. A vertex vk
and its connected vertices form a sub-graph Sk of G.
Therefore, multiple selections of key-vertices or sub-graphs
would eventually cover the universe - i.e. the entire set of
frames U. ⋃

Vi∈V ∗

Vi = U. (9)

The formulation above is a set covering problem [22]. There
are two main objectives for this formulation. First, we want
to cover all vertices by key vertices. Second, a selected key
vertex vi ∈ V ∗ should be connected to another key vertex
vj ∈ V ∗, i 6= j for pose graph optimization (PGO) step.

The weighted selection of the vertices should be optimized
by minimizing a cost function:

min
x

∑
xj∈V

wj · xj

s.t.
N∑
j

aijxj ≥ 1 i, j = 1...N∑
k

xk − xi ≥ 0 k 6= i, Vk ∈ Si∑
k

xk ≥ c,

(10)



where the cost wj = 1/|Sj | is the inverse cardinality of a
subgroup belonging to vj . The decision variable xj is set to
one if vj is selected; otherwise zero. The binary coefficient
aij is set to one iff jth vertex appears in the ith group.
The first constraint ensures the constraint in Eq. 9, and the
second constraint avoids selecting a single isolated vertex.
The optional third constraint guarantees to select at least c
number of vertices. Figure 2 illustrates the proposed vertex
cover process for a simple example

(a) A graph (b) Key-vertices

Fig. 2: The nodes in cyan color are the key-vertices found
by our algorithm. Note that every vertex is covered by the
key vertices.

1) Locating Bridging Vertices: Although the vertices se-
lected from Eq. 10 cover the entire vertices, we observed a
case where our algorithm finds multiple disconnected sets.
In order to guarantee a single connected component of G,
it is necessary to locate additional bridging vertices. We
employed breadth first search (BFS) to locate the bridging
frames. Note that the set of selected vertices from Eq. 10
together with the identified bridging vertices correspond to
key-frames. Figure 3 shows key-frames search results of a
real image data set. Note that all key-frames are formed as
a single connected component.

  

(a) Without bridging frames

  

(b) With bridging frames

Fig. 3: The key-frames selection result for TUM fr1 desk2
sequence: (a) key-vertices found by optimizing Eq. 10 and
(b) after locating bridging frames by BFS. Note that the BFS
connects all key-frames so that all vertices form a connected
component.

B. Pose Optimization

1) Initializing and Optimizing Loop Closing Constraints:
Thanks to the affinity matrix constructed in the tracking
phase, we can locate candidates of loop-closing view-pairs.

We use Arun’s [8] 3D to 3D registration method with a
special treatment for the reflection case suggested by [23].
Given a 3D point pair, we initially estimate the relative pose
constraint from a standard RANSAC protocol. In order to
estimate accurate pose constraints, we further optimize the
initial estimations by executing motion-only bundle adjust-
ment followed by a median absolute deviation (MAD) based
outlier elimination step. We first compute σ of MAD by

σ = 1.4826ri, (11)

where ri is the absolute deviation of the reprojection error v
from its median residual - i.e. ri = | ‖v‖2−median(‖v‖2)|.
Subsequently the inlier matches are computed by the con-
straint:

ri < Tσ, (12)

where T is a scale parameter which is set to 2.5 in our
implementation. Subsequently, we estimate the camera pose
of jth frame by

min
Cj

∑
i

||xji − π(Cj ,Xj−1,i)|| (13)

where xji is ith key-point in jth image frame, and Xj−1,i is
the corresponding 3D point measured in the previous frame.
After setting up the relative pose constraints, we proceed to
a pose graph optimization (PGO) using Ceres-solver [24].

VI. EXPERIMENTS AND RESULTS

1) Comparison to Other VO Methods: To evaluate our VO
method, we collected five different states of the art methods:
1) ICP, 2) DVO (Stein11) [25], 3) Fovis (Huang11) [7], 4)
Whelan et al. (Whel13) [18], and 5) Park et al. (Park17)
[26]. Then, we tested their performance on TUM benchmark
sequences. Figure 4 and 5 report the performance of the
target methods in terms of the relative pose error (RPE)
metric. As summarized in Table I, our method outperforms
the target methods in terms of mean RPE errors. For exam-
ple, our method was 5.8% more accurate (or produce less
RPE error) than ICP in terms of mean relative translation
error. Compared to image based approaches, our method
marked 78.8% more accurate than DVO and 59.6% more
than FOVIS. Compared to hybrid type VOs, our method
achieved approximately 11.5% more than [18] and 34.6%
more than [26].

2) Overall Comparison to Other Systems: To evaluate
the overall accuracy performance of our system, we quan-
titatively measured the pose errors w.r.t. the ground truth
poses using the absolute trajectory error (ATE) metric. We
compared our tracking results with three different state-of-
the-art SLAM systems: ORBSLAM2, Elastic-Fusion, and
DVOSLAM. In the tests, if the number of tracked camera
poses are below 50% of the full frame, we counted the case
as a failure.

Figure 6 quantitatively shows the performance of our
method with reference to the state-of-the-art works. Ta-
ble II shows the overall performances of the four track-
ing systems. Note that our method outperforms Elastic-
Fusion and DVOSLAM. ORBSLAM2 is better than our
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Fig. 4: Relative translation error of VO methods on TUM benchmark: Each data index corresponds to [1]fr1-360, [2]fr1-floor,
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rpy, [12]fr2-rpy, [13]fr1-plant, [14]fr1-teddy, [15]fr3-teddy, [16]fr3-cabinet, [17]fr3-large-cabinet, [18]fr3-nostr-notxt-far,
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near, [24]fr3-struct-txt-far, and [25]fr3-struct-txt-near’, respectively. Note that fr2-360-kidnap is not used for testing the VO
algorithms.
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Fig. 5: Relative orientation error of VO methods on TUM benchmark

Method ICP Stein 11 [25] Whelan 13 [18] Huang 11 [7] Park 17 [26] Our method

mean RPE (m) 0.0055 0.0093 0.0058 0.0083 0.0070 0.0052
mean RPE (deg) 0.4915 0.4302 0.4494 0.4110 0.4615 0.4026

TABLE I: Mean RPE results: Fr2-360-kidnap is excluded in this experiment.
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Fig. 6: ATE performances of SLAM systems on TUM benchmark: N/A refers to incomplete tracking. Note that ORBSLAM2
fails on 6 out of the 25 TUM sequences while our method completes them.

Method ORBSLAM2 [4] DVOSLAM [5] Efusion [27] Our Method

Mean ATE (Texture-rich Seqs) 0.0350 0.1596 0.1266 0.1257
Mean ATE (All 25 Seqs) N/A 0.6034 0.3773 0.2516

TABLE II: Mean ATE for texture-rich sequences and all 25 seqs: ORBSLAM2 was not able to properly handle texture-free
sequences while our method was able to complete them. N/A indicates an incomplete tracking.

method on texture-rich sequences but not so much as on
texture-free sequences (e.g. fr3-structure-notexture-far, fr3-
structure-notexture-near, fr3-cabinet). ORBSLAM2 was not
able to initialize a map or failed to complete full tracking in
such scenarios. Figure 7 shows the reconstructed 3D point
cloud models, which is a byproduct of using our method.

3) Timing Test: Figure 8 reports the timing experiments
we have carried out. As it is shown, the speed of our system
is highly correlated with BoW matching score β and the
window size for dense matching η. In fact, β has much more

impact on the tracking results than η because β finds global
loop closing candidates while η is only for neighboring
frames. Decreasing β causes the system to inspect a larger
number of loop closing candidates. Subsequently, the system
becomes more robust while loses its efficiency. However, as
Figure 8-(c) shows, after a certain point, lowering β does
not affect the quality of camera tracking anymore while the
computational cost increases. We chose β = 0.1 and η = 48
based on these experiments.

We compared our full tracking pipeline with ORBSLAM2



(a) fr3 long office household (b) fr3-no-structure-texture-withloop

(c) fr1-360 (d) fr3-structure-notexture-far

Fig. 7: The final reconstructed 3D models of TUM benchmark sequences

and DVOSLAM on fr1 360 and fr3 long office. Our system
is approximately 4.8 times slower than these two methods
due to two reasons. First, our VO method uses multiple
ICP iterations while our competitive methods do not. This
process might be considerably accelerated using GPUs just
like Kinect-Fusion [28] and Elastic-Fusion. Also, our method
executes semi-dense matching for finding optimum key-
frames while other methods use less expensive heuristic or
locally optimal decision rules.

VII. CONCLUSION AND FUTURE WORKS

In this paper, a new RGB-D camera tracking method is
presented. As opposed to many existing VSLAM systems,
we formulated an algorithmic approach to determine a set
of key-frames. Our VO method interpolates DVO and ICP
results to estimate a more optimal camera motion while
conventional methods solve a joint optimization equation
based on a pre-determined weight. The proposed method was
validated by performing an extensive experiment using TUM
RGB-D hand-held sequences. As it is reported in the paper,
our method achieved reliable and robust tracking without
employing a full bundle adjustment.

As a current limitation of our system, we observed that
constructing an affinity matrix consumes a large amount of
computational resources proportional to the growth of SIFT
matching queue, which explains relative slower performance
compared to existing methods. In the future, we would like
to optimize our system using a method like the GPU based
cascaded hashing matching [29].

0.020.050.10.20.41

BOW matching threshold

0

5

10

15

20

25

30

35

R
un

 ti
m

e 
(m

in
s)

fr1 360
fr3 longoffice

() Runtime vs β

8 16 24 48 96 144 192 256

 

0

5

10

15

20

25

30

35

40

45

R
un

 ti
m

e 
(m

in
s)

fr1 360
fr3 longoffice

(a) Runtime vs η

0.020.050.10.20.41

BOW matching threshold

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
T

E
 (

m
et

er
s)

fr1 360
fr3 longoffice

(b) ATE vs β

fr1 360 fr3 longoffice
0

2

4

6

8

10

12

14

R
un

 ti
m

e 
(m

in
s)

Our method
ORBSLAM2
DVO SLAM

(c) Runtime comparisons

Fig. 8: Timing experiments: (a) η is fixed to 48 (b) β is fixed
to 1.0.
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