
Accelerating Probabilistic Volumetric Mapping using Ray-Tracing
Graphics Hardware

Heajung Min, Kyung Min Han and Young J. Kim

Abstract— Probabilistic volumetric mapping (PVM) repre-
sents a 3D environmental map for an autonomous robotic
navigational task. A popular implementation such as Octomap
is widely used in the robotics community for such a purpose.
The Octomap relies on an octree to represent a PVM and its
main bottleneck lies in massive ray-shooting to determine the
occupancy of the underlying volumetric voxel grids.

In this paper, we propose GPU-based ray shooting to
drastically improve the ray shooting performance in Octomap.
Our main idea is based on the use of recent ray-tracing RTX
GPU, mainly designed for real-time photo-realistic computer
graphics and the accompanying graphics API, known as DXR.
Our ray-shooting first maps leaf-level voxels in the given octree
to a set of axis-aligned bounding boxes (AABBs) and employ
massively parallel ray shooting on them using GPUs to find
free and occupied voxels. These are fed back into the CPU
to update the voxel occupancy and restructure the octree. In
our experiments, we have observed more than three-orders-of-
magnitude performance improvement in terms of ray shooting
using ray-tracing RTX GPU over a state-of-the-art Octomap
CPU implementation, where the benchmarking environments
consist of more than 77K points and 25K∼34K voxel grids.

I. INTRODUCTION
3D mapping is an essential component for autonomous

navigational tasks since the accuracy of 3D mapping signifi-
cantly affects estimating the surroundings where the robot is
deployed. The reconstructed map subsequently impacts the
quality of trajectories predicted by a motion planner whose
goal is correctly guiding the robot in the given environment.
Probabilistic volumetric mapping (PVM) is a popular strat-
egy for representing such 3D maps for two main reasons.
First, in PVM, a map is represented by a set of voxels
that adaptively subdivides a 3D space depending on the
occupancy of the space. As such, the adaptive voxel repre-
sentation reduces the substantial amount of memory required
to represent the 3D environment. Second, the occupancy of
a voxel is represented probabilistically [1], empowering the
map to cope with uncertainties including sensor noise and
dynamic scenarios.

As a choice for volumetric reconstruction, an octree is
a de facto standard thanks to its practical benefits on both
computational and memory efficiencies. An octree is a spa-
tial subdivision that adequately represents the hierarchical
nature of voxels, in particular where the time complexity for
traversal is maintained in the logarithmic scale.

Octomap [2] is a state-of-the-art implementation for PVM
using the octree representation that consists of the following
steps to build a PVM:

The authors are with the department of computer science and engi-
neering at Ewha womans university in Korea hjmin@ewhain.net,
{hankm|kimy}@ewha.ac.kr

1) Scan and generate a point cloud for the environment.
2) Shoot rays toward each point in the point cloud.
3) Find and identify free or occupied voxels in the ob-

served space.
4) Update the octree with updated occupancy.

Often, the second and third steps, i.e., the ray-shooting step,
are the most time-consuming operation, especially when the
input point cloud is large or the ray-length becomes long.
Such cases potentially limit the PVM module to maintain
the map at a coarse level, and the situation will get worse if
a higher-resolution sensor is used to generate a point cloud.
Furthermore, the slow ray-shooting process could hinder the
robot from conducting online navigation.

Main Results: In this paper, we perform GPU-based ray
shooting to drastically improve the ray shooting performance
in Octomap, which is the main bottleneck in octree-based
PVM. The main idea of our work is mapping leaf-level
voxels in the given octree to a set of axis-aligned bound-
ing boxes (AABBs) and employing massively parallel ray
shooting on them using GPUs. The intersected AABBs are
further subdivided into the finest resolution corresponding
to free or occupied voxels. After that, voxel occupancy and
octree restructuring are followed on the CPU after the voxels
are readback from the GPU. In our experiments, we have
observed more than three-orders-of-magnitude performance
improvement in terms of ray shooting using ray-tracing RTX
GPU over a state-of-the-art Octomap CPU implementation,
where the benchmarking environments consist of 77K points
and 25K∼34K adaptive voxel grids.

II. RELATED WORK

A. 3D Volumetric Mapping

The idea of subdividing a 2D planar floor into uniform grid
cells, namely occupancy grid map (OGM), dates back to mid-
80s [3]. Later, the grid map idea was expanded to reconstruct
a 3D map where a volumetric space is subdivided into
equal-sized volumetric grids, i.e., voxels [4], [5]. However,
representing a volumetric space with uniform grids inevitably
causes memory problems, preventing practical applications
demanded large-scale and long-term operations. A well-
known strategy to mitigate this problem is employing an
octree data structure [2], [6], [7].

The voxel-based sampling assumes that the occupancy of
each voxel is independent of its neighboring voxels. While
this assumption is useful for simplifying the OGM, the re-
sulting map suffers from inaccuracy to some extent. Gaussian
Process (GP)-based methods [8], [9], on the other hand,

consider a continuous spatial domain rather than discretized
grid cells. As a result, GP allows maps to estimate unknown
terrains. Besides, the map can represent itself with various
resolutions. Unfortunately, the drawback of this method is
a large memory requirement and a cubic time complexity
in terms of the number of cells. Subsequently, there have
been researches to ameliorate the performance issue of GP
in recent years [10].

When the application of the map is limited to particular
purposes such as the legged robot’s motion planning, a 2.5D
height map [11], [12] is an efficient way to reconstruct
the local surroundings of the robot. Normal Distributions
Transform (NDT) is another approach to discretize a 3D
volumetric space. In contrast to voxel-based sampling, a
cell in NDT contains multiple points to form a local Gaus-
sian distribution. For this reason, NDT is considered as a
piece-wise continuous representation of a space, where the
number of grid cells is much smaller than that of voxel
grid maps. NDT was first proposed for 2D scan registration
purposes [13]. Later, the idea was further developed to 3D
scan registration methods [14]. [15] proposed to augment
occupancy probability to NDT, which was followed by a
real-time version [16].

B. GPU-based Octree Construction

The octree structure is predominantly used in computer
graphics for various tasks including distance field gener-
ation, rendering, modeling, simulation, and model recon-
struction [2], [17], [18]. [19] proposes a GPU-based octree
construction for reconstructing surfaces on the GPU. For a
large-scale volumetric scene, full or out-of-core style octree
update to GPU was studied [20], [21]. Octree can be adjusted
dynamically in real-time in GPU [22] as well as one-time
construction or full reconstruction [23]. [24] studied stream-
ing subtree data through CPU-GPU data transfer in a view-
dependent manner with connectivity information. Recently,
[17] supports dynamic topological updates on GPU.

To reduce the cost of searching neighbors during ray
traversals on Octree, [24] has reduced the number of neigh-
bors down to six per cell by pointing the parents of neigh-
bors. [25] used three precomputed neighbors per cell that
enable stackless ray casting and dynamic updating of Octree
on a GPU. A sparse voxel octree (SVO) showed both high-
quality rendering and efficient ray traversal of shallow tree
topology for the static scene [26]. OpenVDB [20] used
SVO data structures and was implemented in GPU [17],
which enables efficient neighbor access using GPU-based
ray casting for dynamic scenes.

C. GPU-based Ray Tracing

Ray tracing is a graphical technique to render a realistic
scene using the physical properties of light. From a given
camera viewpoint, many rays are generated and shot toward
the virtual 3D scene and each ray-path is traced to determine
the corresponding pixel color of the screen [27].

Graphics hardware-based ray tracing has been studied to
accelerate each stage of the ray-tracing pipeline including

constructing acceleration structure, ray generation, travers-
ing acceleration structure, and ray-triangle intersection. The
growing need for rendering dynamic scenes demanded online
construction and update of the acceleration structure, such
as kd-tree [28] or BVH [29]. [30] introduced dedicated
graphics hardware for ray generation. The ray traversal is
the bottleneck of the ray tracing pipeline. [31] explored
the space of ray traversal on kd-trees, and [32] proposed a
BVH traversal hardware using three parallel pipelines. After
traversal, the process of identifying the closest intersection
point through the ray-triangle hit test has been studied [32],
[30].

In recent years, the RTX GPU platform for acceler-
ating ray tracing has been introduced, which accelerates
the BVH construction and traversal, and proposes a new
rendering pipeline with a machine learning-based denoising
technique to enable real-time ray tracing rendering [33], [34].
Moreover, RTX can be used as general-purpose computing
(GPGPU) for non-rendering tasks, such as sampling for
simulation [35], point location in tetrahedral meshes [36],
or Monte Carlo particle transport [37].

III. FAST AND MASSIVELY-PARALLEL RAY SHOOTING
ON RTX

Since ray-tracing is a computationally intensive technique,
dedicated hardware support is highly beneficial. Timely,
NVIDIA introduced and started to mass-produce ray tracing
hardware, known as RTX. In CPU-based ray tracing, for each
ray, thousands of serial CPU instructions need to be executed
to check the ray-surface intersection using the bounding
volume hierarchy (BVH) representing the scene geometry,
often composed of many triangles. Many RT cores installed
in the RTX graphics hardware consist of two units, one
responsible for BVH traversal and the other for ray-triangle
or ray-AABB intersection test [38].

In order to harness the power of RTX GPU, an application
programming interface (API) such as DirectX’s DXR has
been also introduced. In DXR, scene geometry is divided into
bottom/top-level acceleration structures, which is essentially
a BVH. In the bottom level acceleration structure, geometric
primitives such as triangles or AABBs are included, and
in the top-level acceleration structure, transformation matrix
and rendering material are included.

Also, shader programs in the RTX pipeline are executed
in a massively-parallel fashion for all rays. Specifically, first,
after a BVH is built, rays are generated in the ray generation
shader, traverse the BVH, and check the intersection for
hitting bounding volumes. Then, for the hit group, the
intersection shader finds an intersection of the ray and
the geometry, and the closest hit shader calculates shading
information at the hit point. If the ray does not intersect
any geometry, the miss shader would be executed [33]. In
our application, we do not use the closest hit shader as no
shading information is needed.

IV. GPU-ACCELERATED RAY SHOOTING

A. Octree Representation of PVM

The octree is a hierarchical data structure created by
recursively subdividing three-dimensional space. Each octree
node represents a small volumetric grid called a voxel and
has eight sub-voxels as child nodes. The octree is also
useful for labeling its subspace with different occupancy
information using voxels.

A well-known PVM such as Octomap [2] relies on octree
to map the environment into a set of voxels representing a
free or a occupied state (obstacle space). Specifically, Oc-
tomap builds a 3D map by repeatedly relocating a proximity
sensor at different positions and carrying out the following
steps in turn:

1) A sensor observation is obtained in the form of a point
cloud.

2) The sensor origin o and each point p in the point cloud
constitute an individual ray −→op with a fixed length
|−→op|.

3) For all rays, a ray-shooting procedure is performed
against the voxelized space using DDA [39] to dis-
cover free and occupied voxels. These labeled voxels
correspond to the finest resolution of the octree.

4) The discovered voxels are merged into the octree
and restructured depending on the cells’ probabilistic
occupancies.

Note that the second and the third step take up about 90% of
processing time for each scan and are the main bottleneck.
The main goal of our work is to drastically improve it using
massively parallel ray shooting on GPU.

B. Mapping an Octree on CPU to AABBs on GPU

In order to leverage GPU-accelerated ray shooting for an
octree, the voxel elements of the octree must be converted
to geometric primitives that the ray-tracing GPU such as
the RTX can process, which should be a set of triangles or
AABBs in case of RTX. In our problem, we opt for AABBs
as target primitives as their geometries are close to the shape
of a voxel.

Specifically, we convert all leaf-level voxels in an octree,
with occupied (blue), free (green), and unknown (gray)
labels, to individual AABBs. As illustrated in Fig. 1, a
leaf-level voxel is mapped to an AABB by matching their
geometries including the position and size. Note that we also
consider voxels with an unknown label during the conversion
so that the AABBs need to fill the entire 3D workspace
since a random ray can pass anywhere in the space and the
traversed subspace needs to be labeled afterward.

After all leaf-level voxels are converted to a set of AABBs,
they are uploaded to the GPU, and the RTX GPU builds
a bounding volume hierarchy (BVH) of AABBs. Fig. 1
illustrates (a) spatial subdivision of space with different
labels to represent occupied, free, or unknown voxel space,
(b) a corresponding octree representation on CPU with leaf-
level nodes highlighted in yellow, and a set of AABBs on
GPU that correspond to the leaf-level voxel nodes on CPU.

(a) Spatial Subdivision

(b) Octree and the corresponding AABBs

Fig. 1: Mapping from an octree in CPU to a set of AABBs in
GPU for GPU-based ray shooting. In the figures, blue, green,
and gray boxes indicate occupied, free, unknown voxel space,
respectively.

C. Massively-Parallel Ray Shooting
Once the BVH of AABB is computed on GPUs, we set

up multiple rays in the ray generation shader and shoot them
from the sensor origin to the environment obstacles, obtained
as a point cloud by the sensor, to find occupied or free voxels
of space. The direction of each ray is defined by the sensor
origin (ray start) and the position of each point (ray end) in
the cloud. Therefore, the number of rays is proportional to
the number of points in the cloud, and the rays are shot in
parallel. We set each ray’s length equal to the distance from
the sensor origin to the point cloud. This way, the ray end
always corresponds to an occupied voxel and the interior of
the ray to free voxels.

(a) Mapped AABBs (b) Subdivision

Fig. 2: Leaf-level voxels are mapped to a set of AABBs and
subdivided to the finest resolution for occupancy labeling.

In our current implementation, we rely on GPUs to per-
form ray shooting, but still use CPU for octree and occupancy

(a) Intersecting a ray (b) Including the ray end

(c) Intermediate voxel

Fig. 3: Different cases of ray-AABB intersection. (a), (b)
a ray hitting finest-resolution voxels, (c) a ray hitting a
intermediate voxel that is not the finest resolution. (a) is
labeled as free (green) and (b) is as occupied (blue). (c)
is subdivided into finest resolution and labeled accordingly.
The ray starts from the sensor origin and ends at a point in
the cloud.

update, which is an effective strategy as the update step is
not a dominant part of the entire pipeline. In particular, we
use Octomap for the update part, and the Octomap expects
voxels of the finest resolution in the octree as a result of ray
shooting.

In order to meet this interfacing requirement, in our GPU-
based ray shooting, if the size of an AABB intersected with
a ray is greater than that of a finest-resolution voxel, we
subdivide the subspace that the ray traverses to a set of sub-
voxels in the finest resolution (typically 16) using DDA [39].
These voxels are labeled as free except that the voxel
containing the endpoint of the ray is labeled as occupied.
Fig. 2 illustrates this situation and Fig. 3 illustrates different
cases of ray-AABB intersection. All AABBs intersected with
a given ray are found within the ray’s extent - i.e. the ray
in our case is geometrically a line segment in 3D. When
ray-AABB intersection occurs, determining the occupancy
of the voxel is performed in the intersection shader. If the
intersection of ray and AABB no longer occurs, the miss
shader is executed. Since we do not need shading in our
work, we execute the miss shader to simply terminate the
ray shooting.

After a set of voxels hit by rays are found, their occupancy
is updated, and the octree nodes are restructured. Typically,
leaf-level nodes with the same occupancy are merged and
promoted to a higher-level node. Currently, this step is exe-
cuted on the CPU by sending the voxel data back to the CPU.
However, this is also possible on GPUs as demonstrated by

Algorithm 1: GPU-based Ray Shooting
Input : sensorOrigin, rayDirections, a set of AABBs
Output: Intersected voxels with the rays

1 Build the BVH of AABBs in parallel;
2 do in parallel
3 /* using Ray Generation shader */
4 Setup a ray;
5 while The ray hits AABBs within the ray extent

during BVH traversal do
6 /* using Intersection shader */
7 if The AABB size is greater than finest

resolution voxels then
8 Subdivide the AABB to a set of finest

resolution voxels;
9 end if

10 forall Newly generated finest resolution
voxels do

11 if voxel includes the ray’s endpoint then
12 Set it as occupied;
13 else if ray passed the voxel then
14 Set it as free;
15 end forall
16 end while
17 end

previous works in Sec. II-B. The pseudo-code for our whole
ray shooting procedure is given in Algorithm 1.

V. EXPERIMENTS AND RESULTS

In this section, we show our experimental results for GPU-
based map building and also compare them against a state-
of-the-art implementation.

A. Evaluation of Ray Shooting

GPU-based ray shooting for map building was imple-
mented on a 64bit Windows 10 operating system and Mi-
crosoft Visual Studio 2017 C++ with AMD’s Ryzen 7 3700X
CPU, NVIDIA’s RTX 2080 GPU, and 16GBs RAM. We
used DirectX’s DXR to drive GPU-accelerated ray tracing
on RTX. As a benchmarking platform, we employed a
virtual indoor environment built-in Tesse-Unity simulator
[40] where a mobile robot equipped with a stereo camera
navigated around this environment to collect a point cloud
data set and build an octree-based map. Robot localization
is assumed to be given and exact.

In order to test the benchmarks, while driving through
a virtual building, at a random viewpoint, a point cloud is
acquired from the scene using a range sensor. The acquired
point cloud data is built into an octree with a maximum
depth of 16, corresponding to 25K∼34K leaf-level voxels.
The ray-shooting step, which is the main bottleneck during
map building, is implemented on GPU and the rest of the
building steps is done on CPU using Octomap. Figure 4
illustrates six views from different viewpoints. Here, we
shoot 320×240 rays (76,800 rays) per view to collect and

(a) (b) (c) (d) (e) (f)

Fig. 4: Results of GPU-based ray shooting from different viewpoints navigating inside a complex virtual building. The top
row is the target scene. The bottom row is the corresponding hit count of rays with voxels in the space; as the color changes
from blue to red, more voxels are intersected with rays; gray indicates that the distance sensor did not obtain point cloud
due to reflections in the environment.

TABLE I: Comparisons of Ray Shooting Performance on Octomap (CPU) and Ours (GPU), and Timing Breakdown

Benchmarking Views (a) (b) (c) (d) (e) (f)
of Free, Occupied or Unknown Voxels in Octree 25,515 33,806 34,412 21,832 23,609 31,215

Octomap (CPU) Ray Shooting (ms) 886.83 1,446.52 1,349.87 1,294.31 1,211.58 1,236.16

Ours (GPU)
Build BVH (ms) 0.59 0.63 0.58 0.55 0.54 0.68
Ray Shooting (ms) 1.42 1.67 2.07 1.14 1.11 1.59
Readback from GPU to CPU (ms) 14.19 14.63 14.39 14.23 14.33 14.29

Fig. 5: Relative Performance Comparisons of Ray Shooting
between Octomap (CPU in blue bars) and Ours (GPU in
gold bars) in the Logarithmic Scale. BVH construction and
readback from GPU to CPU are denoted in orange and purple
bars.

identify octree cells. We measure the ray shooting time using
the dispatchRay function of RTX, which queries the elapsed
time of ray tracing performed on the GPU.

For the sake of comparison, ray-shooting time on CPU us-
ing Octomap was also measured with the same experimental
condition with the same camera position, direction, and ray

length using the same point cloud and the same number of
voxels of the octree. The CPU implementation was measured
on Ubuntu 20.04 with Intel Core i7-7700HQ CPU @ 2.8GHz
and 16 GBs of RAM.

Table I is the result of evaluating ray shooting time for
each view shown in Fig. 4. In the case of GPU-based ray
shooting, we further included the BVH construction time
on the GPU and the time for reading back the intersected
voxels from GPU to CPU. Fig. 5 shows that GPU-based ray
shooting can be performed three-orders-of-magnitude faster
than CPU-based ray shooting on average excluding GPU-
CPU readback. Even though GPU-CPU readback time is
included, the performance improvement is still two-orders-
of-magnitude faster than the CPU version, and the readback
time may be removed by updating the octree and occupancy
on the GPU using a technique like [18], [25].

VI. CONCLUSIONS

In this paper, we propose GPU-based ray shooting to
improve the ray shooting performance, which is the main
bottleneck, in the state-of-the-art PVM algorithm such as
Octomap. The main idea is based on the use of recent ray-
tracing RTX GPU and map voxel grids of an octree to a
set of AABBs and employ massively parallel ray shooting
on them using the GPUs to find free and occupied voxels.
The observed speedup in ray-shooting is significant, for
instance, to perform online navigation for the robot. There
are limitations to our current work. First, the octree itself is
not maintained on GPUs but CPU. Thus, it is required that
the newly found voxels need to be readback from GPUs
to the CPU, which takes almost 10X more than the ray
shooting itself. However, this can be addressed in the future

using various GPU-based octree maintenance techniques as
explained in Sec. II-B.

ACKNOWLEDGMENT

This project was supported in part by the ITRC/IITP
program (IITP-2021-2020-0-01460) and the NRF
(2017R1A2B3012701) in South Korea.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge,
Mass.: MIT Press, 2005.

[2] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss,
and W. Burgard, “OctoMap: An efficient probabilistic 3D
mapping framework based on octrees,” Autonomous Robots, 2013,
software available at http://octomap.github.com. [Online]. Available:
http://octomap.github.com

[3] H. Moravec and A. Elfes, “High resolution maps from wide an-
gle sonar,” in Proceedings. 1985 IEEE international conference on
robotics and automation, vol. 2. IEEE, 1985, pp. 116–121.

[4] Y. Roth-Tabak and R. Jain, “Building an environment model using
depth information,” Computer, vol. 22, no. 6, pp. 85–90, 1989.

[5] H. Moravec, “Robot spatial perception by stereoscopic vision and 3d
evidence grids,” robotics institute,” Tech. Rep., 1996.

[6] K. Schauwecker and A. Zell, “Robust and efficient volumetric occu-
pancy mapping with an application to stereo vision,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), 2014,
pp. 6102–6107.

[7] E. Vespa, N. Nikolov, M. Grimm, L. Nardi, P. H. J. Kelly, and
S. Leutenegger, “Efficient octree-based volumetric slam supporting
signed-distance and occupancy mapping,” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 2, pp. 1144–1151, 2018.

[8] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy
maps,” The International Journal of Robotics Research, vol. 31, no. 1,
pp. 42–62, 2012.

[9] S. Vasudevan, F. Ramos, E. Nettleton, H. Durrant-Whyte, and A. Blair,
“Gaussian process modeling of large scale terrain,” in 2009 IEEE
International Conference on Robotics and Automation, 2009, pp.
1047–1053.

[10] J. Wang and B. Englot, “Fast, accurate gaussian process occupancy
maps via test-data octrees and nested bayesian fusion,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), 2016,
pp. 1003–1010.

[11] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain
mapping for mobile robots with uncertain localization,” IEEE Robotics
and Automation Letters (RA-L), vol. 3, no. 4, pp. 3019–3026, 2018.

[12] D. Belter, P. Łabcki, and P. Skrzypczyński, “Estimating terrain eleva-
tion maps from sparse and uncertain multi-sensor data,” in 2012 IEEE
International Conference on Robotics and Biomimetics (ROBIO),
2012, pp. 715–722.

[13] P. Biber and W. Strasser, “The normal distributions transform: a new
approach to laser scan matching,” in Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003) (Cat. No.03CH37453), vol. 3, 2003, pp. 2743–2748 vol.3.

[14] T. Stoyanov, M. Magnusson, H. Andreasson, and A. Lilienthal, “Fast
and accurate scan registration through minimization of the distance
between compact 3d ndt representations,” The International Journal
of Robotics Research, vol. 31, pp. 1377–1393, 09 2012.

[15] J. Saarinen, H. Andreasson, T. Stoyanov, J. Ala-Luhtala, and A. J.
Lilienthal, “Normal distributions transform occupancy maps: Appli-
cation to large-scale online 3d mapping,” in 2013 IEEE International
Conference on Robotics and Automation, 2013, pp. 2233–2238.

[16] C. Schulz, R. Hanten, and A. Zell, “Efficient map representations for
multi-dimensional normal distributions transforms,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 2679–2686.

[17] R. K. Hoetzlein, “Gvdb: Raytracing sparse voxel database structures
on the gpu,” in Proceedings of High Performance Graphics, 2016, pp.
109–117.

[18] F. Liu and Y. J. Kim, “Exact and adaptive signed distance fields com-
putation for rigid and deformable models on gpus,” IEEE transactions
on visualization and computer graphics, vol. 20, no. 5, pp. 714–725,
2014.

[19] K. Zhou, M. Gong, X. Huang, and B. Guo, “Data-parallel octrees
for surface reconstruction,” IEEE transactions on visualization and
computer graphics, vol. 17, no. 5, pp. 669–681, 2010.

[20] K. Museth, “Vdb: High-resolution sparse volumes with dynamic
topology,” ACM transactions on graphics (TOG), vol. 32, no. 3, pp.
1–22, 2013.

[21] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister, “Interactive
volume exploration of petascale microscopy data streams using a
visualization-driven virtual memory approach,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 12, pp. 2285–2294,
2012.

[22] C. Crassin, F. Neyret, M. Sainz, S. Green, and E. Eisemann, “Inter-
active indirect illumination using voxel cone tracing,” in Computer
Graphics Forum, vol. 30, no. 7. Wiley Online Library, 2011, pp.
1921–1930.

[23] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering,” in
Proceedings of the 2009 symposium on Interactive 3D graphics and
games, 2009, pp. 15–22.

[24] E. Gobbetti, F. Marton, and J. A. I. Guitián, “A single-pass gpu ray
casting framework for interactive out-of-core rendering of massive
volumetric datasets,” The Visual Computer, vol. 24, no. 7-9, pp. 797–
806, 2008.

[25] Y. Kim, B. Kim, and Y. J. Kim, “Dynamic deep octree for high-
resolution volumetric painting in virtual reality,” in Computer Graphics
Forum, vol. 37, no. 7. Wiley Online Library, 2018, pp. 179–190.

[26] S. Laine and T. Karras, “Efficient sparse voxel octrees,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 17, no. 8, pp.
1048–1059, 2010.

[27] P. Shirley and R. K. Morley, Realistic ray tracing. AK Peters/CRC
Press, 2003.

[28] R. Woop, “A programmable ray processing unit for realtime ray
tracing,” ACM Transactions on Graphics, SIGGRAPH, vol. 5, pp. 1–
11, 2005.

[29] M. J. Doyle, C. Fowler, and M. Manzke, “A hardware unit for fast sah-
optimised bvh construction,” ACM Transactions on Graphics (TOG),
vol. 32, no. 4, pp. 1–10, 2013.

[30] J.-H. Nah, H.-J. Kwon, D.-S. Kim, C.-H. Jeong, J. Park, T.-D. Han,
D. Manocha, and W.-C. Park, “Raycore: A ray-tracing hardware
architecture for mobile devices,” ACM Transactions on Graphics
(TOG), vol. 33, no. 5, pp. 1–15, 2014.

[31] S. Woop, “A programmable hardware architecture for realtime ray
tracing of coherent dynamic scenes,” Diss. Ph. D. Thesis, Sarrland
University, 2007.

[32] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S. Jung, S. Lee,
H.-S. Park, and T.-D. Han, “Sgrt: A mobile gpu architecture for real-
time ray tracing,” in Proceedings of the 5th high-performance graphics
conference, 2013, pp. 109–119.

[33] M. Stich, “Introduction to NVIDIA RTX and DirectX Ray Tracing,”
2018. [Online]. Available: https://devblogs.nvidia.com/introduction-
nvidia-rtx-directx-ray-tracing/

[34] M.-K. Lefrancois and P. Gautron, “DX12
Raytracing tutorial,” 2018. [Online]. Available:
https://developer.nvidia.com/rtx/raytracing/dxr/DX12-Raytracing-
tutorial-Part-2

[35] C. Gribble, “Multi-hit ray tracing in dxr,” in Ray Tracing Gems.
Springer, 2019, pp. 111–125.

[36] I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci, “Rtx
beyond ray tracing: Exploring the use of hardware ray tracing cores
for tet-mesh point location.” in High Performance Graphics (Short
Papers), 2019, pp. 7–13.

[37] J. Salmon and S. McIntosh-Smith, “Exploiting hardware-accelerated
ray tracing for monte carlo particle transport with openmc,” in 2019
IEEE/ACM Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS). IEEE, 2019, pp. 19–
29.

[38] Nvidia, “Nvidia turing gpu architecture,” 2018. [Online]. Available:
https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf

[39] J. Amanatides, A. Woo et al., “A fast voxel traversal algorithm for ray
tracing.”

[40] D. Yadav, R. Jain, H. Agrawal, P. Chattopadhyay, T. Singh, A. Jain,
S. B. Singh, S. Lee, and D. Batra, “Evalai: Towards better evaluation
systems for ai agents,” 2019.

