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OctoMap-RT: Fast Probabilistic Volumetric Mapping
Using Ray-Tracing GPUs

Heajung Min , Kyung Min Han , and Young J. Kim , Senior Member, IEEE

Abstract—A 3D occupancy map that is accurately modeled after
real-world environments is essential for reliably performing robotic
tasks. Probabilistic volumetric mapping (PVM) is a well-known
environment mapping method using volumetric voxel grids that
represent the probability of occupancy. The main bottleneck of
current CPU-based PVM, such as OctoMap, is determining voxel
grids with occupied and free states using ray-shooting. In this letter,
we propose an octree-based PVM, called OctoMap-RT, using a
hybrid of off-the-shelf ray-tracing GPUs and CPUs to substantially
improve CPU-based PVM. OctoMap-RT employs massively paral-
lel ray-shooting using GPUs to generate occupied and free voxel
grids and to update their occupancy states in parallel, and it ex-
ploits CPUs to restructure the PVM using the updated voxels. Our
experiments using various large-scale real-world benchmarking
environments with dense and high-resolution sensor measurements
demonstrate that OctoMap-RT builds maps up to 41.2 times faster
than OctoMap and 9.3 times faster than the recent SuperRay CPU
implementation. Moreover, OctoMap-RT constructs a map with
0.52% higher accuracy, in terms of the number of occupancy grids,
than both OctoMap and SuperRay.

Index Terms—Mapping, simulation and animation, hardware
-software integration in robotics.

I. INTRODUCTION

3D MAPPING reconstructs the spatial data acquired by a
sensor in a virtual space similar to the real world, and

critically influences the reliability and safety of robot deploy-
ment. There are various robotic applications of 3D mapping [1],
such as 3D mapping for large-scale indoor spaces [2], real-time
mapping for underground exploration [3], and end-to-end 3D
online simultaneous localization and mapping (SLAM) [4]. For
these applications, it is crucial that 3D mapping be executed
robustly and quickly.

A popular strategy for building a volumetric map in 3D is
to reconstruct the environment from a sensor-driven 3D point
cloud [5], [6]. Various sensors, like RGB-D cameras and LiDAR,
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are used to accurately generate 3D point clouds by representing
the environment with high-resolution geometric information.
There are a number of different methods for building maps from
a point cloud considering their information representations, such
as grid-based maps [7], normal distributions transform maps [8],
signed distance fields [5], and adaptive spatial subdivision using
octree [9]. These maps are generated based on an occupancy
estimation of the environment from noisy sensor measurements.
The occupancy map represents the environment using the prob-
abilistic occupancy of obstacles to classify the environment with
occupied space (by obstacles), free space, and unknown space
that has not yet been explored.

The octree-based probabilistic volumetric mapping (PVM)
represents a space using a set of voxels. The 3D space is subdi-
vided into voxels depending on the probabilistic occupancy [10],
considering uncertainties such as sensor noise and dynamic
obstacles. After the range or vision sensor scans the environment
and obtains a point cloud, the sensor origin and each point in the
point cloud define the virtual ray. The voxels that are intersected
by the ray are found and identified as having an occupied or
a free state. The octree is restructured using the found voxels
along with the updated occupancy. In the CPU-based PVM
using octree [6], the voxel determination step that identifies
each voxel’s occupancy status through ray-casting is the most
time-consuming, particularly when the input point cloud is large,
or the sensor range is long. Such cases limit the PVM to a
coarse-level map. Furthermore, the slow voxel determination
process may hinder the robots from conducting online tasks.

Graphics processing units (GPUs) are designed to perform
highly parallel tasks with large datasets and minimal dependen-
cies between data. Notably, dedicated ray-tracing GPUs, such as
RTX GPUs, demonstrate fast performance for massively parallel
ray shooting. In this study, we effectively exploit the ray-tracing
GPUs to mitigate the performance bottlenecks of the CPU-based
PVM based on ray-shooting while still utilizing the CPU to
update the PVM.

Main Results: We propose OctoMap-RT, the octree-based
CPU-GPU hybrid approach that uses dedicated ray-tracing
graphics hardware, to improve the CPU-based PVM substan-
tially. A core idea of this new hybrid approach is to effectively
distribute the CPU and GPU workload depending on the char-
acteristics of processing units and the mapping tasks involved.
Specifically, we employ ray-tracing GPUs to generate voxels
with occupancy states fast and in parallel, and we utilize the
CPU to update the occupancy probability and maintain the
octree. In order to accelerate the voxel determination using
ray-shooting on the GPU, we first determine the compact ray
space where the ray-shooting needs to be performed and then
subdivide it with uniform voxel grids. We then represent the
voxels using a small set of localized axis-aligned bounding
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boxes (AABBs) that the GPU can process. With the AABBs,
we build a bounding volume hierarchy (BVH) on the GPU for
accelerated ray traversal and further optimize it using novel
instanced and shared BVH schemes. Using massively parallel
ray-shooting based on the GPU, we find voxels with occupied
and free states, and we consistently update them by properly
encoding their state information. After the voxels are read back
from the GPU to the CPU, the voxel’s occupancy probability
and the octree are recursively updated in a bottom-up fashion
from the leaf node toward the root node on the CPU. With
our new voxel representations and generation techniques, we
achieve performance improvements up to 41.2 times and 9.3
times over OctoMap and SuperRay CPU implementations in
OctoMap-RT on real-world indoor and outdoor benchmarking
environments. Furthermore, OctoMap-RT constructs a better
PVM with 0.52% higher accuracy, in terms of the number of free
occupancy grids, than both OctoMap and SuperRay owing to the
GPU-based ray shooting. Finding free voxels more accurately
induces more accurate PVM since a robot can access free space
more reliably with accurate occupancy probability. Moreover,
OctoMap-RT can generate voxels 5.3 times faster than our prior
work [11].

The rest of this letter is organized as follows. In Section II,
we summarize previous work that is relevant to ours and provide
an overview of our approach in Section III. We describe our
voxel and BVH representation in Section IV. We describe our
voxel determination in Section V and explain how to update the
occupancy map on the CPU in Section VI. In Section VII, we
present our experiments and results, and we draw the conclusion
in Section VIII.

II. RELATED WORK

This section discusses previous work on PVM for map rep-
resentation, GPU-based octree construction, and ray-tracing
methods based on GPU.

A. Pvm

2D [10] and 3D [7] grids are popular representations for
occupancy maps. However, uniform grids inevitably cause mem-
ory problems, which hinder large-scale and long-term oper-
ations. A well-known strategy for mitigating this problem is
to employ an octree data structure [12]. The authors in [12]
proposed occupancy probability based on octree to consider
sensor noise. OctoMap [6] represented a volumetric occupancy
map that labeled the grid as occupied, free, or unknown states.
Grid-based sampling assumes that each grid’s occupancy is
independent of its neighboring grids. Although this assumption
helps simplify the map, the resulting map suffers from inaccu-
racy due to the discrete nature of grids [13]. However, Gaus-
sian process-based methods [13] consider a continuous spatial
domain rather than discretized space. The normal distributions
transform (NDT) [14] is another approach to discretizing a 3D
volumetric space. In contrast to voxel-based sampling, a cell
in the NDT contains multiple points to form a local Gaussian
distribution. For this reason, NDT is considered a piece-wise
continuous representation of a space where the number of grid
cells is much smaller than that of grid maps. The NDT occupancy
map (NDT-OM) [15] proposed to augment occupancy probabil-
ity to NDT, followed by a real-time version [8] of NDT-OM.
NDT-TM [16] extended NDT-OM using traversability mapping

by computing the permeability of the rays within a cell, and [17]
proposed the decay rate map using the ray length for out-of-range
sensor measurements. Voxfield [5] adopted truncated signed
distance fields (TSDFs) to find the nearest surface using ray
casting. Particle-based mapping represents the occupancy and
the dynamic state of a grid map using a number of particles
or particle weights [18], [19]. Multi-view fusion (MVF) [20]
proposed dynamic voxelization to circumvent memory problems
by dynamically changing the voxel positions and buffer sizes
without loss of point information.

There have been several research efforts to speed up PVM
and improve its performance by reducing ray-casting time.
UFOMap [21] adjusts the depth level of the octree during the
ray-casting stage in an adaptive manner, leading to a more
efficient marching of rays on free voxels that are nonadjacent
to the occupied points. SuperRay [22] reduces the number
of ray traversals by defining a representative ray for a group
of adjacent rays traversing the same voxels. Moreover, this
method culls the unnecessary traversed regions based on the
occupancy state without compromising the mapping accuracy.
The occupancy homogenous mapping (OHM) [7] proposes
GPU-based implementations using ray splitting and rasteriza-
tion to improve occupancy grid maps, NDT algorithms, and
TSDF. However, OHM employs a uniform grid as the underlying
voxel representation rather than an adaptive grid, unlike the
approaches mentioned above. Another GPU-based method is
NanoMap [23], which employs an octree-based voxel repre-
sentation. However, NanoMap does not consider the consistent
occupancy update employed by OctoMap-RT, OctoMap, and
SuperRay, and limits the occupancy probability to a narrow
range. As a result, NanoMap builds a different occupancy
map than OctoMap and SuperRay. Therefore, in Section VII,
we compare the performance of OctoMap-RT to two baseline
methods, OctoMap and SuperRay, based on octree-based voxel
representations. Our prior work [11] improved voxel generation
performance using a ray-tracing GPU over a state-of-the-art
OctoMap CPU implementation but was not fully integrated into
the map-building pipeline. Compared with [11], we propose a
more efficient generation scheme using novel voxel and BVH
representations, which are better suited for large-scale scan data.
Further, we introduce fast, consistent voxel determination during
ray-shooting and integrate a full map-building pipeline using a
novel CPU-GPU hybrid approach.

B. GPU-Based Octree Construction

The octree structure is predominantly used in the computer
graphic domain for various tasks, including distance field gen-
eration, rendering, modeling, simulation, and model reconstruc-
tion [6], [24]. [25] proposed a GPU-based octree construc-
tion for reconstructing surfaces on the GPU. For a large-scale
volumetric scene, a full or out-of-core style octree update to
GPU was studied [26]. Octree can be adjusted dynamically
in real-time in the GPU, as well as one-time construction or
full reconstruction [27]. [28] studied streaming subtree data
through CPU-GPU data transfer in a view-dependent manner.
Recently, [25] supported dynamic topological updates on GPU.
During ray traversals, in order to reduce the cost of neighbors
searching on the octree, [29] used three pre-computed neighbors
per cell to enable stackless ray casting and dynamic updating of
the octree on a GPU. A sparse voxel octree (SVO) showed both
high-quality rendering and efficient ray traversal of shallow tree
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topology for a static scene [26]. OpenVDB [26] used SVO data
structures and was implemented on GPU [25], which enabled
efficient neighbor access using GPU-based ray casting for dy-
namic scenes.

C. GPU-Based Ray Tracing

Ray tracing is a graphical technique that enables the rendering
of a photo-realistic scene. From a given viewpoint, many rays
are fired toward screen pixels until they hit objects in the scene,
and each ray path is traced back to determine the pixel color
of the screen [30]. GPU-based ray tracing has been studied to
accelerate each stage of the ray-tracing pipeline using various
acceleration data structures, such as kd-tree [31] or BVH [32],
traversing acceleration structures like BVH in parallel [33],
and ray-triangle intersections [33]. Recently, a dedicated GPU
platform for accelerating ray tracing was introduced [34]. More-
over, a ray-tracing GPU can be used as a general-purpose GPU
(GPGPU) for computing non-rendering tasks, such as sampling
for simulation, Monte Carlo particle transport, or simulation
for sound propagation in water [35]. Our work also utilizes
ray-tracing GPUs as a GPGPU.

III. PRELIMINARIES AND OVERVIEW

In this section, we identify the main bottleneck of CPU-based
PVM, such as OctoMap, and briefly explain graphics hardware
accelerated ray-shooting. We then provide an overview of our
approach.

A. CPU-Based PVM Using Octree

A sensor scans and generates a 3D point cloud corresponding
to the obstacle surface in the environment. This scanning process
is continuously repeated by changing the sensor location until
the mapping is completed. OctoMap [6] and its variants like
SuperRay [22] discretize the mapped area using the octree vox-
els. Each voxel indicates the occupancy state probabilistically.
OctoMap consists of the following steps to build a PVM:

1) Ray-shooting: The voxel that includes each point of the
3D point cloud corresponds to an occupied voxel. Ray
shooting to find intersected voxels is performed in the
3D uniform grid of voxels where a ray traverses from the
sensor origin to the point cloud. All intersected voxels
correspond to free voxels.

2) Consistent occupancy update: As multiple rays can inter-
sect the same voxel, the voxel’s occupancy information
should be decided consistently from the multiple rays.

3) Octree update: The voxel occupancy probability and the
octree are updated using intersected voxels.

In our experiments, we observe that the processing time to
determine the ray-intersected voxels for a consistent occupancy
update (i.e., the first and second steps of the above process) takes
up about 90% of the map building. To mitigate this bottleneck,
our approach uses a ray-voxel intersection and consistent voxel
determination accelerated by the GPU.

B. Graphics Hardware Accelerated Ray-Shooting

A ray-tracing GPU, such as RTX, is dedicated hardware for
accelerating computationally-intensive ray tracing for photo-
realistic image synthesis. Our mapping problem uses the ray-
tracing GPU as a GPGPU instead of rendering the scene. The

RTX GPUs support parallel BVH construction/traversal and ray-
triangle or ray-AABB intersection tests. In order to leverage the
ray-tracing GPU, an application programming interface (API)
such as DirectX’s DXR has also been introduced [34]. Given
the scene geometry, a BVH is built, and various programmable
shaders are launched using the BVH during ray tracing:

1) The ray generation shader generates rays by specifying the
ray origins, directions, and parametric interval in which
intersections occur along the interval.

2) During BVH traversal, whenever the ray intersects the
leaf nodes of the BVH, the intersection shader is called,
which performs the ray-geometry intersection test to find
the closest hit. If the closest hit is found, it is reported;
otherwise, the hit is ignored to find the next hit.

3) When the entire traversal finishes, if the closest hit is
reported in the intersection shader, the closest hit shader
is called. The closest hit shader calculates shading data at
the hit point and launches the additional ray.

4) If the ray does not intersect any geometry and the closest
hit is absent, the miss shader is executed.

C. Overview of Our Approach

With large point cloud data of high resolution, voxel deter-
mination becomes the bottleneck of a CPU-based PVM, such
as OctoMap. We focus on leveraging ray-tracing GPUs that
support massively parallel ray shooting to speed up CPU-based
PVM. Moreover, we distribute the workload of the CPU and
GPU according to the characteristics of each device and required
tasks. Specifically, a ray-tracing GPU is used for intensive and
regular streaming tasks, such as the BVH construction, ray-voxel
intersection, and occupancy update. In contrast, the CPU handles
irregular workflows, such as updating the voxel’s occupancy
probability and octree. As shown in Fig. 1, OctoMap-RT consists
of the following steps to build a PVM, and each step respectively
corresponds to a blue-boxed enumeration in the figure:

1) Voxel representation (CPU): We estimate the local extent
of sensor measurements to set up the shared ray space
for ray-shooting in order to minimize the size of BVH for
voxels. We subdivide the shared ray space with uniform
voxel grids, map the voxels to AABBs, and build a shared
BVH of AABBs.

2) Ray-shooting (GPU):
a) BVH instancing: When we construct a BVH for a dense

set of AABBs of uniform size, we build a BVH of a
subset of the AABBs and instance it to multiple copies
of BVHs to speed up the construction of the full BVH
and reduce GPU memory consumption.

b) Voxel intersection: We launch rays in a massively-
parallel fashion to find intersected AABBs. AABBs
containing ray endpoints correspond to occupied vox-
els. However, AABBs intersected with the rays corre-
spond to free voxels.

3) Consistent occupancy update (GPU): When a voxel con-
tains ray endpoints and is intersected by other rays, its
state can be classified as both occupied and free due to
parallel processing. We must ensure that such a voxel is
consistently classified as occupied.

4) Voxel readback (GPU→CPU): All voxels with consistent
occupancy information are read from the GPU back to the
CPU.
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Fig. 1. Pipeline of OctoMap-RT consists of intertwined CPU-based serial tasks (gray box) and GPU-based parallel tasks (yellow box). Steps 1 to 2a correspond
to preprocessing and run only once, but steps 2b to 5 are repeated online as new sensor data are measured. In step 3, unknown, free, and occupied voxels are colored
white, green, and blue, respectively, which are encoded as 00 (unknown), 01 (occupied), 10 (free), and 11 (free or occupied).

Fig. 2. Localized voxel mapping. (a) The black-dashed box bounds the sensor
origin (red circle) and point cloud (blue circles). The colored cells are the
candidate voxels for the ray-voxel intersection (green for free and blue for
occupied voxels) and define the ray space (red box) for ray shooting. (b) The
quadtree is updated using the colored cells as leaf nodes.

5) Octree update (CPU): The read voxels are used to update
the occupancy probability and octree.

The voxel representation 1) and BVH instancing 2a) steps in
the pipeline are preprocessed, and the rest are repeated online
as new sensor data is fed into the update loop. In the remaining
sections, we provide detailed explanations of each step.

IV. VOXEL AND BVH REPRESENTATIONS

This section introduces how to specify the 3D uniform grid
space filled with voxels where ray-shooting is performed, and
how to build it into a BVH structure that the ray-tracing GPU
can process.

A. Localized Voxel Mapping

Since the ray-tracing GPU can shoot rays against such ge-
ometric primitives as triangles or AABBs [36], the voxels in
the octree are converted to AABBs, as an AABB accurately
represents a voxel geometry; we can define the AABB’s ge-
ometry using the voxel’s position and size. However, we do
not convert all voxel nodes in the octree into AABBs for ray
shooting; instead, we convert only the leaf-level voxels that may
be intersected by the rays based on the current sensor position.
These leaf-level voxels are used for probabilistic state updates
in the octree in a bottom-up fashion.

Fig. 2 illustrates how to map voxels to AABBs on a GPU using
a quadtree in 2D, instead of an octree, for the sake of simplicity
of illustration. As illustrated in Fig. 2(a), we find the bounding
volume (black-dashed box) that encloses both the sensor ori-
gin in red and the point cloud in blue. Then, we determine a
minimal number of leaf-level voxels that contain the bounding
volume. These voxels are the candidate voxels that are poten-
tially intersected with rays, and they define the ray space (red
box). Fig. 2(b) illustrates the corresponding voxel nodes in the

Fig. 3. Shared BVH. (a) Multiple ray spaces and separate BVH for each ray
space. (b) Shared ray space and a single shared BVH.

quadtree. We convert the candidate voxels to AABBs and upload
them to the GPU. Then, the GPU builds a BVH for ray traversal.

B. Shared BVH

As described in Section IV-A, we define the ray space where
the ray-shooting is performed; whenever the sensor changes its
location, so does the ray space. For instance, as illustrated in
Fig. 3(a), as the sensor scans at the three different locations, three
independent ray spaces (red rectangles) can be defined, and three
BVHs of AABBs (blue grids) need to be constructed. However,
this strategy is inefficient, as the number of different sensor
locations can be arbitrarily high, which makes both the number
of AABBs and their BVH construction time high. Instead, as
shown in Fig. 3(b), we define the shared ray space. The shared
ray space can be pre-computed depending on the extent of
the maximum sensor range and frequency. The extent of the
space can be more tightly determined if the sensor locations are
known beforehand: for example, if the trajectory of sensing is
pre-planned. In this case, we can pre-compute AABBs and their
BVH for the shared ray space, cache the BVH on the GPU,
and reuse the same BVH for the varying sensor locations. This
shared BVH strategy can considerably reduce the memory usage
for AABBs and BVH construction time on the GPU.

C. BVH Instancing

A large scanning environment or high-resolution sensor can
induce a large number of voxel (or AABB) candidates. This
can significantly impact performance in BVH building, as well
as memory consumption by the GPU. In order to alleviate this
issue, we propose a BVH-instancing approach to build the BVH
of AABBs efficiently in terms of both computation time and
memory usage. The main idea is based on the observation that
our candidate voxels have a uniform size of AABBs, and a small
number (typically23 ∼ 29) of AABBs can be instanced to a large
number of AABBs.
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Fig. 4. Two-level BVH instancing. (a) A group of four gray AABBs is
instanced into four copies of red, blue, yellow, and green AABBs with different
transformations. (b) Two-level BVH of the sixteen AABBs. TLAS has four
instances of BVH as leaf nodes (red, blue, yellow, and green nodes), and each
of them points at the BLAS with a different transformation.

We use a two-level BVH to realize BVH instancing; the
bottom-level acceleration structure (BLAS) is a BVH of
AABBs, and the top-level acceleration structure (TLAS) has
a BVH of instanced BVHs (i.e., pointers to the BLAS) with
transformations. For example, as illustrated in Fig. 4, we group
2× 2 adjacent AABBs into one BLAS. The entire set of AABBs
is instanced from the BLAS with proper transformations; for
example, the four BVHs of red, blue, yellow, and green AABBs
are instanced from the gray BVH in Fig. 4.

V. VOXEL DETERMINATION

In this section, we describe an approach to fast voxel deter-
mination using a ray-tracing GPU, and we determine the state
of the voxels.

A. Voxel Intersection

The workspace defining the ray space is discretized into
uniform voxel grids, each mapped to an AABB. Then, the BVH
of the AABBs is built on the GPU, and ray-shooting is performed
to determine the intersected AABBs, or equivalently the voxels,
using various programmable shaders dedicated to GPU-based
ray tracing. In the ray generation shader, rays are massively cast
in parallel from the sensor origin to each point in the scanned
point cloud. The voxels intersected by the rays are determined
using parallel BVH traversal and ray-AABB intersection tests on
the GPU. Whenever a ray intersects an AABB, the intersection
shader is called to determine the intersected AABB. We ignore
the closest hit shader, as we do not calculate shading information.
We label the state of the intersected AABBs containing the ray
endpoints as occupied and the rest of intersected AABBs as free.

B. Consistent Voxel Occupancy State

As illustrated in Fig. 5(a), during the ray-AABB intersection
test, adjacent rays may intersect the same voxel, and each
intersection can yield a different state classification for the
same voxel. This inconsistent voxel classification jeopardizes
the reliability of the built occupancy map. For instance, the
inconsistent classification may create a non-existing void in
the obstacle space. This phenomenon is apparent for the voxels
close to the sensor origin or when the range sensor scans at a
shallow angle. In [6], this problem was handled by sequentially
comparing and removing voxels on the CPU, which causes a
bottleneck in the map updates, as described in the second step
in Section III-A.

Fig. 5. Consistent voxel state. (a) In the orange voxel, three-ray intersections
occur. The blue ray intersection labels the voxel as occupied because the ray
endpoint is included in the voxel, whereas the red ray intersections label the voxel
as free. (b) The voxel has two bits to encode the 00 (unknown), 01 (occupied), 10
(free), and 11 (free or occupied) states. (c) When there is an occupancy conflict,
the occupied state (01) takes precedence over the free state (10). Thus, the orange
voxel in (b) is colored blue (occupied) in (c) instead of green (free).

We address this inconsistent classification during our GPU-
based parallel voxel determination, as illustrated in Fig. 5. The
main idea is that when a voxel is classified as both occupied and
free by different rays, the occupied state takes precedence over
the free state. Specifically, we use two bits to encode the voxel
state information, each representing occupied (least significant
bit) or free (most significant bit) states. In other words, a voxel
can have four state labels 00 (unknown), 01 (occupied), 10 (free),
and 11 (free or occupied). Each ray-voxel intersection modifies
only one of the two bits. When the state information of each
voxel is read from the GPU back to the CPU, an overlapped
occupancy state of 11 is interpreted to the occupied state.

VI. OCCUPANCY MAP UPDATE

Because the CPU is designed to work well for random data ac-
cess and handling irregular workflows, we update the occupancy
probability of the voxel and octree on the CPU. After reading
the voxels back from the GPU, we update the occupancy map
on the CPU as follows. For each voxel with an occupancy label,
if the most significant bit of the label is one, the voxel is updated
as occupied to prioritize the occupied state over the free state.
Otherwise, the voxel is determined to be free and is updated when
the least significant bit of the label is one. We also update the
occupancy probability based on the voxel’s prior probability and
the probability from the current measurement using [10]. Using
these updated voxels as leaf-level nodes, the entire octree nodes
are recursively updated in a bottom-up fashion [6]. To safely
implement the CPU/GPU hybrid mechanism in OctoMap-RT, it
is crucial to enforce synchronized readback between the GPU
and CPU. Specifically, the octree update on the CPU should start
only after the reading of the voxel occupancy data from the GPU
is finished. We use the fence operation available in the modern
graphics API [37] to make the CPU cycle wait for the GPU cycle
to finish sending the voxel data. This occupancy map update
process is repeated whenever new voxel data are generated.

VII. EXPERIMENTS AND RESULTS

In this section, we provide our experimental setup, various
results of the experiments, and discussions of our approach. All
the experiments were conducted on Intel’s i9-13900 K CPU with
64 GB of RAM and NVIDIA’s RTX 4090 GPU. We used Di-
rectX’s DXR as a ray-tracing API with the Microsoft Visual Stu-
dio 2017 C++ programming language under 64-bit Windows 10.

To evaluate OctoMap-RT, we used both real (Fig. 7) and vir-
tual environment (Fig. 8) datasets. As shown in Fig. 7 and Table I,

Authorized licensed use limited to: Ewha Womans Univ. Downloaded on August 24,2023 at 04:23:11 UTC from IEEE Xplore.  Restrictions apply. 



MIN et al.: OctoMap-RT: FAST PROBABILISTIC VOLUMETRIC MAPPING USING RAY-TRACING GPUS 5701

Fig. 6. Performance breakdown of OctoMap-RT and its comparisons against OctoMap and SuperRay in log scale with various voxel dimensions using the datasets
in Fig. 7. For OctoMap and SuperRay, the labels in the stacked bars represent the times for ray data preparation (X), ray-shooting (1), consistent occupancy update
(2), and octree update (3), respectively. For OctoMap-RT, the labels in the stacked bars represent the times for voxel representation (1, CPU), voxel/ray data upload
(Y, from CPU to GPU), voxel intersection (2, GPU), consistent occupancy update (3, GPU), voxel readback (4, from GPU to CPU), and octree update (5, CPU),
respectively. The labels also coincide with the steps in Sections III-A and III-C.

TABLE I
DATASET STATISTICS FOR FIG. 7

Fig. 7. PVM results of OctoMap-RT. The voxels are color-coded depending
on the vertical height from the floor, and the dimension of each voxel is 10 cm3.

Fig. 8. Different sensor positions inside a complex virtual building. The
average number of rays per frame is 76K.

we used four real environment datasets; the FR-079 corridor
and Freiburg campus datasets, based on Lidar sensors, were
obtained from [6], and Ewha-SKT B/D rooms and Ewha-SKT
B/D corridor were acquired using a PrimeSense Carmine 1.09
RGB-D sensor attached to a Fetch mobile robot. The physical
dimension of leaf-level voxels in PVM ranged from 10 cm to
80 cm, reflecting their spatial extent in the real-world environ-
ment. Fig. 8 is a virtual office environment dataset obtained by
a stereo camera attached to a mobile robot [11]. The point cloud
scanned from all datasets is built into an octree with a maximum
depth of 16.

A. Overall Performance and Comparisons

We measured the map-building performance of OctoMap-RT
system using the dataset shown in Fig. 7 and compared it
against two octree-based PVM approaches, OctoMap [6] and
SuperRay [22], as shown in Fig. 6.

Overall improvements: The average performance in building
PVMs using OctoMap-RT compared with OctoMap improved
by a factor of 10.7, 10.1, 25.4, and 26.2, respectively, as shown
in Fig. 6(a)–(d). OctoMap-RT is also 4.2, 4.1, 4.7, and 4.9
times faster than SuperRay in Fig. 6(a)–(d). The performance
improvement depends on the number of rays (or points). Specif-
ically, the more points are scanned, the more voxels need to
be determined, and thus the greater the performance difference
between OctoMap-RT and others becomes. This is evident from
Table I and Fig. 6. The performance improvements shown in
Fig. 6(c) and (d) are greater than that of Fig. 6(a) because the
number of points (or rays) is higher. Meanwhile, the ray length
also impacts the map-building performance of OctoMap-RT as
it will determine the size of the shared ray space, as discussed
in Section IV-B; i.e., long rays create a large ray space. For
example, the number of points in Fig. 6(b) is three times greater
than that in Fig. 6(a), but the performance improvement of shown
in Fig. 6(b) is slightly less than that in Fig. 6(a), as Fig. 6(b)
contains many points far from a sensor, which creates long rays.
Therefore, we anticipate that OctoMap-RT performs well when
a high-resolution sensor scans a dense environment that does
not contain many long passages.

Performance breakdown: Fig. 6 shows that the main bottle-
necks in CPU-based PVM, such as OctoMap and SuperRay, are
ray-shooting and the consistent occupancy update, as shown in
the “[OctoMap] 1+2” dark orange bar and “[SuperRay] 1+2”
dark red bar in Fig. 6. This step corresponds to the very small
“[OctoMap-RT] 2+3+4” cyan bar in Fig. 6, which is significantly
reduced in comparison with OctoMap and SuperRay. The ray
data preparation time “X” indicates the duration required for
transforming point clouds from the sensor coordinate system to
the world coordinate system.

Voxel size factor: Fig. 6 also shows performance improve-
ments within the same dataset depending on the voxel size
while the number of scanned points is fixed; within the same
dataset, the smaller the voxel size, the more voxels need to
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TABLE II
COMPARISONS OF VOXEL GENERATION PERFORMANCE USING FIG. 8

be subdivided for the same ray space, and thus the greater
the performance difference becomes between CPU-based PVM
and OctoMap-RT. For example, in Fig. 6(c), when the voxel
size is 10 cm and 80 cm, OctoMap-RT is 41.2 times and 11.6
times faster than OctoMap, respectively, and 9.3 times and 2.1
times faster than SuperRay, respectively. Therefore, we expect
OctoMap-RT to perform better than CPU-based PVM when a
higher voxel resolution is needed; for example, a small robot is
used to build a map or a narrow passage in the environment.

B. Performance Comparison of Voxel Generation

Min et al. [11] proposed GPU-based voxel generation tech-
niques for OctoMap, which is the main performance bottleneck
in OctoMap. We compare the performance of our OctoMap-RT
against that of Min et al. [11] in terms of voxel generation using
the same benchmark (Fig. 8) provided in [11], where the voxel
generation performance was measured for six different sensor
positions.

As shown in Table II, the voxel generation performance in
OctoMap-RT is 5.3 times faster than in Min et al. [11] on
average, even though the number of voxel grids needed for the
ray-shooting is 7.6 times higher in OctoMap-RT than in [11]; a
higher number of voxel grids in OctoMap-RT is needed since
we need to voxelize the shared ray space at the leaf level,
whereas [11] does so at different levels, i.e., voxels with different
resolutions. Even so, building BVH in OctoMap-RT is 1.4 times
faster than in [11] thanks to the BVH instancing described in
Section IV-C. Moreover, the voxel intersection in OctoMap-RT
still runs 5.3 times faster than in [11] since [11] must refine the
voxel to the leaf level after finding the intersection.

C. Comparisons of Voxels With Occupancy States

It is interesting to note that the numbers of determined voxels
in OctoMap-RT and OctoMap are different due to the different
ray shooting mechanisms; OctoMap-RT uses geometric ray
shooting, whereas OctoMap uses a volume rasterization tech-
nique [38]. Because of this difference, OctoMap may miss some
voxels when the ray intersects their boundaries, while OctoMap-
RT reports all the intersected voxels. For example, as illustrated
in Fig. 9(a) and (b) in 2D, for a single sensor scan, OctoMap-RT
and OctoMap find the same number of occupied voxels in blue
that include the ray endpoints. However, OctoMap-RT finds
more free voxels in green than OctoMap.

Moreover, with more sensor scans, OctoMap-RT may find
more free voxels but fewer occupied voxels than OctoMap. This
is because as OctoMap-RT finds more free voxels, it reduces the
accumulated occupancy probability for the previously believed-
to-be-occupied voxels. This situation is illustrated in Fig. 9(c)
and (d). The thickly bordered voxels in Fig. 9(c) are occupied
because they contain the endpoints of the rays fired from position

Fig. 9. Differences in the number of intersected voxel grids and their occu-
pancy states in OctoMap and OctoMap-RT. (a), (b) Single sensor scan. (c), (d)
Sensor scans from position one followed by position two.

Fig. 10. Number of free/occupied voxels generated using OctoMap (O)
vs. OctoMap-RT (RT) using the benchmarks in Fig. 7. (a) 649K/126K
vs. 651K/125K. (b) 84M /3.2M vs. 85M /3.1M . (c) 209K/99.3K vs.
210K/99.2K. (d) 460K/232.5K vs. 461K/232.1K.

TABLE III
COMPARISONS OF THE GPU MEMORY USAGE IN SHARED BVH

one, but the red ray fired from position two does not intersect
them. However, the same voxels in Fig. 9(d) are switched from
occupied to free because the red ray intersects them, reflected in
the accumulated occupancy probability.

Consequently, OctoMap-RT builds the PVM with more vox-
els than are used in OctoMap, particularly with more free voxels.
Fig. 10 supports this finding using the datasets in Fig. 7 with a
voxel size of 10 cm. The leaf-level voxels consist of occupied
and free voxels. Compared with OctoMap and SuperRay, on
average, OctoMap-RT has 0.52% more leaf-level voxels in total,
0.59% fewer occupied voxels, and 0.65% more free voxels. As
OctoMap-RT maps the free space more accurately than does
OctoMap, robotic navigation tasks that are more delicate, such
as navigating a narrow passage, are achievable based on the
mapping.

D. GPU Memory Usage in Shared BVH

We conducted measurements of the GPU memory usage for
shared BVH with different voxel sizes as shown in Table III
using the dataset of Fig. 7. As the voxel size decreases in each
environment, the number of AABBs filling the shared ray space
increases, resulting in a proportional increase in the size of the
shared BVH memory. Despite such an increase, BVH instancing
has effectively mitigated memory consumption for the large-
scale outdoor environment. For instance, when the voxel size
is 10 cm, even though the shared ray space of Freiburg is 87.5
times larger than that of SKT-Rooms, as shown in Table I, the
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shared BVH’s memory of the former is 5.8 times even smaller
than that of the latter.

VIII. CONCLUSION

In this letter, we propose OctoMap-RT, an octree-based
PVM using a CPU-GPU hybrid approach based on dedicated
ray-tracing graphics hardware. Our experiments show that
OctoMap-RT builds PVM significantly faster than do OctoMap
and SuperRay, and it constructs a map with higher accuracy.
There are a few limitations to our current work. Because our
system is a CPU-GPU hybrid, it suffers from data traffic over-
head between two processing units, which could be resolved by
migrating the CPU task (i.e., octree maintenance) to the GPU
using GPU-based octree construction techniques, as discussed
in Section II-B. Another implementation issue of our current
system is that it relies on the DXR API for GPU-based ray
tracing, which is currently available only under the Windows
OS. However, it is still possible to reproduce our system using
vendor-independent ray tracing APIs such as OptiX [39]. As
per another future work, we plan to release our codes and are
interested in extending our system to manage a large point cloud
on a city scale. We also would like to apply our GPU-based ray
tracing technique to diverse types of PVMs, including NDT,
TSDF, and decay rate maps. Further improvements using GPU-
based octree construction to the OctoMap-RT are to be explored
in future work.
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