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Abstract

Soft object simulation has been an important research area in both computer graphics and
robotics fields. In computer graphics, it is used to make a realistic and visually plausible
animation of soft objects, such as tissues or cloths, and it is applied in computer animation, in
interactive video games, or in virtual reality. In the robotics field, soft object manipulation,
robot-assisted surgery, and bio-inspired soft robots are example of areas that require accurate
deformable simulation.

Finite element method (FEM) is the most popular method employed to simulate the
deformation of soft objects. It discretizes these objects into a network of finite elements (FEs),
such as tetrahedra, and it calculates the deformation of each element based on the relationships
between strain and internal stress imposed by external loads on the object. To apply accurate
responsive forces, one must calculate the proper penetration metric for the deforming elements.

A penetration metric between intersecting objects is used in various fields to generate a
robust movement of these objects in penalty-based simulation or to calculate contact forces as
a haptic feedback in haptic rendering. However, a penetration metric for deformable objects are
relatively less studied, whereas that for rigid objects are extensively investigated.

In this dissertation, we propose a novel penetration metric, called deformable penetration
depth (PDq), to define the measure of inter-penetration between two linearly deforming
tetrahedra by using an object norm. First, we show that a distance metric for a tetrahedron
deforming between two configurations can be found in closed form based on object norm. Then,
we show that the PD4 between an intersecting pair of static and deforming tetrahedra can be
determined by solving a quadratic programming (QP) problem of the distance metric with
nonpenetration constraints over all possible separating directions. We also show that the PDy

between an intersecting pair of two deforming tetrahedra can be more efficiently determined by



solving a similar QP problem under some assumption on separating directions. We have
implemented our algorithm on a standard PC platform using an off-the-shelf QP optimizer, and
we experimentally show that both the static/deformable and deformable/deformable tetrahedra
cases can be solvable in tens of milliseconds. To show the tightness of our distance metric, we
have compared the metric results of PDy against those of rigid penetration depth, and our

results are tighter than those for the rigid case by a factor of three.

Vi



I. Introduction

A. Motivation

Physics-based simulation of soft objects has been widely investigated for many years in the
fields of computer graphics and robotics. To generate a realistic deforming motion of soft
objects, researchers in the field of computer graphics have suggested numerous deformable
models [1], [2], and these models have been applied in various fields, such as in cloth [3] and
hair [4] simulations, in computer animations, and in interactive video games. Surgical
simulation [5] is another important application that requires an accurate simulation of
deformable objects, particularly human body tissues. Since soft object deformation usually
comes with dense contacts, including self-collisions, collision detection and response are also
important considerations in order to achieve a physically plausible simulation..

In the robotics community, the handling of soft objects is increasingly becoming popular
and important. For instance, soft object manipulation is recently gaining wide attention in order
to achieve robust manipulation of real-world demand [6]. Besides grasping soft objects [7],
other applications of deformable object manipulation include string insertion [8] and cloth
folding [9]. Robotic surgery [10] is another huge research area that deals with tissue
deformation. Robots not only can manipulate soft objects but can also be deformed by
themselves. In bio-inspired robotics, compliant actuation is a must in order to mimic biological
entities, resulting in the development of soft robots [11] (Figure 2). In all these areas, as well as
in computer graphics fields, accurate simulation of soft object deformation with intensive
contact is crucial to ensure manipulation robustness and to reduce the manufacturing cost of a

robot.



TRENDS in Biotectnoiogy

Figure 2. Examples of soft robots [11]



The finite element method (FEM) is a general method used to simulate deformable motion
in soft objects with diverse material and structural properties, and it has been extensively
studied for many decades in the area of computer-aided engineering, structural dynamics,
computer animation, and soft robotics [12], [13]. Typically, FEM models soft objects with a
network of many finite elements (FEs), such as tetrahedra. The deformation of these soft objects
is calculated by solving a large system of equations based on constitutive laws, defining the
relationship between strain and internal stress imposed by external loads on the object.
Furthermore, for accurate simulation of contact dynamics using FEM, it is important to define
a proper penetration measure between FEs so that proper responsive forces are applied in order
to simulate their contact behavior.

Penetration metric is a measure of inter-penetration between objects and is often defined as
the minimum distance that can separate intersected objects. Penetration metric is important in
various fields. For instance, it is used to calculate the contact force between colliding objects in
physics-based simulation [14]. In haptic rendering (Figure 4), responsive forces for haptic
feedback is calculated from the penetration metric [15]. It is also used in retraction-based
motion planning to find the contact configurations in a narrow passage [16].

The penetration metric for rigid objects has been extensively studied. The most popular
metric is penetration depth (PD), which is the minimal translation required to resolve the
penetration between rigid objects [17], [18]. In calculating the PD, exact method and
approximation methods are suggested for both convex and non-convex models [19]. Moreover,
translational PD is extended to a generalized PD [20], which uses rigid motion instead of
translation to measure the distance between two configurations of objects. Unfortunately, there
has been no rigorous formulation in the literature to define a penetration measure or metric for

deformable FEs, particularly tetrahedra.



Figure 3. Cataract surgery simulation with FEM meshes [5]

Figure 4. Haptic rendering [15]



B. Research Objectives

Our goal is to propose a novel penetration metric, called deformable penetration depth (PDy),
to define a measure of inter-penetration between two linearly deforming tetrahedra using object
norm [21]. In this dissertation, we define PD4 as the minimal deformation that resolves the
penetration between two linearly deforming tetrahedra. To calculate the PDy, we need to

address the following questions:

e How do we measure the amount of deformation for a tetrahedron?
e How do we set up non-penetration constraints between two tetrahedra?
e How do we calculate minimum deformation that satisfies such non-penetration

constraints?

We provide a geometric (or kinematic) solution to this problem after decoupling it from the
underlying dynamics. To make this problem simple and tractable while keeping the generality
to a reasonable degree, we make the following assumptions about the deformation of a

tetrahedron:

e The tetrahedron is linearly deforming: The displacement of an arbitrary point
inside the tetrahedron can be calculated as a linear combination of the vertices’
displacement, which is often used in conventional FEM simulation [12].

e Separating direction is obtained from the rest configuration: During deformation,
the vertices used to calculate separating direction should always be on the plane

parallel to that of the rest configuration.

Considering the assumptions above, we approach our problem by starting with a simple case
wherein one tetrahedron is static and the other tetrahedron is deforming and then by

generalizing the problem to the case involving two deforming tetrahedra. We also propose a



strategy on how to accelerate the entire computation.

C. Main Contributions

The main contribution of this dissertation are as follows:

To define PDy, we generalize the concept of object norm to a deformable case and
show that a distance metric for a tetrahedron deforming between two configurations

can be found in closed form.

Case 1: We show that the PDy between an intersected pair consisting of one static
and one deforming tetrahedra can be determined by solving a quadratic programming
(QP) problem over all possible separating directions in terms of the distance metric

with non-penetration constraints.

Case 2: We show that the PD4 between an intersected pair of deforming tetrahedra

can be determined by solving a similar QP problem.

Case 3: We approximate case 2 through a rigid PD calculation based on the separating
axis theorem, and we demonstrate that this computation can be accelerated by an
order of magnitude compared with case 2 while keeping the approximation error to

less than 5%.

We compare the metric results of our PDy against those of rigid PD; our results are

three times tighter than the rigid case.



D. Organization

The rest of this dissertation is organized as follows. In the next section, we briefly present
relevant works on PD computation. In Sec. III, we present a closed-form solution of our
penetration metric and subsequently apply it to obtain the PDy for static versus deformable
(Sec. IV) and deformable versus deformable tetrahedral cases (Sec. V). In Sec. VI, we
demonstrate that these solutions can be obtained more rapidly. In Sec. VII, we present various

experimental results of our PD algorithms. We present our conclusions in Sec. VIIIL.



I1. Related Works

A. Penetration Metric for Rigid Objects

Various penetration metrics for rigid objects have been suggested in the literature [19].
Translational PD is the most well-known metric and is defined by a minimal distance that
separates two intersecting objects [17], [18]. They proposed an algorithm to compute exact PD
using the Minkowski sum. However, the time complexity in computing the entire Minkowski
sum is quite high; 0(n?) for convex models and 0(n®) for non-convex models, where n is
the number of polygons in the models. For convex models, approximation methods have been
proposed to reduce the computation time [22], [23]. For non-convex models, the use of exact
PD [24] and approximations [14], [25], [26], [27] and real-time algorithms [28] is suggested.
Moreover, Kim et al. [29] presented a hybrid algorithm that combines local optimization with
machine learning.

Since the penetration metric is commonly used to compute the responsive forces in contact
dynamics, the continuity of the metric in terms of direction and magnitude must be considered;
the Phong projection [30] and the dynamic Minkowski sums [31] are used to compute
continuous PD (Figure 5). Both the positive and negative distances (i.e., PD) and the minimal
distance value over a continuous time interval can be computed [32]. The works of Weller and
Zachmann [33], Allard et al. [34], Wang et al. [35] use penetration volume as a continuous
penetration metric. Also, Nirel and Lischinski [36] present a volume-based global collision
resolution method. The generalized penetration depth (PDg) (Figure 6) is defined as a minimal
rigid transformation through which interpenetrating objects must undergo to resolve the
penetration [20]. Pointwise PD is defined as the distance between the deepest intersecting points

of two objects [37].



(a) Cone/Axes (b) Spoon/Cup (¢) FislyTorus (d) Torus/Torus

Figure 5. Full Minkowski sum (top) and local Minkowski sum (bottom) [31]

(a) (b)

Figure 6. Generalized penetration depth [20]



B. Penetration Metric for Deformable Objects

The computation of penetration metric (or PD) for deformable objects is relatively less studied
compared with that for rigid objects. In particular, no attempt has been made to rigorously
define such a metric, and thus our work tackles this problem.

Distance field-based representations are often used to compute penalty forces for
deformable objects [38]. Distance fields contain the minimal distance of each point in the
embedding space to the object surface. As the object deforms, distance fields should be updated,
and the updating can be accelerated using graphics processing units (GPUs) [39], [40]. Figure
7 shows the deformed distance field inside an object before and after deformation. Heidelberger
et al. [41] has improved the consistency of PD by using a propagation scheme. There are a few
FEM-based methods that calculate penetration metrics. Hirota et al. [42] suggested the use of
material depth, an approximation of distance field, which is the distance between the interior
and object-boundary points. The energy-based method [43] also uses a signed distance in
material space to compute the PD.

Layered depth images (LDIs) [44] are a data structure representing multiple layers of
geometry rendered from a fixed viewpoint (Figure 8). Heidelberger et al. [45], [46] suggested
a method to estimate penetration volume using pixel depths and normals from LDIs. The
methods reported by Faure et al. [47] uses a surface rasterization method based on LDIs [34],
[48] to compute the repulsive forces (Figure 9). However, most of these existing works are
heuristically defined and more importantly, they do not guarantee full separation of intersecting
objects. In other words, all these metrics provide only the lower bound of PD and not the upper

bound, unlike our method.

10



Figure 7. Deformed distance fields [38]

(a) (b) (c)

Figure 8. Layered depth images [48]

O L
wpe

Figure 9. Repulsive force computation using layered depth images [48]
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I1l1. Metric Formulation

In this section, we present the PDy by defining the closed-form of distance metric for
deformable objects using object norm and then demonstrate that PDy is the generalization of

the translational PD for rigid objects.

A. Closed-Form of Distance Metric for Deformable Objects

Given a tetrahedron T € R3® linearly deforming between the rest q, € R!? and the
deformed configurations q; € R'?, an arbitrary point r € 7(q,) and its counterpart p €
T(q,) can be represented by a barycentric coordinate b = (by, by, b3), which is constant
during deformation [13] (also illustrated in Figure 10):

r=r,+ (r, —ry)b; + (r; —19)by + (13 — 1) b3

P =Po + (P1 — Po)b1 + (P2 — Po)b2 + (P53 — Po)bs.

Then, the distance metric 0(qq, q,) using object norm [21], [49] can be formulated as follows:

1
o(aoa) = [ lIp ~ rilav

_ 6f||nb +d,|I%db,

where V = % is the volume of T in terms of the barycentric coordinate, d; = (p; — r;), and

D € R¥3 = [d; — dgld; — dg | d3 — dg]. Equation 1 induces a new tetrahedron T, called

displacement tetrahedron (Figure 11), which has four vertices d; = (p; — 1;),i = 0,--+,3, and

12



the object norm is the sum of the squared distances from dy for vd € 7.
Let d; = (x;,y;,2z;)7. Then, the closed-form solution of the proposed metric can be
calculated as follows:

1
o a) =75 ) did )
Viz/€{0,..3}

Let I; be the inertia tensor of the displacement tetrahedron 7. Then, the moments of

inertia of 14, I,,,1,,,1,,, with constant mass density p; are as follows:

vy’

1
I, = %u‘”det(D)l Z d; [0 e; e5]d;
viz)
1 T
Ly = = ugldet(D)] )" dle; 0 e3ld,
Vizj

1
I, = %pdwet(D)l Z di[e; e; 0]d;

Vizj

where e; is the standard basis for R3. Since |det(D)| = 6V, = 1, where V, is the volume

of T, (which is always = ), then

3 3
0(qo,q1) = — (L + Iy +1,,) = —tr(Iy) 3)
Ha Mg

13



I3

(&) Rest configuration q (b) Deformed configuration q,

Figure 10. Linear deformation of a tetrahedron that resolves inter-penetration

d; = (p3 —13)
d, =(p, —13)
do = (po — o) d, =(p, —1r)

Figure 11. Displacement tetrahedron

14



B. Definition of PDg

We use Equation 2 or 3 to define the PD4 as follows: For an intersecting pair of linearly

deforming tetrahedra, 73, 75, with corresponding initial configurations qgl,qu, their PDy is

D (7 (a'). 7(a) = (qﬁi{?)ecJ o(ay.af) +olaaf) @

where C c R?*is the contact (configuration) space imposed by 77, 7;. In Sec. IV, we present
our PD4 computation algorithm when J; is static; that is, qgl = q{l, and this restriction is

relaxed in Sec. V by allowing both 73, 7, to be deformable.
C. Generalization of Rigid PD

Note that the proposed PDy is a generalization of the classical rigid (or translational) PD [17],
[18]. Since the object norm in Equation 3 can be interpreted as an average displacement of all
the points inside a deformable object during deformation when the object is purely translated
by d, the object norm will be equivalent to the squared norm of the translation vector d from

Equation 2, that is,

1
o==5) dld; = dld; = [ld|? ©)

Thus, according to Equation 4, PD4 = PD when q € SE(3).

15



IV. Static versus Deforming Tetrahedra

In this section, we solve the optimization problem of Equation 4 when 77 is static but 7, is
still deformable. Figure 12 shows the possible contact cases after penetration resolution, as
follows: face—vertex (FV), vertex—face (VF), or edge—edge (EE) contacts, where {s;} c 7] is
a static tetrahedron and {p;} c 7, is a deforming tetrahedron. Since the contact space C in
Equation 4 can be realized by three cases, the normal vector of the contact plane is used as a
direction to separate 73, 75, which can also minimize Equation 4. According to the separating
axis theorem (SAT) [50], the total number of possible separating directions that we need to
consider is 44 given that there are 8 VF (or FV) and 36 EE contact pairs between the two
tetrahedra.

In general, when both 77,7, are deforming, even for linear deformation, the separating
directions can be non-linear, making Equation 4 difficult to solve. In our work, to make the
problem tractable, we assume that the separating directions are always obtained from the rest
configurations qOTl, qu and thus are constant. Note that this is a reasonable assumption unless
objects deform severely, which is reasonable for most practical robotic applications. A vertex
in 73 or 7, is considered constrained if they are involved in calculating the separating
direction (i.e., the contact normal); otherwise, consider it free. For example, if a face normal of
T; (e.g., npy in Figure 12(a)) is selected as a separating direction, the vertices incident to the
face (e.g., So,S1, Sy, in Figure 12(a)) are constrained. After optimization, free vertices may or

may not be on the contact plane, but constrained vertices are always on the plane.

16



A. Separating Direction

Let {s;}c T, {r;}c T (qOTZ),{pi} c 7"2(q{2),i =0, ---,3 be the four vertices of Tl,Tz(qu),
7, (q{z), respectively. We first calculate the constant normal vector of a separating plane using

the rest configurations. Let n be such a normal vector for each contact state. Then the

following is the result of normal vector calculation:

npy = (S; — o) X (s — 8p)
nyp = (r; — 1) X (r; — 1p) (6)

ngg = (r; — 1) X (81 —Sg)

Furthermore, to make the separation direction consistent, the direction is decided based on

the following rules:

1) ngy should be outward from 73.
2) nyg should be inward to 7.
3) ngg should point away from the non-contacting vertices of 73

(e.g., s3,s3 in Figure 12(c)).

Note that the third case for ngg works only when the non-contacting vertices of 7; lie in
the same half-space (Figure 13(a)). If this is not the case (Figure 13(b)), both directions are
tested to minimize Equation 4. There also exist degenerate cases for ngg when two contacting
EE pairs are parallel to each other. In this case, the normal is calculated from the shortest
distance vector between the two EE pairs (Figure 13(c)). When the two EE pairs are co-linear,
the separating direction can be any of the vectors perpendicular to the edge. Thus, we can use
the normal directions of the faces incident to the edges as a candidate separating direction,

which is redundant as it can be covered by the VF or FV cases.

17



(@ FV contact (b) VF contact (c) EE contact

Figure 12. Three contact cases after penetration resolution.

Sy Iy

(&) Normal (b) Undecidable (c) Parallel

Figure 13. Various separating directions n for an EE contact
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B. Non-penetration Constraints

Equation 4 is essentially a constrained optimization problem wherein the constraints are non-
penetration constraints. Due to the constant assumption on the separating directions employed
in Sec. IV-A, we can now linearize the non-penetration constraints and thus set up a solvable
QP problem afterwards. Specifically, we write the non-penetration constraints for each contact
case as follows:

1) FV case (Figure 12(a)): since all the vertices s; of the static tetrahedron 77 lie in the
same half space, we simply impose non-penetration constraints for the vertices p; of the

deforming tetrahedron 7, as below, where s, is the vertex defining the FV contact:

ngy - (p; — o) =0 (7

2) VF case (Figure 12(b)): with constrained vertices (py,k =0,-:-,2) of 7, and free
vertices s;,j = 0,--+,3 of Tj, the free vertex p3 and the constrained vertex p, on the plane,

we formulate seven non-penetration constraints, as follows:

nyg - (Px — Po) =0,
Nyp - (Sj - Po) <0, (8)

nyg - (p3 —Po) =0,

where k € {0,...,2},j €{0,...,3}.
3) EE case (Figure 12(c)): with constrained vertices (Sg, S1, Pg, P1), the free vertices (s,, S3)
should lie in the same half space, and free vertices (p,, p3) should lie in the other half space.

Without loss of generality, assuming that p, is on the separating plane, we can formulate seven

19



constraints.
ngg - (s —po) =0
ngg - (P —Ppo) =0
©)

nEE * (Sj _po) S 0

nEE'(pj_pO) =0

where k € {0,1},j € {2,3}.

C. Constrained Optimization

Considering that we have now set up both an objective function (Equation 3) and non-
penetration constraints for each contact case (Equations 7-9), we now solve the constrained
optimization in Equation 4. Given that the objective function is quadratic and the constraints
are linear, our problem is a QP problem. This problem is solvable given that the objective
function is semi-positive definite and that the constraint space is convex. We use an off-the-

shelf QP solver, such as Gurobi Optimizer [51], to efficiently solve this problem.

20



V. Deforming versus Deforming Tetrahedra

In this section, we extend the optimization problem of Equation 4 to the case where both 73

and T, are deforming.

A. Non-penetration Constraints

The non-penetration constraints used in this section require a new variable, ps € R3, which is
a point on the separating plane that decides on the position of the plane. For the static and
deforming tetrahedron case, the position of a separating plane is automatically decided once we
have determined the separating direction since there will be at least one vertex in the static
tetrahedron involved in contact. But now, not only the configurations of both tetrahedra but also
the position of the separating plane should be optimized at the same time because there is no
static vertex to determine the position of it .

When pg is introduced, it becomes easier to write the constraints since we do not need to
consider which vertex to select as a point on the plane. As illustrated in Figure 14, the
constrained vertices (red) should lie on the separating plane and the free vertices (black) should
lie on either side of the plane while pg constrains the location of the separating plane. The only
difference between each contact case is the separating direction and the set of constrained
vertices, namely, C; for 77 and C, for J3; for instance, Cs = {So,$1,5,},C, = @ in Figure
14(a) and Cs = {s¢,51},Cp = {Po,P1} in Figure 14(b). Once they are decided, we can write
the non-penetration constraints in a more general form than those presented in Sec. IV. When a
separating direction n for each contact case is chosen based on the corresponding constrained

vertices s. € 73, p. €7 and on the free vertices s € 7;, py €7, of each deforming

21



tetrahedron 73, 73, the eight non-penetration constraints can be formulated as follows:

n-(s,—ps) =0Vs. €C,,
n-(p.—ps) =0,Vp. € Cp'

(10)
n- (sf —ps) <0,Vs; €F,

n(pf—ps)ZO,foET,

where F;, F, are the set of free vertices for T3, T3, respectively.

The non-penetration constraints for the static/deforming tetrahedron in Sec. IV can be
viewed as a special case of this form, where s. and sy are fixed and pg is chosen among the
constrained vertices. For example, in FV case, since C,, = @, the second constraint in Equation
10 can be ignored. Moreover, as p, is chosen from Cg, the first and third constraints in
Equation 10 are automatically satisfied, and the rest of the four constraints remain just like in
Equation 7. The VF case (Equation 8) and EE case (Equation 9) have seven constraints because

the chosen constrained vertex removes one of the equality constraints; for example, since pg =
Po € Cp, n- (po — Po) = 0.

B. Constrained Optimization

Similar to that in the previous section, PDy4 can be calculated by solving the QP problem of
Equation 4. Note that the non-penetration constraints in Equation 10 are still linear since the

separating directions are constant.
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(@) FV or VF case (b) EE case

Figure 14. Constrained vertices (red) and free vertices (black) defined by pq
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V1. Acceleration Technique

In order to compute the PDy, we need to solve a QP problem with constraints, each of which
is associated with a separation direction; the entire solution typically takes tens of milliseconds
to be completed with the use of an off-the-shelf QP solver. However, if we can pre-select a set
of candidate directions that possibly includes the optimal separating direction, we can
significantly reduce the overall computation time. Under the hypothesis that the deformation of
soft objects is not severe, we assume that the penetration (equivalently separating) direction for
deformable objects is close to the penetration direction when the objects behave rigidly.
Moreover, in our experiment, we find that, on average, 52.33% of the results obtained by rigid
PD coincides with the optimal direction after running full optimization on PDg.

To leverage this observation and to accelerate PD4 computation, we calculate the rigid PD
based on SAT [50] and feed it to the optimization problem in Equation 4; this approach is

equivalent to using a single contact constraint in Equation 4.

A. Rigid PD Calculation using SAT

Rigid PD can be determined through various methods, such as using the GJK algorithm or
Minkowski sums [17], [18]. However, we choose to use a SAT-based algorithm since our PDy
algorithm can be considered as a general case of PD and can be implemented similar to that in
[52]. In this section, we show that the PD between two intersected tetrahedra can be calculated
using the SAT. Specifically, we prove that the PD is equal to the smallest overlapping length

projected over all possible separating axes in the SAT.
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Definition 1. The projected length L,(T) of a given simplicial complex T along an axial

direction n 1is defined as follows:
Ly(7) = max({|(x; — x;) - n| |vx;,x; € T}) (11)

where X;,X; are the vertices in T'. Then, the pair of vertices X;,X; that realizes the projected

length L,(T) is called the supporting vertices for n.
Theorem 1. The PD of two intersected tetrahedra 73,7, can be calculated as follows:
PD(71,72) = min({Ly(71) + Lp(T2) — Ly(T1 U T2)| Vn € N}) (12)
where N = {npy, nyg, Ngp} is a set of possible separating directions between 77, 75.
Proof. According to the SAT [50], two convex objects J7,75 do not overlap if there exists a
separating axis n that prevents the axial projection of 77,7, onto n from overlapping.
The SAT can be rewritten using Equation 11 as follows:
AnEN, Ly(T1 U T) = Lp(T7) + Ln(T3). (13)
Thus, if two objects are interpenetrated, L,(77) + L,(7) —L,(7; U T5) > 0 for vn.

Let € be the result of evaluating Equation 12 and m be the corresponding separating direction.

Thus,

m = argmin{(Ly(7}) + Ln(T3) — Ly(T; U T3))|vn € N} (14)
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Then, we can prove Theorem 1 by showing that

1. em separates J; and 7, by translation; and

2. ¢ is the smallest magnitude among such translations.

Let 7}, 7, be the tetrahedra of 77,7, translated by em. Since these tetrahedra are not rotated,

the projected length of each tetrahedron on the axis m is the same as before translation:

Lin(T1) = L (77)

Lin(T2) = L (T3)

(15)

Since the direction of the translation is the same as the projection axis, the length of the
translation vectoris |em - m| = . Then, the entire projected length of the translated tetrahedra

is as follows:

Ln(T{ UTY) = Ln(T U T3) + &
= Lm(Tl U TZ) + Lm(Tl) + Lm(TZ) - Lm(g-i U TZ)
(16)
= Lm(:]-i) + Lm(TZ)

= Lm(Tll) + Lm(Tzl):

implying that the two tetrahedra translated by em do not overlap because of the SAT. Figure
15 shows an example of two tetrahedra projected on the axis m before and after translation
em, where m is the face normal of J;. The projected length of each tetrahedron does not

change during the translation.
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Let M be an arbitrary translation that separates 73,7;, and let 7;, 7, be the translated
copies of the tetrahedra. Since 7;, 7, are separated, according to the SAT, there exists a
separating axis N that satisfies Lﬁ(fl U Tz) > Lﬁ(ﬁ) + Lﬁ(ffz).For the given set 73 U 7,
and the direction 1, let x; and X, be the two supporting vertices used to calculate the

projection Lz(77 U T5) = |(x, — x4) - .

Now, suppose that these two vertices can support the tetrahedra even after being translated
by &€m (Figure 16(a)), and let X; and X, be the corresponding vertices after translation.

Then the displacement between the two vertices after translation can be calculated as follows:

Xz_i1=X2_X1+€fii.

The projected length is Lz(7; U 73) = |(X, — %,) - il = |(X; — x4 + efii) - fi|. Then,

Lg(T U T3) + [Em - fi| = [(x; —x4) - fi] + |efi - 0]
> |(x; —xq) A +efi-fi| = L (7, U 5) (17)

> La(T) + La(T3) = La(@) + La(T3)

Otherwise, the supporting vertices are changed after translation (Figure 16(b)). Let X7, X
be the supporting vertices after translation and X3, X, be the corresponding vertices before
translation. Then, Lﬁ(ﬁ U TZ) = [(X, — X7) - | = |(x;, —x] + em) - fi|. Since x; and X/
are not the supporting vertices before translation, according to Equation 11, the projected length
of x; and X, must be smaller than that of supporting vertices X;, X,: i.e.,, L(3 U T3) =

|(x, — x4) - fi| = |(x5 —x7) - fi]. Thus,
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LTV T3) + |ém - a] = [(x; —x,) - ] + |ém - @]
> |(xz —x1) - | + |em - |
(18)

> |(xy—x1)-A+em-fi| = Lx(7, U T)

> Lu(7) + La( T2) = La(T) + La(T3)

Figure 16 shows an example of an arbitrary translation €m that separates two tetrahedra
and their projection on the separating axis fi. Figure 16(a) and Figure 16(b) show two cases of
projection results according to the changes in supporting vertices before and after translation.
In either case, we can see that |&ni - fi| > Lﬁ(f]) + Lﬁ(f"z) —Lg(T; U T3).

Since |m| = |@| =1,

£ > £ - i

> Lg(%) + La( %) — La(T U T3) (19)

v

€

Therefore, € is the minimum translational distance that separates 73, 7,. =
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B. Acceleration using Rigid PD

Rigid PD can now be computed by calculating the smallest overlapping length of tetrahedra
projected over all possible separating axes in SAT. This SAT-based approach is fast and simple
to implement because it only needs projection and comparison functions. We can use the
corresponding direction and resulting contact features to formulate non-penetration constraints
of the QP problem. We have compared the results with that of full optimization over all possible
separating direction, and find that the approximation error is below 5%. Interestingly, instead
of taking the “minimum direction” in Equation 12, even if we take only the first six directions
with ascending order of minimum distances, more than 90% of PDy direction in Sec. V can
be still found. This observation opens up a new possibility of reducing the possible error in this

approximation while spending a little more time on search.
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VII. Results

In this section, we show the implementation results of our PD algorithms for static/deformable
case, deformable/deformable case, and deformable/deformable case with acceleration. In our
experiments, the target tetrahedra are randomly generated, which are bounded by a cube with a
side length of 10. We have tested 10* intersecting pairs of tetrahedra with different volume
sizes ranging from 0.1 to 130, and we have computed their PDg4’s. We have implemented our
algorithms using C++ on a Windows 10 PC with an AMD Rizen7 1700x 3.6GHz CPU, and
32GB memory. We have used the Gurobi Optimizer to solve the QP problems. Figure 17 shows

the overall structures of the implementations.

I y v v
Case 3
Rest configuration Case 1 Case 2 Calculate PDy for
. Calculate PDq for Calculate PD4 for
of interpenctrated static/deformable deformable/deformable deformable/deformable
tetrahedra 77, 75 with acceleration
v v v
Ti gl
%™ % Calculate possible separating directions Calculate rigid PD
v v v v
Distance metric Setup non- Setup non- .
. . Setup non-penetration
T T T T, penetration penetration constraints for n
7 (qO U ) ta (qo 14 ) constraints for ny constraints for ny,
v v v
Solve QP problem using Gurobi optimizer
Find a contact configuration PD
with minimum deformation d

Figure 17. Implementation overview

We also implemented GUI (Figure 18) using OpenGL so that users can easily check out the

rest configurations, optimized configurations, and every deformed result of all possible
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separating directions in 3D scene. Simple animation is also implemented to show the
deformation of two tetrahedra from the rest configuration to the optimized, penetration-resolved

configurations.

A. Performance

As illustrated in Figure 19, every result using PDy resolves penetration. Figure 19(a) shows
the initial penetrated state of two tetrahedra. In Figure 19(b)—(d), the solid colored tetrahedra
are the results, as follows: PDgq = 0.5692 and 0.3469, PD = 1.496, respectively. The average
performance results of each case are shown in Table. I. The running time for the
static/deformable case is slightly faster than the deformable/deformable case since a fewer
number of variables are required for optimization. The accelerated deformable/deformable case
can be calculated in 1.07 ms on the average. Figure 20 and Figure 21 are the example of all
possible deformed configurations over 44 separating directions for static/deformable and
deformable/deformable cases, respectively. Two intersected tetrahedra in light color show the
rest configurations and tetrahedra in pink and purple show the resulting deformed state using

PDy; the contact configuration with smallest deformation among all possible results.

Table 1. Performance Statistics

Criterion STAT/DEF DEF/DEF | DEF/DEF(ACCELL.)
Performance 32.26 ms 46.29 ms 1.07 ms
(ggiﬁi?d 43.59% 27.94% 29.39%
0 0 0
Do (13.17%) (3.15%) (3.47%)
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(@) Penetration State (b) Static/Deformable

(c) Deformable/Deformable (d) Rigid PD

Figure 19. Implementation results for PD4 and rigid PD.

34






Figure 21. All possible deformed configurations for the deformable/deformable case
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B. Discussion

To the best of our knowledge, there are no available PD algorithms for deformable models that
guarantee full separation (i.e., penetration metric with a tight upper bound). All the known PD
algorithms for deformable models provide only a lower bound, which does not guarantee a full
penetration resolution. Thus, it is unfair to compare our algorithms against the existing
algorithms for deformable models; instead, we compare our algorithms with rigid PD, which
can be considered as an upper bound for PDg.

In this case, to show the tightness of the metric upper bounds, we calculate the relative
magnitude of PDy with respect to rigid PD. Figure 22 shows the relative magnitude of PDy
over rigid PD in penetration resolution tests of 10* randomly intersecting tetrahedron pairs.
The average magnitude is 27.94 with a standard deviation of 3.15%. This result demonstrates

that PD4q provides a much tighter deformation metric than the rigid PD.

Relative Magnitude (PD4/PD)

1 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Test Case #

Figure 22. Relative magnitude of PD4 over rigid PD

37



VIIl. Conclusion

We have formulated a new penetration metric based on object norm for a pair of intersecting
tetrahedra undergoing linear deformation. The new metric, called PD4, optimizes an average
displacement of all the points inside the tetrahedra undergoing linear deformation to separate
these tetrahedra. PDy can be computed by solving a QP problem based on the distance metric
with non-penetration constraints. We have implemented three cases of computing PDg4, namely,
rigid versus deformable case and deformable versus deformable case with and without
acceleration. Our experimental results show that we can compute PDy in a fraction of
milliseconds for intersecting, deformable tetrahedra.

There are a few limitations to our algorithm. To derive a tractable optimization problem for
PDg4, we have assumed that the separation direction can be obtained from the rest pose of
deforming tetrahedra. Even though the proposed method is straightforwardly extendable to a
set of tetrahedra by applying our metric to each element in the set, it would be interesting to
pursue a technique that accelerates this computation to make it more useful for FEM-type
simulation. One plausible direction would be to combine the iterative contact space projection
technique [28] with our deformable metric. Our metric does not guarantee volume preservation

during deformation, which is another interesting topic for a future work.
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