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Abstract

 

 

Soft object simulation has been an important research area in both computer graphics and 

robotics fields. In computer graphics, it is used to make a realistic and visually plausible 

animation of soft objects, such as tissues or cloths, and it is applied in computer animation, in 

interactive video games, or in virtual reality. In the robotics field, soft object manipulation, 

robot-assisted surgery, and bio-inspired soft robots are example of areas that require accurate 

deformable simulation. 

Finite element method (FEM) is the most popular method employed to simulate the 

deformation of soft objects. It discretizes these objects into a network of finite elements (FEs), 

such as tetrahedra, and it calculates the deformation of each element based on the relationships 

between strain and internal stress imposed by external loads on the object. To apply accurate 

responsive forces, one must calculate the proper penetration metric for the deforming elements. 

A penetration metric between intersecting objects is used in various fields to generate a 

robust movement of these objects in penalty-based simulation or to calculate contact forces as 

a haptic feedback in haptic rendering. However, a penetration metric for deformable objects are 

relatively less studied, whereas that for rigid objects are extensively investigated. 

In this dissertation, we propose a novel penetration metric, called deformable penetration 

depth (PDd ), to define the measure of inter-penetration between two linearly deforming 

tetrahedra by using an object norm. First, we show that a distance metric for a tetrahedron 

deforming between two configurations can be found in closed form based on object norm. Then, 

we show that the PDd between an intersecting pair of static and deforming tetrahedra can be 

determined by solving a quadratic programming (QP) problem of the distance metric with 

nonpenetration constraints over all possible separating directions. We also show that the PDd 

between an intersecting pair of two deforming tetrahedra can be more efficiently determined by 
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solving a similar QP problem under some assumption on separating directions. We have 

implemented our algorithm on a standard PC platform using an off-the-shelf QP optimizer, and 

we experimentally show that both the static/deformable and deformable/deformable tetrahedra 

cases can be solvable in tens of milliseconds. To show the tightness of our distance metric, we 

have compared the metric results of PDd  against those of rigid penetration depth, and our 

results are tighter than those for the rigid case by a factor of three. 
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I. Introduction 

 

A. Motivation 

 

Physics-based simulation of soft objects has been widely investigated for many years in the 

fields of computer graphics and robotics. To generate a realistic deforming motion of soft 

objects, researchers in the field of computer graphics have suggested numerous deformable 

models [1], [2], and these models have been applied in various fields, such as in cloth [3] and 

hair [4] simulations, in computer animations, and in interactive video games. Surgical 

simulation [5] is another important application that requires an accurate simulation of 

deformable objects, particularly human body tissues. Since soft object deformation usually 

comes with dense contacts, including self-collisions, collision detection and response are also 

important considerations in order to achieve a physically plausible simulation.. 

In the robotics community, the handling of soft objects is increasingly becoming popular 

and important. For instance, soft object manipulation is recently gaining wide attention in order 

to achieve robust manipulation of real-world demand [6]. Besides grasping soft objects [7], 

other applications of deformable object manipulation include string insertion [8] and cloth 

folding [9]. Robotic surgery [10] is another huge research area that deals with tissue 

deformation. Robots not only can manipulate soft objects but can also be deformed by 

themselves. In bio-inspired robotics, compliant actuation is a must in order to mimic biological 

entities, resulting in the development of soft robots [11] (Figure 2). In all these areas, as well as 

in computer graphics fields, accurate simulation of soft object deformation with intensive 

contact is crucial to ensure manipulation robustness and to reduce the manufacturing cost of a 

robot.  
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Figure 1. Cloth simulation [3] 

 

 

Figure 2. Examples of soft robots [11] 
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The finite element method (FEM) is a general method used to simulate deformable motion 

in soft objects with diverse material and structural properties, and it has been extensively 

studied for many decades in the area of computer-aided engineering, structural dynamics, 

computer animation, and soft robotics [12], [13]. Typically, FEM models soft objects with a 

network of many finite elements (FEs), such as tetrahedra. The deformation of these soft objects 

is calculated by solving a large system of equations based on constitutive laws, defining the 

relationship between strain and internal stress imposed by external loads on the object. 

Furthermore, for accurate simulation of contact dynamics using FEM, it is important to define 

a proper penetration measure between FEs so that proper responsive forces are applied in order 

to simulate their contact behavior. 

Penetration metric is a measure of inter-penetration between objects and is often defined as 

the minimum distance that can separate intersected objects. Penetration metric is important in 

various fields. For instance, it is used to calculate the contact force between colliding objects in 

physics-based simulation [14]. In haptic rendering (Figure 4), responsive forces for haptic 

feedback is calculated from the penetration metric [15]. It is also used in retraction-based 

motion planning to find the contact configurations in a narrow passage [16]. 

The penetration metric for rigid objects has been extensively studied. The most popular 

metric is penetration depth (PD), which is the minimal translation required to resolve the 

penetration between rigid objects [17], [18]. In calculating the PD, exact method and 

approximation methods are suggested for both convex and non-convex models [19]. Moreover, 

translational PD is extended to a generalized PD [20], which uses rigid motion instead of 

translation to measure the distance between two configurations of objects. Unfortunately, there 

has been no rigorous formulation in the literature to define a penetration measure or metric for 

deformable FEs, particularly tetrahedra.  
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Figure 3. Cataract surgery simulation with FEM meshes [5] 

 

 

 
Figure 4. Haptic rendering [15] 
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B. Research Objectives 

 

Our goal is to propose a novel penetration metric, called deformable penetration depth (PDd), 

to define a measure of inter-penetration between two linearly deforming tetrahedra using object 

norm [21]. In this dissertation, we define PDd as the minimal deformation that resolves the 

penetration between two linearly deforming tetrahedra. To calculate the PDd , we need to 

address the following questions: 

• How do we measure the amount of deformation for a tetrahedron? 

• How do we set up non-penetration constraints between two tetrahedra? 

• How do we calculate minimum deformation that satisfies such non-penetration 

constraints?  

We provide a geometric (or kinematic) solution to this problem after decoupling it from the 

underlying dynamics. To make this problem simple and tractable while keeping the generality 

to a reasonable degree, we make the following assumptions about the deformation of a 

tetrahedron: 

• The tetrahedron is linearly deforming: The displacement of an arbitrary point 

inside the tetrahedron can be calculated as a linear combination of the vertices’ 

displacement, which is often used in conventional FEM simulation [12]. 

• Separating direction is obtained from the rest configuration: During deformation, 

the vertices used to calculate separating direction should always be on the plane 

parallel to that of the rest configuration.  

Considering the assumptions above, we approach our problem by starting with a simple case 

wherein one tetrahedron is static and the other tetrahedron is deforming and then by 

generalizing the problem to the case involving two deforming tetrahedra. We also propose a 
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strategy on how to accelerate the entire computation.  

 

C. Main Contributions 

 

The main contribution of this dissertation are as follows: 

 

• To define PDd, we generalize the concept of object norm to a deformable case and 

show that a distance metric for a tetrahedron deforming between two configurations 

can be found in closed form. 

 

• Case 1: We show that the PDd between an intersected pair consisting of one static 

and one deforming tetrahedra can be determined by solving a quadratic programming 

(QP) problem over all possible separating directions in terms of the distance metric 

with non-penetration constraints. 

 

• Case 2: We show that the PDd between an intersected pair of deforming tetrahedra 

can be determined by solving a similar QP problem.  

 

• Case 3: We approximate case 2 through a rigid PD calculation based on the separating 

axis theorem, and we demonstrate that this computation can be accelerated by an 

order of magnitude compared with case 2 while keeping the approximation error to 

less than 5%.  

 

• We compare the metric results of our PDd against those of rigid PD; our results are 

three times tighter than the rigid case.   
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D. Organization 

 

The rest of this dissertation is organized as follows. In the next section, we briefly present 

relevant works on PD computation. In Sec. III, we present a closed-form solution of our 

penetration metric and subsequently apply it to obtain the PDd for static versus deformable 

(Sec. IV) and deformable versus deformable tetrahedral cases (Sec. V). In Sec. VI, we 

demonstrate that these solutions can be obtained more rapidly. In Sec. VII, we present various 

experimental results of our PD algorithms. We present our conclusions in Sec. VIII. 
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II. Related Works 

 

A. Penetration Metric for Rigid Objects 

 

Various penetration metrics for rigid objects have been suggested in the literature [19]. 

Translational PD is the most well-known metric and is defined by a minimal distance that 

separates two intersecting objects [17], [18]. They proposed an algorithm to compute exact PD 

using the Minkowski sum. However, the time complexity in computing the entire Minkowski 

sum is quite high; O(𝑛2) for convex models and O(𝑛6) for non-convex models, where 𝑛 is 

the number of polygons in the models. For convex models, approximation methods have been 

proposed to reduce the computation time [22], [23]. For non-convex models, the use of exact 

PD [24] and approximations [14], [25], [26], [27] and real-time algorithms [28] is suggested. 

Moreover, Kim et al. [29] presented a hybrid algorithm that combines local optimization with 

machine learning. 

Since the penetration metric is commonly used to compute the responsive forces in contact 

dynamics, the continuity of the metric in terms of direction and magnitude must be considered; 

the Phong projection [30] and the dynamic Minkowski sums [31] are used to compute 

continuous PD (Figure 5). Both the positive and negative distances (i.e., PD) and the minimal 

distance value over a continuous time interval can be computed [32]. The works of Weller and 

Zachmann [33], Allard et al. [34], Wang et al. [35] use penetration volume as a continuous 

penetration metric. Also, Nirel and Lischinski [36] present a volume-based global collision 

resolution method. The generalized penetration depth (PDg) (Figure 6) is defined as a minimal 

rigid transformation through which interpenetrating objects must undergo to resolve the 

penetration [20]. Pointwise PD is defined as the distance between the deepest intersecting points 

of two objects [37]. 
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Figure 5. Full Minkowski sum (top) and local Minkowski sum (bottom) [31] 

 

 

 

Figure 6. Generalized penetration depth [20]  
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B. Penetration Metric for Deformable Objects 

 

The computation of penetration metric (or PD) for deformable objects is relatively less studied 

compared with that for rigid objects. In particular, no attempt has been made to rigorously 

define such a metric, and thus our work tackles this problem.  

Distance field-based representations are often used to compute penalty forces for 

deformable objects [38]. Distance fields contain the minimal distance of each point in the 

embedding space to the object surface. As the object deforms, distance fields should be updated, 

and the updating can be accelerated using graphics processing units (GPUs) [39], [40]. Figure 

7 shows the deformed distance field inside an object before and after deformation. Heidelberger 

et al. [41] has improved the consistency of PD by using a propagation scheme. There are a few 

FEM-based methods that calculate penetration metrics. Hirota et al. [42] suggested the use of 

material depth, an approximation of distance field, which is the distance between the interior 

and object–boundary points. The energy-based method [43] also uses a signed distance in 

material space to compute the PD.  

Layered depth images (LDIs) [44] are a data structure representing multiple layers of 

geometry rendered from a fixed viewpoint (Figure 8). Heidelberger et al. [45], [46] suggested 

a method to estimate penetration volume using pixel depths and normals from LDIs. The 

methods reported by Faure et al. [47] uses a surface rasterization method based on LDIs [34], 

[48] to compute the repulsive forces (Figure 9). However, most of these existing works are 

heuristically defined and more importantly, they do not guarantee full separation of intersecting 

objects. In other words, all these metrics provide only the lower bound of PD and not the upper 

bound, unlike our method. 
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Figure 7. Deformed distance fields [38] 

 

 

Figure 8. Layered depth images [48] 

 

 

Figure 9. Repulsive force computation using layered depth images [48] 
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III. Metric Formulation 

 

In this section, we present the PDd  by defining the closed-form of distance metric for 

deformable objects using object norm and then demonstrate that PDd is the generalization of 

the translational PD for rigid objects.  

 

A. Closed-Form of Distance Metric for Deformable Objects 

 

Given a tetrahedron  𝒯 ∈ ℝ3  linearly deforming between the rest 𝐪0  ∈  ℝ12   and the 

deformed configurations 𝐪1  ∈  ℝ12,  an arbitrary point 𝐫 ∈ 𝒯(𝐪0)  and its counterpart 𝐩 ∈

𝒯(𝐪1)  can be represented by a barycentric coordinate  𝐛 = (𝑏1, 𝑏2, 𝑏3) , which is constant 

during deformation [13] (also illustrated in Figure 10): 

 

 
𝐫 = 𝐫0 + (𝐫1 − 𝐫0)𝑏1 + (𝐫2 − 𝐫0)𝑏2 + (𝐫3 − 𝐫0)𝑏3 

𝐩 = 𝐩0 + (𝐩1 − 𝐩0)𝑏1 + (𝐩2 − 𝐩0)𝑏2 + (𝐩3 − 𝐩0)𝑏3. 
 

 

Then, the distance metric σ(𝐪0, 𝐪1) using object norm [21], [49] can be formulated as follows: 

 

 

σ(𝐪0, 𝐪1) =
1

𝑉
∫‖𝐩 − 𝐫‖2𝑑𝑉 

= 6 ∫‖𝐃𝐛 + 𝐝0‖2𝑑𝐛, 

(1) 

 

where 𝑉 =
1

6
 is the volume of 𝒯 in terms of the barycentric coordinate, 𝐝𝑖 = (𝐩𝑖 − 𝐫𝑖), and 

𝐃 ∈ ℝ3×3 = [𝐝𝟏 − 𝐝𝟎|𝐝𝟐 − 𝐝𝟎 | 𝐝𝟑 − 𝐝𝟎]. Equation 1 induces a new tetrahedron 𝒯𝒹, called 

displacement tetrahedron (Figure 11), which has four vertices 𝐝𝑖 = (𝐩𝑖 − 𝐫𝑖), 𝑖 = 0, ⋯ ,3, and 
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the object norm is the sum of the squared distances from 𝐝𝟎 for ∀𝐝 ∈ 𝒯𝒹. 

Let 𝐝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)𝑇 . Then, the closed-form solution of the proposed metric can be 

calculated as follows: 

 σ(𝐪0, 𝐪1) =
1

10
  ∑ 𝐝𝑖

𝑇𝐝𝑗

∀𝑖≥𝑗∈{0,…,3}

 (2) 

 

Let 𝐈𝑑  be the inertia tensor of the displacement tetrahedron 𝒯𝒹 . Then, the moments of 

inertia of 𝐈𝑑 , 𝐈𝑥𝑥 , 𝐈𝑦𝑦, 𝐈𝑧𝑧, with constant mass density μ𝑑 are as follows:  

 

 

𝐈𝑥𝑥 =
1

60
μ𝑑|𝑑𝑒𝑡(𝐃)| ∑ 𝐝𝑖

𝑇[𝟎 𝐞𝟐 𝐞𝟑]𝐝𝑗

∀𝑖≥𝑗

 

𝐈𝑦𝑦 =
1

60
μ𝑑|𝑑𝑒𝑡(𝐃)| ∑ 𝐝𝑖

𝑇[𝐞𝟏 𝟎 𝐞𝟑]𝐝𝑗

∀𝑖≥𝑗

 

𝐈𝑧𝑧 =
1

60
μ𝑑|𝑑𝑒𝑡(𝐃)| ∑ 𝐝𝑖

𝑇[𝐞𝟏 𝐞𝟐 𝟎]𝐝𝑗

∀𝑖≥𝑗

, 

 

 

where 𝐞𝑖 is the standard basis for ℝ3. Since |𝑑𝑒𝑡(𝐃)| = 6𝑉𝑑 = 1, where 𝑉𝑑 is the volume 

of 𝒯𝒹 (which is always 
1

6
 ), then 

 

 σ(𝐪𝟎, 𝐪𝟏) =
3

μ𝑑
(𝐈𝑥𝑥 + 𝐈𝑦𝑦 + 𝐈𝑧𝑧) =

3

μ𝑑
tr(𝐈𝑑) (3) 
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(a) Rest configuration 𝐪0 (b) Deformed configuration 𝐪1 

Figure 10. Linear deformation of a tetrahedron that resolves inter-penetration 

 

 

 

 
Figure 11. Displacement tetrahedron 
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B. Definition of PDd 

 

We use Equation 2 or 3 to define the PDd  as follows: For an intersecting pair of linearly 

deforming tetrahedra, 𝒯1, 𝒯2, with corresponding initial configurations 𝐪0
𝒯1 , 𝐪𝟎

𝓣𝟐 , their PDd is 

 

 PDd (𝒯1(𝐪0
𝒯1),  𝒯2(𝐪0

𝒯2)) = min
(𝐪1

𝒯1 ,𝐪1
𝒯2)∈𝒞

√σ(𝐪0
𝒯1 , 𝐪1

𝒯1) + σ(𝐪0
𝒯2 , 𝐪1

𝒯2) (4) 

 

where 𝒞 ⊂ ℝ24is the contact (configuration) space imposed by 𝒯1, 𝒯2. In Sec. IV, we present 

our PDd computation algorithm when 𝒯1 is static; that is, 𝐪0
𝒯1 = 𝐪1

𝒯1 , and this restriction is 

relaxed in Sec. V by allowing both 𝒯1, 𝒯2 to be deformable. 

 

C. Generalization of Rigid PD 

 

Note that the proposed PDd is a generalization of the classical rigid (or translational) PD [17], 

[18]. Since the object norm in Equation 3 can be interpreted as an average displacement of all 

the points inside a deformable object during deformation when the object is purely translated 

by 𝐝, the object norm will be equivalent to the squared norm of the translation vector 𝐝 from 

Equation 2, that is,  

 

 σ =
1

10
∑ 𝐝𝑖

T𝐝𝑖 = 𝐝𝑖
T𝐝𝒊 = ‖𝐝‖2 (5) 

   

Thus, according to Equation 4, PDd = PD when 𝐪 ∈ SE(3).  
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IV. Static versus Deforming Tetrahedra 

 

In this section, we solve the optimization problem of Equation 4 when 𝒯1 is static but 𝒯2 is 

still deformable. Figure 12 shows the possible contact cases after penetration resolution, as 

follows: face–vertex (FV), vertex–face (VF), or edge–edge (EE) contacts, where {𝐬𝑖} ⊂ 𝒯1 is 

a static tetrahedron and {𝐩𝑖} ⊂ 𝒯2 is a deforming tetrahedron. Since the contact space 𝒞 in 

Equation 4 can be realized by three cases, the normal vector of the contact plane is used as a 

direction to separate 𝒯1, 𝒯2, which can also minimize Equation 4. According to the separating 

axis theorem (SAT) [50], the total number of possible separating directions that we need to 

consider is 44 given that there are 8 VF (or FV) and 36 EE contact pairs between the two 

tetrahedra. 

In general, when both 𝒯1 , 𝒯2  are deforming, even for linear deformation, the separating 

directions can be non-linear, making Equation 4 difficult to solve. In our work, to make the 

problem tractable, we assume that the separating directions are always obtained from the rest 

configurations 𝐪0
𝒯1 , 𝐪0

𝒯2  and thus are constant. Note that this is a reasonable assumption unless 

objects deform severely, which is reasonable for most practical robotic applications. A vertex 

in 𝒯1  or  𝒯2  is considered constrained if they are involved in calculating the separating 

direction (i.e., the contact normal); otherwise, consider it free. For example, if a face normal of 

𝒯1 (e.g., 𝐧FV in Figure 12(a)) is selected as a separating direction, the vertices incident to the 

face (e.g., 𝐬0, 𝐬1, 𝐬2, in Figure 12(a)) are constrained. After optimization, free vertices may or 

may not be on the contact plane, but constrained vertices are always on the plane. 
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A. Separating Direction  

 

Let {𝐬𝑖} ⊂ 𝒯1, {𝐫𝑖} ⊂ 𝒯2 (𝐪0
𝒯2), {𝐩𝑖} ⊂ 𝒯2(𝐪1

𝒯2), 𝑖 = 0, ⋯ ,3 be the four vertices of 𝒯1, 𝒯2(𝐪0
𝒯2),

𝒯2(𝐪1
𝒯2), respectively. We first calculate the constant normal vector of a separating plane using 

the rest configurations. Let 𝐧  be such a normal vector for each contact state. Then the 

following is the result of normal vector calculation: 

 

𝐧FV = (𝐬1 − 𝐬0) × (𝐬2 − 𝐬0) 

𝐧VF = (𝐫1 − 𝐫0) × (𝐫2 − 𝐫𝟎) 

𝐧EE = (𝐫1 − 𝐫0) × (𝐬1 − 𝐬0) 

(6) 

Furthermore, to make the separation direction consistent, the direction is decided based on 

the following rules:  

1) 𝐧FV should be outward from 𝒯1. 

2) 𝐧VF should be inward to 𝒯2. 

3) 𝐧EE  should point away from the non-contacting vertices of 𝒯1 

(e.g., 𝐬𝟐, 𝐬𝟑 in Figure 12(c)). 

Note that the third case for 𝐧EE works only when the non-contacting vertices of 𝒯1 lie in 

the same half-space (Figure 13(a)). If this is not the case (Figure 13(b)), both directions are 

tested to minimize Equation 4. There also exist degenerate cases for 𝐧EE when two contacting 

EE pairs are parallel to each other. In this case, the normal is calculated from the shortest 

distance vector between the two EE pairs (Figure 13(c)). When the two EE pairs are co-linear, 

the separating direction can be any of the vectors perpendicular to the edge. Thus, we can use 

the normal directions of the faces incident to the edges as a candidate separating direction, 

which is redundant as it can be covered by the VF or FV cases. 
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(a) FV contact (b) VF contact (c) EE contact 

Figure 12. Three contact cases after penetration resolution. 

 

 

 

 

 

 

   

(a) Normal (b) Undecidable (c) Parallel 

Figure 13. Various separating directions 𝐧 for an EE contact 
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B. Non-penetration Constraints 

 

Equation 4 is essentially a constrained optimization problem wherein the constraints are non-

penetration constraints. Due to the constant assumption on the separating directions employed 

in Sec. IV-A, we can now linearize the non-penetration constraints and thus set up a solvable 

QP problem afterwards. Specifically, we write the non-penetration constraints for each contact 

case as follows: 

 1) FV case (Figure 12(a)): since all the vertices 𝑠𝑖 of the static tetrahedron 𝒯1 lie in the 

same half space, we simply impose non-penetration constraints for the vertices 𝐩𝑖  of the 

deforming tetrahedron 𝒯2 as below, where 𝒔0 is the vertex defining the FV contact: 

 

 𝐧FV ⋅ (𝐩𝑖 − 𝐬0) ≥ 0 (7) 

 

2) VF case (Figure 12(b)): with constrained vertices (𝐩𝑘 , 𝑘 = 0, ⋯ ,2 ) of 𝒯2  and free 

vertices 𝐬𝑗 , 𝑗 = 0, ⋯ ,3 of 𝒯1, the free vertex 𝐩3 and the constrained vertex 𝐩0 on the plane, 

we formulate seven non-penetration constraints, as follows: 

 

 

𝐧VF ⋅ (𝐩𝑘 − 𝐩0) = 0, 

𝐧VF ⋅ (𝐬𝑗 − 𝐩0) ≤ 0, 

𝐧VF ⋅ (𝐩3 − 𝐩0) ≥ 0, 

(8) 

 

where 𝑘 ∈ {0, … ,2}, 𝑗 ∈ {0, … ,3}.  

3) EE case (Figure 12(c)): with constrained vertices (𝐬0, 𝐬1, 𝐩0, 𝐩1), the free vertices (𝐬2, 𝐬3) 

should lie in the same half space, and free vertices (𝐩2, 𝐩3) should lie in the other half space. 

Without loss of generality, assuming that 𝐩0 is on the separating plane, we can formulate seven 
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constraints.  

 

𝐧EE ⋅ (𝐬𝑘 − 𝐩0) = 0 

𝐧EE ⋅ (𝐩1 − 𝐩0) = 0 

𝐧EE ⋅ (𝐬𝑗 − 𝐩0) ≤ 0 

𝐧EE ⋅ (𝐩𝑗 − 𝐩0) ≥ 0 

(9) 

 

where 𝑘 ∈ {0,1}, 𝑗 ∈ {2,3}. 

 

C. Constrained Optimization 

 

Considering that we have now set up both an objective function (Equation 3) and non-

penetration constraints for each contact case (Equations 7–9), we now solve the constrained 

optimization in Equation 4. Given that the objective function is quadratic and the constraints 

are linear, our problem is a QP problem. This problem is solvable given that the objective 

function is semi-positive definite and that the constraint space is convex. We use an off-the-

shelf QP solver, such as Gurobi Optimizer [51], to efficiently solve this problem. 
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V. Deforming versus Deforming Tetrahedra 

 

In this section, we extend the optimization problem of Equation 4 to the case where both 𝒯1 

and 𝒯2 are deforming. 

 

A. Non-penetration Constraints 

 

The non-penetration constraints used in this section require a new variable, 𝐩𝒔 ∈ ℝ3, which is 

a point on the separating plane that decides on the position of the plane. For the static and 

deforming tetrahedron case, the position of a separating plane is automatically decided once we 

have determined the separating direction since there will be at least one vertex in the static 

tetrahedron involved in contact. But now, not only the configurations of both tetrahedra but also 

the position of the separating plane should be optimized at the same time because there is no 

static vertex to determine the position of it . 

When 𝐩𝒔 is introduced, it becomes easier to write the constraints since we do not need to 

consider which vertex to select as a point on the plane. As illustrated in Figure 14, the 

constrained vertices (red) should lie on the separating plane and the free vertices (black) should 

lie on either side of the plane while 𝐩𝑠 constrains the location of the separating plane. The only 

difference between each contact case is the separating direction and the set of constrained 

vertices, namely, 𝒞𝑠 for 𝒯1 and 𝒞𝑝 for 𝒯2; for instance, 𝒞𝑠 = {𝐬0, 𝐬1, 𝐬2}, 𝒞𝑝 = ∅ in Figure 

14(a) and 𝒞𝑠 = {𝐬0, 𝐬1}, 𝒞𝑝 = {𝐩0, 𝐩1} in Figure 14(b). Once they are decided, we can write 

the non-penetration constraints in a more general form than those presented in Sec. IV. When a 

separating direction 𝐧 for each contact case is chosen based on the corresponding constrained 

vertices 𝐬𝑐 ∈ 𝒯1 , 𝐩𝑐 ∈ 𝒯2  and on the free vertices 𝐬𝑓 ∈ 𝒯1 , 𝐩𝑓 ∈ 𝒯2  of each deforming 
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tetrahedron 𝒯1, 𝒯2, the eight non-penetration constraints can be formulated as follows:  

 

 

𝐧 ⋅ (𝐬𝑐 − 𝐩𝑠) = 0, ∀𝐬𝑐 ∈ 𝒞𝑠, 

𝐧 ⋅ (𝐩𝑐 − 𝐩𝑠) = 0, ∀𝐩𝑐 ∈ 𝒞𝑝, 

𝐧 ⋅ (𝐬𝑓 − 𝐩𝑠) ≤ 0, ∀𝐬𝑓 ∈ ℱ𝑠, 

𝐧 ⋅ (𝐩𝑓 − 𝐩𝑠) ≥ 0, ∀𝐩𝑓 ∈ ℱ𝑝, 

(10) 

 

where ℱ𝑠, ℱ𝑝 are the set of free vertices for 𝒯1, 𝒯2, respectively. 

The non-penetration constraints for the static/deforming tetrahedron in Sec. IV can be 

viewed as a special case of this form, where 𝐬c and 𝐬𝑓 are fixed and 𝐩𝑠 is chosen among the 

constrained vertices. For example, in FV case, since 𝒞𝑝 = ∅, the second constraint in Equation 

10 can be ignored. Moreover, as 𝐩𝑠  is chosen from 𝒞𝑠 , the first and third constraints in 

Equation 10 are automatically satisfied, and the rest of the four constraints remain just like in 

Equation 7. The VF case (Equation 8) and EE case (Equation 9) have seven constraints because 

the chosen constrained vertex removes one of the equality constraints; for example, since 𝐩𝑠 =

𝐩0 ∈ 𝒞𝑝, 𝐧 ⋅ (𝐩0 − 𝐩0) = 0. 

 

B. Constrained Optimization  

 

Similar to that in the previous section, PDd can be calculated by solving the QP problem of 

Equation 4. Note that the non-penetration constraints in Equation 10 are still linear since the 

separating directions are constant. 
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(a) FV or VF case (b) EE case 

Figure 14. Constrained vertices (red) and free vertices (black) defined by 𝐩𝐬 
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VI. Acceleration Technique 

 

In order to compute the PDd, we need to solve a QP problem with constraints, each of which 

is associated with a separation direction; the entire solution typically takes tens of milliseconds 

to be completed with the use of an off-the-shelf QP solver. However, if we can pre-select a set 

of candidate directions that possibly includes the optimal separating direction, we can 

significantly reduce the overall computation time. Under the hypothesis that the deformation of 

soft objects is not severe, we assume that the penetration (equivalently separating) direction for 

deformable objects is close to the penetration direction when the objects behave rigidly. 

Moreover, in our experiment, we find that, on average, 52.33% of the results obtained by rigid 

PD coincides with the optimal direction after running full optimization on PDd. 

To leverage this observation and to accelerate PDd computation, we calculate the rigid PD 

based on SAT [50] and feed it to the optimization problem in Equation 4; this approach is 

equivalent to using a single contact constraint in Equation 4.  

 

A. Rigid PD Calculation using SAT 

 

Rigid PD can be determined through various methods, such as using the GJK algorithm or 

Minkowski sums [17], [18]. However, we choose to use a SAT-based algorithm since our PDd 

algorithm can be considered as a general case of PD and can be implemented similar to that in 

[52]. In this section, we show that the PD between two intersected tetrahedra can be calculated 

using the SAT. Specifically, we prove that the PD is equal to the smallest overlapping length 

projected over all possible separating axes in the SAT.  
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Definition 1. The projected length 𝐿𝐧(𝒯) of a given simplicial complex 𝒯 along an axial 

direction 𝑛 is defined as follows:  

 

 𝐿𝐧(𝒯) = max({|(𝐱𝑖 − 𝐱𝑗) ⋅ 𝐧| |∀𝐱𝑖 , 𝐱𝑗 ∈ 𝒯}) (11) 

 

where 𝐱𝑖 , 𝐱𝑗 are the vertices in 𝒯. Then, the pair of vertices 𝐱𝑖 , 𝐱𝑗 that realizes the projected 

length 𝐿𝐧(𝒯) is called the supporting vertices for 𝐧. 

 

Theorem 1. The PD of two intersected tetrahedra 𝒯1, 𝒯2 can be calculated as follows: 

 

 PD(𝒯1, 𝒯2)  =   min({𝐿𝐧(𝒯1) + 𝐿𝐧(𝒯2) − 𝐿𝐧(𝒯1 ∪ 𝒯2)| ∀𝐧 ∈ 𝑁}) (12) 

 

where 𝑁 = {𝐧FV, 𝐧VF, 𝐧EE} is a set of possible separating directions between 𝒯1, 𝒯2.  

 

Proof. According to the SAT [50], two convex objects 𝒯1, 𝒯2 do not overlap if there exists a 

separating axis 𝐧 that prevents the axial projection of 𝒯1, 𝒯2 onto 𝐧 from overlapping. 

The SAT can be rewritten using Equation 11 as follows: 

 

 ∃𝐧 ∈ 𝑁,  𝐿𝐧( 𝒯1 ∪  𝒯2) ≥ 𝐿𝐧( 𝒯1) + 𝐿𝐧( 𝒯2). (13) 

 

Thus, if two objects are interpenetrated, 𝐿𝐧( 𝒯1) + L𝐧( 𝒯2) − 𝐿𝐧( 𝒯1 ∪ 𝒯2) > 0  for ∀𝐧 . 

Let ε be the result of evaluating Equation 12 and 𝐦 be the corresponding separating direction. 

Thus, 

 𝐦 = argmin
𝐧

{(𝐿𝐧( 𝒯1) + 𝐿𝐧( 𝒯2) − 𝐿𝐧( 𝒯1 ∪  𝒯2))|∀𝐧 ∈ 𝑁} (14) 
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Then, we can prove Theorem 1 by showing that 

 

1. ε𝐦 separates 𝒯1 and 𝒯2 by translation; and 

2. ε is the smallest magnitude among such translations. 

 

Let 𝒯1
′,   𝒯2

′ be the tetrahedra of 𝒯1, 𝒯2 translated by ε𝐦. Since these tetrahedra are not rotated, 

the projected length of each tetrahedron on the axis 𝐦 is the same as before translation: 

 

 
𝐿𝐦(𝒯1) = 𝐿𝐦(𝒯1

′) 

𝐿𝐦(𝒯2) = 𝐿𝐦( 𝒯2
′) 

(15) 

 

Since the direction of the translation is the same as the projection axis, the length of the 

translation vector is |ε𝐦 ⋅ 𝐦| = 𝜀. Then, the entire projected length of the translated tetrahedra 

is as follows: 

 

 

𝐿𝐦(𝒯1
′ ∪ 𝒯2

′) = 𝐿𝐦(𝒯1 ∪  𝒯2) + 𝜀 

= 𝐿𝐦(𝒯1 ∪  𝒯2) + 𝐿𝐦(𝒯1) + 𝐿𝐦(𝒯2) − 𝐿𝐦(𝒯1 ∪  𝒯2) 

= 𝐿𝐦(𝒯1) + 𝐿𝐦(𝒯2) 

= 𝐿𝐦(𝒯1
′) + 𝐿𝐦(𝒯2

′), 

(16) 

 

implying that the two tetrahedra translated by ε𝐦 do not overlap because of the SAT. Figure 

15 shows an example of two tetrahedra projected on the axis 𝐦 before and after translation 

𝜀𝐦 , where 𝐦  is the face normal of 𝒯1 . The projected length of each tetrahedron does not 

change during the translation.  
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Let ε̃𝐦̃ be an arbitrary translation that separates 𝒯1, 𝒯2, and let  𝒯1̃,   𝒯2̃ be the translated 

copies of the tetrahedra. Since 𝒯1̃,   𝒯2̃  are separated, according to the SAT, there exists a 

separating axis 𝐧̃ that satisfies 𝐿𝐧̃(𝒯1̃  ∪  𝒯2̃)  ≥  𝐿𝐧̃(𝒯1̃) +  𝐿𝐧̃( 𝒯2̃). For the given set 𝒯1 ∪  𝒯2 

and the direction 𝐧̃ , let 𝐱1  and 𝐱2  be the two supporting vertices used to calculate the 

projection 𝐿𝐧̃(𝒯1 ∪  𝒯2) = |(𝐱2 − 𝐱1) ⋅ 𝐧̃|. 

 

Now, suppose that these two vertices can support the tetrahedra even after being translated 

by ε̃𝐦̃  (Figure 16(a)), and let 𝐱̃1  and 𝐱̃2  be the corresponding vertices after translation. 

Then the displacement between the two vertices after translation can be calculated as follows: 

𝐱̃2 − 𝐱̃1 = 𝐱2 − 𝐱1 + ε𝐦̃.  

 

The projected length is 𝐿𝐧̃(𝒯1̃  ∪  𝒯2̃) = |(𝐱̃2 − 𝐱̃1) ⋅ 𝐧̃| = |(𝐱2 − 𝐱𝟏 + ε𝐦̃) ⋅ 𝐧̃|. Then, 

 

 

𝐿𝐧̃(𝒯1 ∪  𝒯2)  +  |ε̃𝐦̃ ⋅ 𝐧̃| = |(𝐱2 − 𝐱1) ⋅ 𝐧̃| + |ε𝐦̃ ⋅ 𝐧̃| 

≥ |(𝐱2 − 𝐱1) ⋅ 𝐧̃ + ε𝐦̃ ⋅ 𝐧̃| = 𝐿𝑛̃(𝒯1̃  ∪  𝒯2̃) 

≥ 𝐿𝐧̃(𝒯1̃) + 𝐿𝐧̃( 𝒯2̃) = 𝐿𝐧̃(𝒯1) + 𝐿𝐧̃( 𝒯2) 

(17) 

 

Otherwise, the supporting vertices are changed after translation (Figure 16(b)). Let 𝐱̃1
′ , 𝐱̃2

′  

be the supporting vertices after translation and 𝐱1
′ , 𝐱2

′  be the corresponding vertices before 

translation. Then, 𝐿𝐧̃(𝒯1̃  ∪  𝒯2̃) = |(𝐱̃2
′ − 𝐱̃1

′ ) ⋅ 𝐧̃| = |(𝐱2
′ − 𝐱1

′ + ε𝐦̃) ⋅ 𝐧̃|. Since 𝐱1
′  and 𝐱2

′  

are not the supporting vertices before translation, according to Equation 11, the projected length 

of 𝐱1
′  and 𝐱2

′  must be smaller than that of supporting vertices 𝐱1, 𝐱2: i.e., 𝐿𝐧̃(𝒯1 ∪  𝒯2) =

|(𝐱2 − 𝐱1) ⋅ 𝐧̃| ≥ |(𝐱2
′ − 𝐱1

′ ) ⋅ 𝐧̃|. Thus, 
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𝐿𝐧̃(𝒯1 ∪  𝒯2)  +  |𝜀̃𝐦̃ ⋅ 𝐧̃| = |(𝐱2 − 𝐱1) ⋅ 𝐧̃| + |𝜀̃𝐦̃ ⋅ 𝐧̃| 

≥ |(𝐱2
′ − 𝐱1

′ ) ⋅ 𝐧̃| + |𝜀𝐦̃ ⋅ 𝐧̃| 

≥ |(𝐱2
′ − 𝐱1

′ ) ⋅ 𝐧̃ + 𝜀𝐦̃ ⋅ 𝐧̃| = 𝐿𝐧̃(𝒯1̃  ∪  𝒯2̃) 

≥ 𝐿𝐧̃(𝒯1̃) + 𝐿𝐧̃( 𝒯2̃) = 𝐿𝐧̃(𝒯1) + 𝐿𝐧̃( 𝒯2) 

(18) 

 

Figure 16 shows an example of an arbitrary translation ε̃𝐦̃ that separates two tetrahedra 

and their projection on the separating axis 𝐧̃. Figure 16(a) and Figure 16(b) show two cases of 

projection results according to the changes in supporting vertices before and after translation. 

In either case, we can see that |𝜀̃𝐦̃ ⋅ 𝐧̃| ≥ 𝐿𝐧̃(𝒯1̃) + 𝐿𝐧̃( 𝒯2̃) − 𝐿𝐧̃(𝒯1 ∪  𝒯2).  

Since |𝐦̃| = |𝐧̃| = 1,  

 

 

ε̃ ≥ 𝜀̃|𝐦̃ ⋅ 𝐧̃| 

≥ 𝐿𝐧̃(𝒯1̃) + 𝐿𝐧̃( 𝒯2̃) − 𝐿𝐧̃(𝒯1 ∪  𝒯2) 

≥ ε 

(19) 

 

Therefore, ε is the minimum translational distance that separates 𝒯1, 𝒯2. ∎ 
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(a) Interpenetrated state (b) Translated state 

Figure 15. Two tetrahedra projected on the axis 𝐦 before and after translation 

 

 

 

 

 
 

(a) Same supporting vertices (b) Changed supporting vertices 

Figure 16. Projection results according to the change in supporting vertices 
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B. Acceleration using Rigid PD 

 

Rigid PD can now be computed by calculating the smallest overlapping length of tetrahedra 

projected over all possible separating axes in SAT. This SAT-based approach is fast and simple 

to implement because it only needs projection and comparison functions. We can use the 

corresponding direction and resulting contact features to formulate non-penetration constraints 

of the QP problem. We have compared the results with that of full optimization over all possible 

separating direction, and find that the approximation error is below 5%. Interestingly, instead 

of taking the “minimum direction” in Equation 12, even if we take only the first six directions 

with ascending order of minimum distances, more than 90% of PDd direction in Sec. V can 

be still found. This observation opens up a new possibility of reducing the possible error in this 

approximation while spending a little more time on search.  
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VII. Results 

 

In this section, we show the implementation results of our PD algorithms for static/deformable 

case, deformable/deformable case, and deformable/deformable case with acceleration. In our 

experiments, the target tetrahedra are randomly generated, which are bounded by a cube with a 

side length of 10. We have tested 104 intersecting pairs of tetrahedra with different volume 

sizes ranging from 0.1 to 130, and we have computed their PDd’s. We have implemented our 

algorithms using C++ on a Windows 10 PC with an AMD Rizen7 1700x 3.6GHz CPU, and 

32GB memory. We have used the Gurobi Optimizer to solve the QP problems. Figure 17 shows 

the overall structures of the implementations. 

 

 

Figure 17. Implementation overview 

 

We also implemented GUI (Figure 18) using OpenGL so that users can easily check out the 

rest configurations, optimized configurations, and every deformed result of all possible 
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separating directions in 3D scene. Simple animation is also implemented to show the 

deformation of two tetrahedra from the rest configuration to the optimized, penetration-resolved 

configurations.  

 

A. Performance 

 

As illustrated in Figure 19, every result using PDd resolves penetration. Figure 19(a) shows 

the initial penetrated state of two tetrahedra. In Figure 19(b)–(d), the solid colored tetrahedra 

are the results, as follows: PDd = 0.5692 and 0.3469, PD = 1.496, respectively. The average 

performance results of each case are shown in Table. I. The running time for the 

static/deformable case is slightly faster than the deformable/deformable case since a fewer 

number of variables are required for optimization. The accelerated deformable/deformable case 

can be calculated in 1.07 ms on the average. Figure 20 and Figure 21 are the example of all 

possible deformed configurations over 44 separating directions for static/deformable and 

deformable/deformable cases, respectively. Two intersected tetrahedra in light color show the 

rest configurations and tetrahedra in pink and purple show the resulting deformed state using 

PDd; the contact configuration with smallest deformation among all possible results.  

 

Table 1. Performance Statistics 

Criterion STAT/DEF DEF/DEF DEF/DEF(ACCEL.) 

Performance 32.26 ms 46.29 ms 1.07 ms 

PDd/PD 

(Standard 

Deviation) 

43.59% 

(13.17%) 

27.94% 

(3.15%) 

29.39% 

(3.47%) 
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(a) Penetration State (b) Static/Deformable 

  

(c) Deformable/Deformable (d) Rigid PD 

Figure 19. Implementation results for PDd and rigid PD.  
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Figure 20. All possible deformed configurations for the static/deformable case 
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Figure 21. All possible deformed configurations for the deformable/deformable case 
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B. Discussion 

 

To the best of our knowledge, there are no available PD algorithms for deformable models that 

guarantee full separation (i.e., penetration metric with a tight upper bound). All the known PD 

algorithms for deformable models provide only a lower bound, which does not guarantee a full 

penetration resolution. Thus, it is unfair to compare our algorithms against the existing 

algorithms for deformable models; instead, we compare our algorithms with rigid PD, which 

can be considered as an upper bound for PDd.  

In this case, to show the tightness of the metric upper bounds, we calculate the relative 

magnitude of PDd with respect to rigid PD. Figure 22 shows the relative magnitude of PDd 

over rigid PD in penetration resolution tests of 104 randomly intersecting tetrahedron pairs. 

The average magnitude is 27.94 with a standard deviation of 3.15%. This result demonstrates 

that PDd provides a much tighter deformation metric than the rigid PD. 

 

 
Figure 22. Relative magnitude of PDd over rigid PD 
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VIII. Conclusion 

 

We have formulated a new penetration metric based on object norm for a pair of intersecting 

tetrahedra undergoing linear deformation. The new metric, called PDd, optimizes an average 

displacement of all the points inside the tetrahedra undergoing linear deformation to separate 

these tetrahedra. PDd can be computed by solving a QP problem based on the distance metric 

with non-penetration constraints. We have implemented three cases of computing PDd, namely, 

rigid versus deformable case and deformable versus deformable case with and without 

acceleration. Our experimental results show that we can compute PDd  in a fraction of 

milliseconds for intersecting, deformable tetrahedra. 

There are a few limitations to our algorithm. To derive a tractable optimization problem for 

PDd , we have assumed that the separation direction can be obtained from the rest pose of 

deforming tetrahedra. Even though the proposed method is straightforwardly extendable to a 

set of tetrahedra by applying our metric to each element in the set, it would be interesting to 

pursue a technique that accelerates this computation to make it more useful for FEM-type 

simulation. One plausible direction would be to combine the iterative contact space projection 

technique [28] with our deformable metric. Our metric does not guarantee volume preservation 

during deformation, which is another interesting topic for a future work. 
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국문 초록 

김지수 

컴퓨터공학과 

이화여자대학교 대학원 

 

변형체 시뮬레이션은 근육이나 천과 같은 다양한 변형체들의 사실적인 묘사를 위해 

컴퓨터 그래픽스 분야에서 꾸준히 연구되어 왔으며, 최근 로보틱스 분야에서도 소프

트 로봇, 로봇보조수술 등의 발전으로 그 필요성이 증가하고 있다. 변형체 시뮬레이션

에는 유한요소해석법이 널리 이용되고 있는데 이는 물체를 사면체 같은 작은 요소의 

집합으로 정의하고 각 요소에 가해지는 외력에 의한 변형을 계산하는 방법이다. 이때 

적절한 접촉 반력을 적용하기 위해서는 변형체의 침투깊이 계산이 필수적이다. 중첩

된 물체 간의 침투깊이는 페널티 기반 물리 시뮬레이션에서 물체의 안정적인 움직임

을 생성하거나, 햅틱 렌더링에서 접촉 반력을 계산하여 햅틱 피드백을 주는 등 다양

한 분야에 이용된다. 하지만, 강체 간의 침투깊이는 다양하게 연구된 바 있으나 변형

체에 대한 침투깊이를 엄밀하게 다룬 연구는 상대적으로 매우 적은 편이다.  

따라서 본 논문에서는 중첩된 두 변형가능한 사면체 간의 상호 침투량을 측정할 수 

있는 변형체 침투깊이(deformable penetration depth, PDd)를 두 선형적 변형사면체

를 분리하는 최소한의 변형으로 정의하고, 이 문제를 기하학적으로 계산하는 방법을 

제안한다.  

먼저 사면체의 변형 전후 형상(configuration)이 주어졌을 때 그 변형량을 측정할 

수 있는 거리 메트릭을 제안한다. 거리 메트릭은 오브젝트 놈(object norm)을 이용하

여 정의하며 이는 물체 내부의 모든 점의 평균 변형량으로 해석할 수 있다. 본 논문

에서는 거리메트릭을 닫힌 형태의 수식으로 나타낼 수 있음을 보였다. 

두 사면체를 분리하되 변형을 최소화하기 위해서는 분리 후 두 사면체가 접촉상태

가 되어야 한다. 특정 접촉상태를 만족하는 최소한의 변형은 비침투제약조건을 만족



46 

하면서 거리메트릭을 최소화하는 이차계획법(quadratic programming) 문제를 풀어서 

구할 수 있다. 즉 변형체 침투깊이 계산은 두 사면체를 가장 적게 변형해서 만들 수 

있는 접촉상태를 찾는 문제로 재정의할 수 있으므로 모든 가능한 접촉상태를 구하고, 

각각의 최적화문제를 풀면 변형체 침투깊이를 얻을 수 있다. 

본 논문에서는 분리축 정리(separating axis theorem)를 이용해 중첩된 두 사면체

의 모든 가능한 접촉상태를 구하고 각각의 접촉상태에 따른 비침투제약조건을 설정해 

이차계획법문제를 풀어냄으로써 변형체 침투깊이를 계산하는 방법을 제안하였다. 먼

저 비교적 간단한 경우인 고정사면체/변형사면체를 분리하는 방법을 보인 후, 변형중

에 분리방향이 변하지 않는다는 가정을 통해 두 변형사면체를 분리하는 문제로 확장

할 수 있음을 보였다. 또한, 최적의 접촉상태를 미리 알고 있다면 계산량을 줄일 수 

있으므로 강체의 침투깊이를 이용하여 두 사면체의 최종 접촉상태를 미리 구함으로써 

성능을 향상하는 방법을 제안하였다. 

제안하는 방법을 실험한 결과 고정사면체/변형사면체, 변형사면체/변형사면체 두 경

우 변형체 침투깊이를 수십 밀리 초안에 계산할 수 있다는 것을 보였으며, 변형사면

체/변형사면체를 강체침투깊이로 전처리한 경우에 5% 이하의 오차로 약 1 밀리초에 

계산이 가능함을 보였다. 또한 변형체 침투깊이가 기존 강체 침투깊이에 비해 평균적

으로 약 세 배 작은 값을 제공한다는 것을 확인하였다. 

 


