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Abstract 

 

Various methods have been studied to develop three-dimensional(3D) geometric models to 

generate human faces in three dimensions. With the advent of the generative adversarial networks 

(GAN), attention to the generation model is increasing, and related research using deep learning is 

being actively progressed. Face generation can be utilized to create virtual avatars and virtual human 

content that has recently emerged. 

In this dissertation, we proposed a three-dimensional face generative model with local weights 

to increase the model’s variations and expressiveness. Previous studies on face generative models 

have attempted to create a variety of faces by using entire large faces. However, dividing the face 

into several parts with semantic features can improve the model’s representation ability and 

addresses the limitations of insufficient datasets.  

Unlike previous studies that required learning of the entire face mesh, and where part 

manipulation is impossible, the proposed model allows partial manipulation of the face while still 

learning the whole face mesh. For this purpose, we address the identification of an effective way to 

extract local facial features from the entire data and explore a way to enable a holistic generation by 

learning local features. By factorizing the latent vector of the whole face, latent vectors from the 

subspace can be used to indicate different parts of the face. In addition, local weights generated by 

non-negative matrix factorization (NMF) are applied to the factorized latent space so that the 

decomposed part space is more semantically meaningful. 

We experiment with the proposed model and observe that effective facial part manipulation is 

possible, and the model’s expressiveness is improved. In addition, several ablation tests have shown 

that the local weights proposed in this study produce meaningful results. 
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I. Introduction 

 

A. Motivation 

 

The representation and synthesis of the 3D human face form one of the active research topics 

in computer graphics and computer vision in such applications as face recognition [1], reconstruction 

[2], generation [3], and animation [4]. Its importance has increased lately due to the development of 

virtual reality, especially virtual humans [5]. However, modeling a human face still needs a 

tremendous human effort. Many researchers have proposed new approaches to address this difficulty. 

Among them, the learning-based method exhibits notable advancements. 

Generative adversarial networks (GANs) have shown realistic results in generating a human 

face image and have also spurred research to generate 3D human faces with deep neural networks. 

Many existing works represent a human face with various types of 3D representations, e.g., mesh 

[6], voxel [7], point cloud [8], and geometry image [9]. These show state-of-the-art performances 

such as photo-realistic face texture and fine-detailed geometry model. 

To represent a 3D human face, the triangular mesh has been a favorite in several research works 

because of its efficiency, non-uniformity of representation, and scalability for other applications. In 

contrast, voxel requires high computational performance, and the point cloud has an absence of 

smoothness of the data representation. Geometry image ([3], [9]) presents high-quality face 

generation enabling photo-realistic face synthesis. However, it is also limited to the uniformity of 

2D image pixels. 

The advance of deep neural networks has been influential to computer graphics methodologies 

and has influenced geometry processing. Geometric deep learning attempts to generalize neural 
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networks and apply convolutional neural networks (CNNs) to graphs and manifolds [10]. There 

exists much research applying CNNs to graph structures ([11], [12]) and meshes ([13], [6], [14]).  

With the advantages of CNNs for hierarchical feature extraction, many generative models also 

capitalize on its benefits to progress shape modeling ([15], [16], [17]). However, most existing works 

are focused on a holistic generative approach, which is constrained to generate all parts at once and 

lacks part details and manipulation. 

Previous studies have mentioned the benefit of a localized model and part-based representation. 

Blanz and Vetter [18] say that independently morphed parts of faces can intensify the expressiveness 

of the model. Tena et al. [19] also assert that applying segmentation to the face model allows for the 

generation of combined facial parts beyond those in the training data. Finally, Tran et al. [20] suggest 

that local models are not only more expressive than global models but are also less expensive to 

represent human faces realistically. Following these previous discoveries, it would be worth 

exploring a local method applying deep neural networks. 

In other aspects, the representation ability of the learning-based generative model depends on 

the volume and quality of a 3D face dataset for training. However, the scarcity of 3D face training 

data is indeed one of the challenges in 3D face generative model research. Unlike 2D face datasets 

([21], [22]), 3D face datasets barely include segmentation labels and data, and this is not an easy 

task to achieve. 

 

B. Research Goal 

 

The goal of this study is to synthesize a 3D human face with generative power. In this 

dissertation, we propose a locally weighted 3D face generative model to increase variations and 

expressiveness of the model. We expect that our approach can generate a rich variety of 3D face 
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models beyond the training data using part manipulation with latent factorization. With a part-based 

representation of the data, our model is simpler and more straightforward than others and does not 

require any semantic segmentation labels.  

To achieve these goals, we need to address several challenges. First, we must investigate an 

effective way to extract or present localized features from the whole data. Mesh segmentation is one 

of the possible solutions. However, since human faces are often smooth, it is a challenge to segment 

the facial mesh explicitly. To bypass this, we exploit a holistic generative approach that does not 

require additional segmentation data and makes the whole learning model simple. Furthermore, we 

explore a way for part control while using holistic generation by learning localized features.  

 

C. Main Contributions 

 

Our main contributions are as follows: 

 Locally weighted generative autoencoder for generating a whole human face geometric 

model. 

 End-to-end learning to learn local features without explicit facial feature segmentation 

data. 

 Experimentation and demonstration of the proposed model’s performance in terms of 

generation, reconstruction, and part manipulation. 

We utilize Ranjan et al. [23]’s autoencoder with latent space factorization and apply local 

weights that partially influence the model during training. Latent factorization enables manipulation 

of the local part of the face, and local weights make decomposed part spaces more semantically 

meaningful without additional segmentation labels due to its part-based representation. We also 

evaluate the performance of the proposed model in terms of reconstruction ability, part modification, 
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part combination, and several ablation tests to show the effect of each model component on the 

results. 

 

D. Organization 

 

The remainder of this dissertation is organized as follows. Section II presents the previous 

research on 3D face representation and generative model, part-based shape generative model, and 

feature matrix decomposition. In Section III, we briefly explain the convolution neural networks 

used in our model. Section IV explains our proposed model in detail and Section V provides its 

implementation details. Section VI presents the experiments and the visualization of the results. 

Finally, we give the conclusions in Section VII. 
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II. Related Work 

 

A. 3D Face Representations and Generative Models 

 

Three-dimensional face shape modeling must present geometric facial shapes with variations 

across diverse identities and expressions [24]. Blanz and Vetter [18] introduced the first 3D face 

morphable models (3DMMs), which are statistical models of global 3D face shapes and textures. 

They employed principal component analysis (PCA) to construct principal components to express 

facial shape and texture (Figure 1-(a)). More recently, Booth et al. proposed the first largest scale 

morphable model, the large scale face model (LSFM) [25], constructed from 9663 distinct facial 

identities, as shown in Figure 1-(b). Paysan et al.’s Basel face model (BFM) [26] also has been 

widely used. However, the 3DMMs are limited to the representation of high-frequency details and 

form a latent model space due to their linear bases and training data.  

 

Figure 1 PCA-based face models 

 

   

(a) 3D morphable models [18] (b) Large scale face model (LSFM) [25] 
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Recently, the development of deep learning provided a new approach to generate 3D shapes 

with non-linear parametric models. Fernandez et al. [27] suggest the first autoencoder with a CNN-

based encoder and a tensor-based face model as a decoder for generating 3D face shapes. Similar to 

[27], various researchers ([28], [29], [3], [9]) have exploited the 2D representation of geometry 

image due to the difficulty of applying convolution to the 3D mesh directly (Figure 2). In order to 

overcome these difficulties, Ranjan et al. [23] proposed the first autoencoder architecture, 

convolutional mesh autoencoders (CoMA), that performs 3D convolutions with truncated 

Chebyshev poynomials [11] applied directly to the 3D mesh (Figure 3). MeshGAN [30] is a 

combination of GANs with truncated Chebyshev poynomials [11]. Extending [23], Li et al. [31] 

suggest multi-column graph convolution networks that applying a different Chebyshev convolution 

filter scale.  

 

 

Figure 2 Overview of the generative model using geometry images in [9] 

 

 
Figure 3 Convolutional mesh autoencoder [23] 
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Despite their performance, all these learning-based methods are labeled as holistic generation 

that generates all parts at once. For this reason, the above studies had difficulties in manipulating 

local anatomical parts such as eyes, nose, and mouth. They also had difficulty in generating a fine-

scale geometric model. 

 

Figure 4 Part-based approach applied to face generation 

 

There exist attempts to generate a new face with face segmentation and a local model to 

increase the model’s expressiveness and achieve fine-scale modeling. Blanz and Vetter [18] 

demonstrate region-based modeling with 3DMMs by manually dividing the face into regions that 

can be learned by the PCA models (Figure 3-(a)). Tena et al. [19] present region-based linear face 

modeling with automatic segmentation by clustering (Figure 4-(b)). Tran et al. [20] also propose 

non-linear 3DMMs with a global and local-based network to extract features of the global face 

structure and face part details simultaneously. Recently, Ghafourzadeh et al. [32] proposed a part-

 

  

 

 (a) The morphable model [18] added a large 

partial variety of faces 

(b) Region-based model and holistic 

model from Tena et al. [19] 
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based approach that conducts part-based facial models using PCA. This model results in a locally 

edited face by applying an anthropometric measurement.  

Nevertheless, to the best of our knowledge, a learning-based localized generation model that 

generates face data has not been proposed yet. 

 

B. Part-Based Shape Generative Models 

 

Wang et al. [16] propose holistic voxel-based generative adversarial networks called global-to-

local GAN and part refiner. At first, global-to-local GAN generates the whole shape and segments 

it into several parts. Then it refines the rough parts of the object with upsampling from low resolution 

to high resolution. They show better shape variety and distribution than a plain three-dimensional 

GAN by training the data with 3D inception score measurements.  

CompoNet [33] presents a part-based generative neural network for shapes. It suggests two 

units: the part synthesis unit and the part composition unit. The synthesis unit consists of parallel 

generative autoencoders that learn each semantic part of the shape. The composition unit learns to 

compose the encoded parts. With the suggested model, Schor et al. [33] proved that the part-based 

model encourages the generator to create new data that was unseen in the training set. 

Dubrovina et al. [34] handle the composition and decomposition of each part as a simple linear 

operation on the factorized embedding space, reflecting the part structure and encoding the geometry 

of the different semantic parts. They use projection matrices to split full object encodings into part 

encodings and represent them as fully connected layers. They show that the proposed decomposer-

composer network can perform meaningful part manipulations and high-fidelity 3D shape 

generation. 
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Figure 5 Part-based shape generative models 

 

To composite each part, both [33] and [34] compute per-part affine transformation. This task 

requires ground truth data of the parts. Our model does not utilize spatial transformer networks [35] 

nor computes affine transformation to combinate each part of the data.  

Öngün and Temizel [36] propose a holistic approach to learning the semantic part of the 

autoencoder data. They can handle part editing and modification without additional part assembly. 

However, they use a part-segmented point cloud dataset.  

We pursue a holistic generation approach but also allow part manipulation without explicit 

segmentation. Therefore, we do not need to worry about the artifacts when the model combines each 

part into a whole shape. 

 

C. Feature Matrix Factorization 

 

Some feature factorization methods interpret data more semantically since they can decompose 

the data into a part-based representation. Collins et al. [37] perform local and semantically-aware 

  

(a) CompoNet [33] (b) Decomposer-composer [34] 
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changes through a global operation on the 2D image domain. They apply spherical k-means 

clustering [38] on the last feature map to identify features that are semantically meaningful (Figure 

6-(a)). Deep feature factorization [39] influenced their research. Collins and Süsstrunk [39] 

demonstrate localized features using non-negative matrix factorization (NMF) (Figure 6-(b)). They 

apply NMF to the last feature map, where the semantic features are encoded. By factorizing the 

feature map, they can decompose an input image into several semantic regions. 

 

Figure 6 Feature decomposition examples from [37] and [39] 

 

NMF is a robust feature factorization method to represent data as part based. Lee and Seung 

[40] popularized NMF by showing its interpretability for part-based representation of facial images. 

Koppen et al. [41] extended NMF to 3D registered images. McGraw et al. [42] present 3D 

segmentation based on NMF and produce meaningful results. For its application, Li et al. [43] 

propose the concept of sketch as an input of GANs, which is the noise transformed to the basis 

matrix in NMF that has the underlying features of the raw data. 

 

 

(a) k heatmap by k-means clustering [38]  (b) k heatmap generated by Deep Feature 

Factorization (DFF) [39] 
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By applying NMF to 3D faces mesh, we supply localized weights to the holistic generative 

model. 
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III. Mesh Convolution Neural Networks 

 

In this study, we choose to represent 3D faces with triangular mesh due to its efficiency. 

Additionally, we utilize a learning-based model using CNNs. However, applying convolution neural 

networks to 3D meshes is not as straightforward as to images. Among diverse approaches, Ranjan 

et al. [23] propose CoMA employing fast Chebyshev filters [11] with a novel mesh pooling method. 

With their model, Ranjan et al. [23] show outstanding performance on 3D face reconstruction and 

learning a non-linear representation.  

There are other networks for a mesh that we attempt to employ: Bouritsas et al. [6]’s spiral 

convolution networks and Hanocka et al. [13]’s MeshCNN. Both studies perform state-of-the-art 3D 

mesh representation, but they are not suitable for our research purpose for the following reasons. 

First, spiral convolution networks need large pre-computed spiral trajectory data that is inappropriate 

for our high-resolution face data. It also requires an increased training time. Next, MeshCNN [13] 

cannot perform arbitrary mesh generation tasks since their algorithm requires the previous 

downsampling history. It means that the model using MeshCNN is unable to run a decoder or 

generator only. 

Therefore, we employ CoMA [23] to learn 3D facial mesh data and generate a new mesh 

because of its stable performance, adequate training time, and scalability of the model. Since our 

model is largely based on this model, we briefly explain the spectral graph convolution the model 

used. 
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A. Mesh Representation 

 

We represent a 3D face mesh as a set of vertices 𝑉 ∈ ℝ𝑁×3  and edges 𝐴 . The edges are 

represented by an adjacency matrix 𝐴 ∈ {0,1}𝑁×𝑁, where 𝐴𝑖𝑗 = 1 denotes where there is an edge 

connecting vertices 𝑖 and 𝑗, and 𝐴𝑖𝑗 = 0 otherwise. 

 

B. Spectral Graph Convolution on Face Mesh 

 

Defferrard et al. [11] use convolution on graphs with a frequency domain approach under the 

convolution theorem. The convolution in the spatial domain equals element-wise multiplication in 

the frequency domain. To convert the graph from the spatial domain to the frequency domain, 

Defferrard et al. [11] first applied the graph Fourier transform [15] to the input mesh. The graph 

Laplacian matrix is defined as 𝐿 = 𝐷 − 𝐴, where 𝐷 is a diagonal matrix, with 𝐷𝑖,𝑖 = 𝛴𝑗𝐴𝑖𝑗. The 

Laplacian matrix is diagonalized by the Fourier basis 𝑈 ∈ ℝ𝑁×𝑁 as 𝐿 = 𝑈𝛬𝑈𝑇 . Here, the columns 

of 𝑈 = [ 𝑢0, 𝑢1, … , 𝑢𝑛−1] are the orthogonal eigenvectors of L, and Λ = 𝑑𝑖𝑎𝑔([ 𝜆0, 𝜆1, … , 𝜆𝑛−1]) ∈

ℝ𝑁×𝑁 is a diagonal matrix. Following the convolution theorem, the convolution operator ∗ can be 

defined in the Fourier space as the element-wise product 𝑋 ∗ 𝑊𝑠𝑝𝑒𝑐 = 𝑈(𝑈𝑇(𝑋) ⊙ 𝑈𝑇(𝑊𝑠𝑝𝑒𝑐)) . 

Because of U, which is not sparse, this operation needs high computational costs. To address this 

problem, Defferrard et al. [11] formulate spectral convolution with a filter 𝑊𝜃 using a recursive 

Chebyshev polynomial ([11], [44]). The filter 𝑊𝜃 is parametrized as a Chebyshev polynomial of 

order K by 
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where �̃� =
2𝐿

𝜆𝑚𝑎𝑥
− 𝐼𝑛 is the scaled Laplacian matrix, and 𝜆𝑚𝑎𝑥  is the maximum eigenvalue of 

the Laplacian matrix. The parameter 𝜃 ∈ ℝ𝐾 is a vector of the Chebyshev coefficients, and 𝑇𝑘 ∈

ℝ𝑁×𝑁  is the Chebyshev polynomial of order k, which is computed recursively as 𝑇𝑘(𝑥) =

2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−1(𝑥) , with 𝑇0 = 1  and 𝑇1 = 𝑥 . For each convolution layer, the spectral graph 

convolutions are 

 

 

where 𝑥𝑖 is the 𝑖-th feature of the input 𝑥 ∈ ℝ𝑁×𝐹𝑖𝑛, and 𝒴𝑗 is the 𝑗-th feature of the output 

𝒴 ∈ ℝ𝑁×𝐹𝑜𝑢𝑡 . For each convolution layer, the spectral graph convolution has 𝐹𝑖𝑛 × 𝐹𝑜𝑢𝑡 vectors of 

the Chebyshev coefficient 𝜃𝑖,𝑗 ∈ ℝ𝐾  as trainable parameters. 

 

C. Mesh Sampling 

 

The hierarchical operation allows CNNs to learn global and local features, one of the networks’ 

strong advantages. It requires downsampling and upsampling operations to reduce the data’s 

dimensions and make them coarse and fine. For this hierarchical multiscale representation, Ranjan 

et al. [23] introduced mesh sampling operations to capture both global and local contexts. This 

 

 

(1) 

 𝒴𝑗 =∑𝑊𝜃𝑖,𝑗(𝐿)

𝐹𝑖𝑛

𝑖=0

𝑥𝑖 (2) 

𝑊𝜃(𝐿) = ∑ 𝜃𝑘𝑇𝑘(�̃�)

𝐾−1

𝑘=0

, 
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technique defines a new topological structure of each downsampling and upsampling layer and 

maintains the context on neighborhood vertices. 

In downsampling, removed vertices are selected using the quadric error metric The technique 

stores the barycentric location of the removed vertices w.r.t. what remains. The downsampled mesh 

passes through convolutional operations. Finally, removed vertices are added to the stored 

barycentric locations (Figure 7). 

 

 

Figure 7 Mesh sampling operation [23] 
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IV. Locally Weighted Autoencoder 

 

A. Overview 

 

 

Figure 8 Locally weighted autoencoder (simplified) 

 

Our model aims to synthesize various 3D faces and manipulate them locally while generating 

faces holistically. Our model is based on an autoencoder, one of the unsupervised learning techniques. 

It consists of three parts: an encoder (Figure 8-(a)), projection (Figure 8-(b)), and a decoder (Figure 

8-(c)). Figure 8 shows an overview of the model architecture. 

The encoder mainly compresses and encodes the input data. It takes face meshes as input and 

encodes them to low-dimension vectors using the convolution operation and a fully connected layer 

during training. Next, the projection part divides the latent space into several subspaces and makes 

them semantically meaningful. The latent space is factorized by learnable projection matrices. Thus, 

the factorized latent space reflects the part structure of the shape, not the whole structure. The latent 

vectors from the factorized space are then multiplied by local weights, computed before training the 

model. We produce local weights by using NMF to represent the data’s whole structure as semantic 
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part structures. The encodings passed through the projection part correspond to the shapes’ semantic 

part structure and are known as locally weighted encodings. 

Lastly, the decoder decompresses the sum of these encodings, which means that it reconstructs 

the latent vector to the original input, i.e., the face. The whole model repeats this process and 

eventually learns how to reconstruct and form the data’s latent space. Figure 9 describes the detailed 

model architecture. 
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B. Pre-Computed Local Weights from NMF 

 

In this section, we explain local weights that have semantic meanings presented by parts-based 

representation. Most previous parts-based generative models exploit explicit segmentation data or 

label for training their model to learn the structure of the object parts. However, 3D facial mesh 

datasets barely have those pre-segmented data. Contrary to the previous studies, we use parts-based 

representation to extract the local part structure without segmented data or labels. We refer to the 

represented data as local weights, which have each vertex’s influence on each divided facial part. 

We employ NMF to present the parts-based representation of the whole data. 

NMF is a linear dimensionality reduction technique. It learns a part-based representation of the 

data, as opposed to other methods, such as vector quantization (VQ) and principal components 

analysis (PCA), that learn a holistic representation (Figure 10). Lee and Seung [40] explain that the 

non-negativity constraints allow only additive, not subtractive, combinations. For these reasons, 

NMF is used for mesh segmentation [42], document clustering [45], and other applications. 

 

 

   

(a) NMF (b) VQ (c) PCA 

Figure 10 Part representation by NMF, VQ, and PCA methods [40] 

 

In the proposed model, we applied NMF to our face data and utilized its basis matrix in the 

projection part (Figure 8-(b)). NMF finds a low-rank approximation of a matrix 𝑉, where 𝑉 ≈ 𝑊𝐻, 
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when 𝑉,𝑊,  and 𝐻  do not have non-negative values. Given a feature matrix, 𝑉 , 𝑊  is a basis 

matrix that contains basis elements of 𝑉, and 𝐻 is a latent representation matrix. We call the matrix 

𝑊 local weights. These local weights serve as the influence of each vertex on a specific area. We 

expect that local weights would make the part encodings more semantically meaningful. 

McGraw et al. [42] say that enforcing sparsity on the column of 𝐻 could improve the local 

separation of features. Thus, we use sparse NMF to express local features more efficiently. We 

compute this with a sparsity constraint value of 7.5. Figure 11 shows the visualization of the local 

weights. The bright area shows how much each vertex influences the facial area. Compared to Figure 

12, the basis matrix by sparse NMF [46] presents a clear distinction of regions and part-based 

representation. 

 

 

(a) Sparsity 0.5 𝐾 = 4 

  

(b) Sparsity 7.5 𝐾 = 4 

Figure 11 Pre-computed sparse NMF’s basis matrix [46] 
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Figure 12 Pre-computed NMF’s basis matrix 

 

Before training the model, we compute a basis matrix 𝑊 and input a simplified template mesh 

vertices matrix 𝑉 ∈ ℝ𝑃×3 , where P is the number of vertices with positions in three dimensions, 

i.e., x, y, and z. This mesh has the last downsampling resolution. Given an input matrix 𝑉, NMF 

produces a basis matrix 𝑊 ∈ ℝ𝑃×𝐾, which means that the basis features of the vertices are indexed 

by 𝐾 and the coefficient 𝐻 ∈ ℝ𝐾×3 is indexed by the vertex positions. Here, 𝐾 ∈  ℝ is the rank, 

with 𝐾 < min (𝑃,  ), i.e., the number of the face part. After obtaining several 𝑊, we selected K 

basis matrices from them that have the most semantic features. 

 

C. Latent Space Manipulation 

 

Projection Matrix Layer 

Our encoder takes a whole shape as input and compresses to a low-dimensional representation, 

i.e., a latent vector. This encoding reflects the whole shape structure. When we factorize the whole 

encoding, we can generate part encodings corresponding to the shape structure of the part. Thereby, 

we disentangle different semantic part encodings from the encoding of the whole shapes. We then 

perform part-level shape manipulation. 

Dubrovina et al. [34] use projection matrices to transform a whole shape embedding into 

semantic part embeddings. They factorize the latent space into a semantic subspace with data-driven 



22 

learned parameters. Part-specific projection matrices, {𝑃𝑘}𝑖=1
𝐾 ∈ ℝ𝑁×𝑁 , are constrained by a 

partition of the identity to satisfy two properties: factorization consistency across input data and 

simple operator of shape composition. 

Motivated by this, we use learnable projection matrices to transform the whole part encoding 

from the global latent space to the localized basis matrix space. Similarly to Dubrovina et al. [34], 

we define part-specific projection matrices, {𝑃𝑘}𝑖=1
𝐾 ∈ ℝ𝑁×𝑁, where 𝐾 is the number of semantic 

parts. Passing through the matrices, the whole part encodings from the encoder are divided into 

semantic part encodings.  

For embedding parts, we implement projection matrices represented as 𝐾  fully connected 

layers without biases and with the latent dimension size of 𝑍 × 𝑍. The input of the projection layers 

is a whole face encoding produced by the encoder, and their outputs are K part encodings. The K 

part encodings can be split unpredictably and have arbitrary meanings. To make them more 

semantically meaningful, we apply pre-computed local weights. We explain this in the following 

paragraph. 
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Figure 13 Illustration of constructing sketches [43] 

 

Applying Local Weights to Factorized Part Encodings 

Li et al. [43] proposed sketch, a combination of random noise and features of the original data, 

produced by transforming vectors from the noise space to a basis matrix space in NMF. The 

multiplication of the basis matrix by noise vectors produces transformed new samples consistent 

with the raw data distribution. As a result, these samples have one or more raw data features (Figure 

13). 

Inspired by [43], we apply the pre-computed local weights to the part encodings that are 

factorized by the projection matrices (Figure 9). Each pre-computed local weight is multiplied by 

each latent vector. Thanks to this operation, each factorized latent vector has a localized weight, and 

the encodings lie on a part-based subspace. We describe this process schematically in Figure 14. 
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Figure 14 Illustration of the projection part 

 

Pre-computed local weights, which form the basis matrix derived from NMF 𝑊 ∈ ℝ𝑃×𝐾, are 

applied to the factorized latent vectors 𝑍 ∈ ℝ𝐾×𝑍. This process produces a locally weighted matrix 

𝑊𝐿 ∈ ℝ𝐾×𝑁×𝑍 and then sum up as 𝑊𝐿 ∈ ℝ𝑁×𝑍. This matrix is provided as an input to the fully 

connected layer of the decoder. Once the first layer of the decoder transforms the input, other 

processes mirror the encoder with an upsampling procedure, increasing the mesh data approximately 

four times. 

 

D. Loss Function  

 

To optimize the networks, we exploit the ℒ1 loss and cycle loss [34]. The ℒ1 loss is adopted 

to optimize the autoencoder’s reconstruction ability and measure the difference between the 

predicted mesh and the ground truth data.  
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Figure 15 Illustration of the cycle consistency constraint [34] 

 

Cycle loss [34] optimizes the network for the semantically plausible part arrangement using a 

cycle consistency constraint that encourages 𝐹(𝐺(𝑥)) ≈ 𝑥  and 𝐺(𝐹(𝑦)) ≈ 𝑦  [47]. Figure 15 

illustrates the cycle consistency constraint schematically. In this method, a mini batch of 𝐵 with 

training data {𝑋}𝑖=1
𝐵   is encoded by the encoder and factorized to 𝐾  part encodings. Each part 

encoding is arbitrarily shuffled in the mini batch, but not mixed with other part encodings. Then, the 

shuffled mini batch passes through the decoder, which reconstructs them. The reconstruction results 

are compressed and decompressed by the autoencoder again, but the unmixed part encodings are 

restored before the second encoder. Finally, the input data and final reconstruction data are compared, 

and the difference is provided as an error to the backpropagation of the networks. 
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V. Implementation 

 

A. Datasets 

 

To obtain massive facial mesh data, we used the AFLW2000-3D dataset [48] containing 2,000 

3D faces and the corresponding landmarks of AFLW [49] face images (Figure 16). Each 3D face 

has 53,215 vertices. All faces are in full correspondence and generated by the Basel Face Model [26] 

without pose variations. In data pre-processing, we matched all facial mesh topology, i.e., those with 

the same vertex ordering. The dataset was divided into a training set and a test set with 1,780 faces 

and 220 faces, respectively. 

 

 

Figure 16 Ten sample faces from the pre-processed AFWL2000-3D dataset [48] 
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B. Implementation Details 

 

Our proposed model is based on CoMA [23], following their down-sampling and up-sampling 

method for coarse-to-fine convolution networks. The structure of the encoder and decoder is shown 

in Table 1. Similar to [23], our encoder contained four convolution layers, followed by a biased 

ReLU [50]. After passing the convolution layer, the input mesh was down-sampled approximately 

four times. The last fully-connected layer transformed the face mesh into a 64-dimensional latent 

vector.  

 We trained our model for 300 epochs with a batch size of 32. The dimension of the latent 

vector was 64. The initial learning rate started at 0.0125 and decreased by 0.99 every epoch. We 

used stochastic gradient descent with a momentum of 0.9 to optimize and set Chebyshev filtering 

with K as six. We used PyTorch [51] and PyTorch Geometric [52] to implement our model and 

conducted all experiments with NVIDIA Titan RTX GPU 24GB.  

 

 

Table 1 Encoder architecture 
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Table 2 Decoder architecture 
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VI. Experimental Results 

 

The experimental results of our proposed model are described in this section. We present the 

practicality of our model with several generation tasks and an ablation study. In all experiments, 

except for the last ablation study, we set the number of face parts, 𝐾, as 4. 

 

A. Generation Results 

 

Part interpolation 

In this experiment, we tested the part manipulation results by applying interpolation between 

source and target (Figure 17). We interpolated the source’s part encodings to the target’s 

corresponding part encodings obtained by a factorized latent vector described in chapter IV-C.  

Figure 18 shows that as the respective part of the face influence changes, the other parts of the 

face are not affected. Plus, we expected that each row’s changing part matches each local weight in 

the same row. As a result, we observed that each variation area corresponds to each local weight in 

Figure 18. Color gradients in the variation area included visualizing the Hausdorff distance between 

the first face (𝛼 =
1

9
 ) and the last face (𝛼 =

8

9
 ) in each row. Each of them displays a variation of 

each interpolation more clearly. The blue-colored gradient signifies that the vertices of the source 

and target are nearby, while the red-colored gradient means they are further away. 

However, the variation corresponding to the third local weight (the third row in Figure 18Figure 

17) includes the changes in the eyebrow area as well as the nose. We provide two possible 

explanations for this: the transformation by projection matrices, and the quality of the dataset. First, 

projection matrices have a role in transforming part encodings from latent space to local weights 
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space as well as factorizing the latent space. Thus, this transformation would cover unassigned areas 

by local weights. Second, the variation of eyebrow and nose might be related because this correlation 

is found across the dataset we used, not specific face data. 

 

 

Figure 17 Source and target face  

 

(a) Source (b) Target 
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Reconstruction ability  

Figure 19 and Figure 20 show the results of reconstruction using our model and baseline [23], 

respectively. Overall, our model results are comparable with the baseline’s and display the 

distinctive identity of each ground truth face. We found minor reconstruction errors in the forehead 

and eyes compared to the baseline results. Nevertheless, our model shows convincing results 

considering that improving reconstruction ability is not the primary goal in this study. In Figure 19 

and Figure 20, color gradients present the Hausdorff distance, which means there is a reconstruction 

error between ground truths and reconstruction results. 

 

 

Figure 19 Reconstruction result of our model 
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Error



33 

 

Figure 20 Reconstruction result of baseline [23] 

 

B. Diversity Visualization 

 

One of our goals was to improve the variation of generated data with the proposed method. To 

demonstrate the variety of data, we measured the diversity of generated data from our model. 

Using the trained encoder, we encoded 220 random faces from our training set and test set, 

respectively. Since our proposed model allows part manipulation and modification, we synthesized 

220 faces by combining five source faces and 11 target faces for four parts. The synthesis samples 

are shown in Figure 21. We assumed that this manipulation would encourage the model to generate 

more various outputs.  

The result was visualized by projecting selected data onto a 2D plane using PCA and t-SNE 

[53], shown in Figure 22 and Figure 23. We displayed all encoded faces as markers and summarized 

them with ellipses. Here, there are three types of encoding: training set (red), test set (yellow), and 

part synthesis (green). 

GT

Recon

Error

0 mm   10 mm
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Schor et al. [33] named their test data as unseen data that the model cannot encounter during 

training. According to them, if the model generates samples like the unseen data, it means that the 

model can generate diverse data, including what it did not learn. Using this perspective, we focused 

on the area where our synthesis outputs were placed. 

In Figure 22, we can discern that our synthesis sample area (green ellipse) involves both areas 

of the training set and test set (red and yellow ellipses) in the 2D PCA plane. Figure 23 (t-SNE 

visualization) presents this result more distinctively as the synthesis samples are also located in a 

wider region as well as the region of the training set and test set. 

In our visualizations, even though the training data and test data overlap, our synthesis samples 

(green) cover wider areas in the encoding space. As a result, our proposed method shows a prominent 

performance to extend the model’s representation ability. 

 

 

Figure 21 Synthesis face samples 
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Figure 22 Visualization of 2D PCA plane projection 

 

 

Figure 23 Visualization of 2D t-SNE place projection 
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C. Ablation Study 

 

To study the effect of each component of our approach, we experimented with an ablation study 

with several variations of model components, such as local weight, projection matrices, cycle 

consistency, and the number of projection matrices and local weights. 

 

Without local weights  

In the proposed model, local weights were obtained by NMF to make decomposed part spaces 

more semantically meaningful. To verify the effect of local weights, the model was trained without 

applying local weights to the projection part. The results are shown in Figure 24 and are presented 

sequentially. The far-right face visualizes the Hausdorff distance between the first face and the last 

face in the sequence.  

Without applying local weight, the results do not display noticeable changes in some faces, and 

changing areas of the face also are intertwined with each other and look arbitrary. 

 

 

Figure 24 Results of part interpolation without applying local weights 

Part 1

Part 2

Part 3

Part 4

Near Far
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Without projection matrices 

In this experiment, we removed the factorization step to explore its impact. There was a major 

change in the encoder, which is visually described in Figure 25.  

In the process, the output 𝐹 ∈ ℝ𝐷𝑖×𝐶  of the last convolution and the down-sampling layer 

directly multiplied each pre-computed local weight 𝑊 ∈ ℝ𝑃×𝐾  element by element. 𝐷𝑖  is the 𝑖-

th down-sampling resolution, where 𝑖 is 4, and 𝐶 is the last convolution filter size of the encoder. 

This was then applied to the fully connected layer and transformed into K 64-dimensional latent 

vectors. Finally, these locally weighted vectors were summed and inputted into the decoder. The 

result is shown in Figure 26. 

Compared to Figure 18, the changing parts of faces in Figure 26 reflect less local weight except 

for the first face. Specifically, the second face’s cheek area impacts the mouth area, and other faces 

change different parts with local weight. Considering the results, we can infer that the projection 

matrices help exert local weights better. Accordingly, projection matrices not only factorize the 

latent space but also transform it into local weights space. 

 

 

Figure 25 Altered model without projection matrices 
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Figure 26 Part interpolation result without factorization by projection matrices 

 

Without cycle consistency constraint 

We omitted the cycle consistency constraint [34] during training. Since this constraint expects 

part separation to be more apparent and plausible, we guessed that part interpolation becomes 

unclear without the constraint.  

The result of the test is shown in Figure 27. It presents a plausible part arrangement in terms of 

given local weights. However, the variation in the third face is more spread out than the face with 

cycle consistency constraint. To compare, please see Figure 29. 

 

 

Figure 27 Part interpolation result without cycle consistency constraint 
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Increasing K: The number of projection matrices and local weights 

To prove the influence of the number of local weights, we added one projection matrix and one 

local weight to divide a face into five parts. In Figure 28, the fifth column is a newly added local 

weight influencing the neck and side forehead. The generated face with the new local weight clearly 

shows its changing part is limited to around the neck. Given this result, the proposed local weights 

from NMF exhibit a local change while generating a holistic shape change in the model.  

The number of local weights should be the same or less than the number of projection matrices. 

Yet, each number of projection matrices and local weights should be matched because of the 

dimensionality of the produced vectors. If not, the dimensionality does not match the locally 

weighted factorized vectors.  

Figure 29 schematically describes five projection matrices and four local weights. In this 

condition, the latent vector from the encoder can be factorized into five latent vectors, but only four 

divided vectors can be multiplied by local weights. This operation changes the multiplied latent 

vectors’ dimensions. Therefore, the four multiplied vectors and the others have different 

dimensionality. Consequently, unmatched dimensionality prevents subsequent operations. 

 

 

Figure 28 Part interpolation result from applying five projection matrices and local weights 

Added
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Figure 29 Mismatched dimensionality  

 

D. Discussion 

 

 Our proposed model performed notable part manipulation and synthesis using a holistic 

generative approach. However, there are a few points that need further discussion. The whole model 

did not show improved reconstruction compared to the baseline [23]. Although this is not critical, 

there were general noises on the meshes. We assume that used model components, such as projection 

matrices and local weights can improve the diversity of outputs but might constrain the decoder’s 

improvement. 

Concerning the level of model components, the correlation between the changing area of faces 

and local weights should be better addressed. Most changing areas generally reflect corresponding 

local weights features, but some include another part or ignores them. One assumption is because of 

projection matrices that influence factorization and transforms latent vectors. The other is the natural 

quality of the dataset having correlations between facial features. Although we suggest two possible 

reasons, these need to be explored thoroughly. 
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 Second, the semantic meaning of local weights needs to be examined. Our local weights were 

computed algorithmically, not manually segmented or labeled. Therefore, it lacked semantic 

meaning and detailed segmentation of the human face, such as the separation of eyes and eyebrows.  

Finally, we multiply the part encodings in latent space and local weights in NMF. This approach 

seemed to work in our setting because the projection matrices transform part encoding to local 

weights’ space. We have shown experimentally that our process works, but the mathematical proof 

is still needed.  
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VII. Conclusion 

 

In this dissertation, we proposed a locally weighted 3D generative face model using spectral 

convolution networks for a 3D mesh. We increased the model’s expressiveness by manipulating the 

local part of a face without explicit mesh segmentation. We implemented our generative model based 

on Ranjan et al.’s [23] autoencoder. We also combined latent space factorization and applied local 

weights.  

We evaluated our proposed model’s synthesis ability, reconstruction ability, and diversity 

visualization. The ablation study also showed each model component’s effect on generation results. 

In detail, our model used latent vector manipulation while applying local weights. This manipulation 

allowed each part of the face to be modified and the corresponding part between faces that were not 

identical were interpolated. We observed that the modified areas of the face were separated, and the 

changes were noticeable. With data encoding visualization, we verified the improvement of the 

model’s representative power through diversity visualization. Our model synthesized samples in the 

central and peripheral regions of the dataset.  

Our model is simpler than existing models that use several part decoders and composition 

networks. Only a global encoder and decoder were used, and additional networks were not required, 

meaning that our model performed with a lower number of weight parameters. 

In future work, we would like to extend our model to apply other generative models i.e., VAE 

or GANs, to improve output’s quality. Generating face textures with geometry also would express 

the quality of outcomes better. Besides, it would be worthwhile to study parts-based representation 

to improve the proposed local weights to develop the model’s synthesis ability.  
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국문 초록 

김민영 

인공지능·소프트웨어학부 

이화여자대학교 대학원 

 

사람의 얼굴을 3 차원에서 표현하고 다양한 얼굴상을 만들어내려는 얼굴 생성 모델 

연구가 진행되어왔다. 특히 적대적 생성 신경망 (Generative Adversarial Networks)의 

등장으로 생성 모델에 대한 관심은 더욱 높아지고 있으며 딥러닝을 활용한 연구도 

활발히 진행되고 있다. 얼굴 생성은 가상 아바타 및 가상 인물 콘텐츠 생성에 활용될 

수 있다.  

얼굴 생성에 관련한 기존 연구들은 얼굴 전체를 활용하여 다양한 얼굴을 만들려는 

시도이다. 그러나 얼굴을 의미론적 특징을 가진 여러 개의 부분으로 나눠 생성하는 

것이 모델의 표현 능력을 보다 향상시키고 부족한 얼굴 데이터 셋의 한계를 해결할 

수 있다. 

본 학위 논문에서는 국소적 가중치를 적용한 3 차원 얼굴 생성 모델을 제안한다. 

전체 얼굴 메쉬를 학습하여 부분적 조작이 불가능한 기존 연구들과는 달리 제안하는 

모델은 전체 얼굴 메쉬를 학습하면서도 얼굴의 부분적 조작이 가능하다. 이는 

데이터가 학습된 기저 공간을 여러 개의 부분 공간으로 분해함으로써 부분 공간에 

해당하는 기저 벡터를 선형적으로 변형함으로써 가능하다. 또한, 비음 행렬 분해 

(Non-negative matrix factorization) 알고리즘으로 생성한 국소적 가중치를 기저 공간에 

적용하여 분해된 부분 공간이 좀 더 의미 있는 부분적 얼굴 표현을 가질 수 있도록 

한다.  

제안하는 모델을 구현하고 실험하여 효과적인 얼굴 부분 조작이 가능함을 

확인하였으며 모델의 생성 능력 또한 향상하였음을 보였다. 또한, 비교 실험을 통해 
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본 연구에서 제안한 국소적 가중치를 적용한 기저 공간 분해가 의미 있는 결과를 

생성함을 확인할 수 있었다.  
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