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Summary

 

In this dissertation, we propose a framework that enables robots to arrange objects 

in a chaotic scene autonomously. Previous research showed that robots need to be provided 

with a given goal or a guided plan from users to perform manipulation tasks, such as packing 

objects into boxes and carrying objects around complex obstacles. 

Without the provision of a goal in the form of a human command, a robot can 

generate an aligned scene by itself. To attain arranged scenes, we obtain semantic masks and 

translate object poses from an initial scene at a semantic level using the existing image-to-

image translation model [1]. Our model also utilizes disentanglement and code swapping 

approaches [2] to reconstruct the RGB textures from the aligned semantic images. To obtain 

our goal, it is necessary to select a proper dataset; however, the pre-existing datasets are not 

appropriate for our object arrangement task. Thus, we construct a photorealistic synthetic 

dataset for the arrangement task, which consists of YCB object models [3]. 

After accomplishing the goal scenes, we enable the manipulator to organize objects 

using sample-based motion planning algorithms. We test and demonstrate that the robot can 

autonomously set goals and successfully carry out object arrangement tasks on the table. 
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I. Introduction 

 

A. Motivation 

 

Recently, there have been increasing concerns about autonomous robots that perform 

various high-level tasks under complex situations. To become more intelligent, robots need to 

cope with their surrounding environments and read the context of various settings. For these 

reasons, robots must be able to process visual data from their environments and analyze the 

relationships between objects.  

With the desire to develop robots with autonomy, many researchers have focused on 

robot manipulation utilizing robot learning approaches. For robot grasping, the existing 

research has adopted deep learning techniques to establish a robust grasping algorithm [2, 3, 4]. 

For instance, 6-DOF GraspNet from Mousavian et al. [4] utilized variational autoencoders for 

sampling a set of grasps and for assessing and refining the sampled 6D grasp poses. Moreover, 

the previous research on 6 DoF object-pose estimation [5, 6, 7], which is crucial for real-world 

robot applications, has introduced deep neural networks for pose estimation to enhance 

performance in the presence of lighting variation and occlusion.  

Although the robots can perceive the environments, the goals to carry out the 

manipulation tasks must be provided through human commands. However, it is inconvenient 

and even burdensome for the user to deliver the guides and sequential goals to intelligent agents 

every time. Therefore, we focus on the question of what if robots can generate goals by 

themselves and carry out feasible actions without having to be guided by a human? Until 
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relatively recently, there have been just a few existing studies [10, 11] that have answered this 

question. Specifically, Kang et al. [11] proposed a method to automatically arrange objects 

using task and motion planning. However, in previous works, the robots needed to be guided 

by some positive user examples and, thus, did not cover many general cases. Therefore, rather 

than being provided with goals given by humans, we aim to accomplish an autonomous robotic 

object arrangement in the robot simulation. 

 

B. Research Goal 

 

 We propose a novel framework for the robot’s autonomous goal generation, in 

particular, to perform object arrangement tasks. In our framework, the robot can automatically 

suggest target-aligned scenes without human commands using a novel combination of image 

manipulation, such as image-to-image translation and style transferring based on deep learning, 

object pose estimation, and task and motion planning. Unlike the previous robot object 

arrangement studies, our work enables a robot to carry out feasible actions without human 

guidance or interference. 
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C. Main Contributions 

 

Thus, our main contributions are as follows: 

 

● A mobile manipulator generates a target-aligned goal from an initial messy scene 

by itself. 

● To focus on the object classes, we perform the object position translation on a 

semantic level and use a structural loss by comparing the structures between the 

generated and the ground truth of aligned scenes. 

● The robot successfully performs object arrangement tasks from an initial scene to 

its autonomously-generated scene using task and motion planning. 

 

We utilized the pix2pixHD model from Wang et al. [1] with image-to-image 

translation and applied the disentanglement method from Park et al. [2] to decompose images 

into the texture and structure codes. Translating images to their target domains enabled the 

obtaining of semantic masks from the input RGB images and the organization of object poses. 

Also, decomposing images into their components made the model adjust each component and 

enhanced the accuracy of synthesized results. We also performed the robot simulation in which 

the robot could successfully carry out a series of feasible actions and achieve the goals for object 

arrangement. 
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D. Organization 

 

The rest of the dissertation is organized as follows. Section Ⅱ presents the previous 

research on a photorealistic dataset, image-to-image translation, and object arrangement. 

Section Ⅲ briefly shows the overview of our system, and Section IV explains the baselines and 

our model about semantic segmentation, object position translation, and texture reconstruction. 

Section Ⅴ demonstrates the approach to estimating the object poses from the RGB images. Then, 

in Section Ⅵ, our framework is compared with different models, and the ablation test is 

conducted without using the structural loss to show the performance and robustness of our 

model. Also, we demonstrate the robot simulation in the Gazebo environment. Finally, we give 

conclusions in Section Ⅶ.  
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II. Related Works 

 

For objects’ position translation, our framework is primarily based on image-to-image 

translation works. Specifically, we used the conditional GAN framework from pix2pixHD [1] 

to translate from a messy scene to an ordered one because it showed the best performance at 

this task compared to other previous methods.  

 

A. Photorealistic Synthetic Dataset  

 

Recently, there have been rising demands to utilize synthetic data for training deep 

neural networks due to its unlimited amount of pre-labeled training data and prevention from 

overfitting. In particular, using a photorealistic synthetic dataset lessens the burdensome 

annotation and even enhances its accuracy. The use of synthetic data for training deep neural 

networks has gained in popularity, as we can see in the following dataset: SIDOD [12], Falling 

Things (FAT) Dataset [13], SceneNet RGB-D [14], and others (shown in Figure 1).  

However, there was no appropriate photorealistic dataset for our object arrangement 

task. As in the existing works, we proposed our own dataset, which consisted of the YCB dataset 

[3], a benchmark for robot manipulation. The YCB dataset [3] (shown in Figure 2) is constituted 

of several household objects and is widely used to test and evaluate robot tasks such as grasping 

and domain adaption. 
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(a) SIDOD dataset [14] (b) FAT dataset [15] 

 

(c) SceneNet RGB-D dataset [14] 

Figure 1. Photorealistic synthetic datasets 

 

 

Figure 2. YCB object and model set [3] 
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B. Object Position Translation 

  

 Since Goodfellow et al. [15] proposed a revolutionary framework, Generative 

Adversarial Networks (GANs) have widely applied semantic segmentation, local and global 

image editing, and image style transfer to various image-to-image translation tasks. We used a 

conditional generative model for object position translation and an autoencoder for texture 

reconstruction to successfully arrange objects in images. 

 

1. Image-to-Image Translation 

 

Since Isola et al. [16] proposed a pix2pix framework using an adversarial method that 

translates images from the input domain to the output domain, image-to-image translation using 

the adversarial loss [15] rather than the L1 loss has become a broadly treated problem [7, 8, 9]. 

The pix2pix framework [16] mapped input images to output images through learning 

conditional GANs and utilized this method for various tasks such as generating cat photos from 

user sketches. However, it is difficult to apply this method for high-resolution images (such as 

1,024 x 1,024). The pix2pixHD model [1] extended this method to facilitate the image-to-image 

translation with high-resolution images by adopting a multi-scale discriminator and coarse-to-

fine generator. Although these frameworks produced sufficient performances, they required a 

large amount of labeled data.  

Recently, to overcome the limitation, there has been an increased need for 

unsupervised learning for image-to-image translation [10, 11, 12]. Specifically, a CycleGAN 

from Zhu et al. [21] adopted a cycle-consistency loss (as shown in Figure 3) to transfer image 
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styles without using a labeled dataset.  

 

 

Figure 3. Cycle-consistency loss [21]. 

 

Even though the unsupervised learning methods have advantages over the supervised 

ones, our system required the high performances of output aligned images and, thus, referred 

to the pix2pixHD model.  

 

2. Deep Image Manipulation via Latent Space Exploration 

 

Disentanglement [13, 14, 15, 16] that separates inputs into independent latent matrices 

or vectors enables a profound understanding of image manipulation and even the subtle 

adjustment of those components for generating many realistic and reliable outputs. Karras et al. 

[26] also proposed a generator architecture StyleGAN, which learns high-level attributes such 

as the pose and identity of human faces. To leverage the performance, they embedded the input 

latent code into an intermediate latent space. Also, StyleGAN2 [27] and Image2StyleGAN [28] 

extended the embedding latent space used in StyleGAN to reconstruct the images with a style-

based generator (shown in Figure 4).  
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Rather than sampling the latent codes from a fixed distribution such as a Gaussian 

distribution, the swapping autoencoder model from Park et al. [2] learned the latent code space 

and thus decomposed the images into structure and texture codes, which are its representative 

components. Then, it shuffled those codes between two images to manipulate images locally 

and globally, like other previous code-swapping approaches [16, 21]. We adopted Park et al.’s 

model [2] because it is more promising for the reconstruction of our texture reconstruction task 

compared to other previous methods.  

 

 
Figure 4. Style-based generator [26] 
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C. Object Arrangement 

  

Fisher et al. [30] proposed a method for synthesizing 3D object arrangements from a 

few user-provided examples. They classified object groups into contextual categories in the 

scenes, trained a probabilistic model using a small number of user preferences, and utilized the 

model as a guide to organizing the scenes. Wang et al. [31] generated an object relation graph 

by encoding objects as nodes and spatial object relationships as edges using a deep graph 

convolutional generative model for indoor scene synthesis. Also, other previous works [31, 32, 

33] used deep generative models and convolutional neural networks to generate synthesized 

indoor scenes by collecting reference scenes from users.  

In Abdo et al. [10], the robot performed object arrangement in tidy-up tasks such as 

organizing a shelf or sorting objects in boxes through collaborative filtering. Like the existing 

works [29, 30], Abdo et al. grasped user preferences and performed object grouping using 

collected and crowdsourced data. Kang et al. [11] suggested an approach to automatic object 

arrangement using task and motion planning. They also extracted object relationships of target 

scenes by collecting user-preferrable examples. Although our framework is inspired by this 

work [11], we decided to automatically generate goal scenes by utilizing deep learning 

approaches rather than establishing object relationship graphs. 

  



11 

 
(a) Using a probabilistic model and contextual object categories [30] 

 

 

 

(b) A deep graph convolutional generative model [31] (c) A CNN-based model [32] 

Figure 5. Object Arrangement using user positive data 
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III. System Overview 

 

To accomplish our goals, we divided our system into three steps, as shown in Figure 

6: organized scene generation (step 1), object pose estimation (step 2), and task and motion 

planning (step 3). In the first step, we aligned the object poses from input messy scenes by 

utilizing the image-to-image translation approach. We used our custom dataset for our object 

arrangement task, which consisted of the messy scene images and their corresponding arranged 

images. We estimated the individual object’s poses from both input and goal scenes in step 2 

and carried out motion planning from the initial object poses to the goal poses in the robotic 

action in step 3.  

In order to organize the scenes, we needed to create a proper dataset, as the existing 

indoor scene dataset was not appropriate for arrangement tasks. Thus, we constructed a dataset 

that consisted of unkempt scene images and their corresponding clean scene images using 

Unreal Engine 4 and a customed plugin, the Nvidia deep learning dataset synthesizer (NDDS) 

[35] provided by NVIDIA. During dataset generation, we considered physical conditions such 

as gravity. The dataset also contained semantic masks of both organized and unorganized scenes 

to facilitate object position translation. These image sets were used to perform semantic 

segmentation, object arrangement, and texture reconstruction.  

After the dataset construction, at step 1, as shown in Figure 6, we utilized the image-

to-image translation works, such as the pix2pixHD model [1], to accomplish the arrangement 

task. To translate object location, we decomposed the problem into three stages: semantic 

segmentation, object pose arrangement, and texture reconstruction. While they may require 

additional processes to obtain, semantic masks allow the training model to concentrate on the 
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information of object position by removing the effects of texture information from images. 

Since pix2pix and pix2pixHD models were devised to target a segmentation task and its inverse, 

we adopted the pix2pixHD model for semantic segmentation and semantic level object 

arrangement. We needed to adopt additional loss terms to enhance the accuracy of object 

arrangement tasks because the model was not designed for them. Therefore, we introduced a 

simple loss called latent loss that compared the structure codes between generated images and 

the ground truths. Through comparing these, we enhanced the accuracies of the model.  

Finally, the aligned semantic images should recover their textures to detect object 

poses because the current object pose estimation techniques require RGB textures to predict 

their exact geometries. The swapping autoencoder model [2] proposed that the system 

manipulates images using an encoder and generative adversarial networks. It separated input 

images into a structure code and a texture code using the encoder. Then, it shuffled those latent 

codes between two images to effectively produce a realistic manipulated image. Our model 

integrated the swapping model into our system to recover RGB textures from semantic images. 

For texture recovery, the aligned semantic images were used as a structure code, while the 

chaotic RGB images were used as a texture code. Then, we shuffled both components extracted 

from those images and successfully achieved goal scenes, the aligned RGB images. 
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Figure 6. System Overview 
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IV. Organized Scene Generation 

 

A. Preparing a Dataset 

  

Before conducting autonomous goal generation, we created our dataset devised for 

the object arrangement task. To construct the dataset, we imported ten household objects from 

the YCB dataset [3] such as a tomato soup can, an apple, or books (shown in Figure 7), which 

are widely used benchmarks in robot manipulation, into a virtual environment within Unreal 

Engine 4 (UE4) (shown in Figure 8). Multiple YCB objects were randomly placed on the table 

or added to the bookshelf in a messy scene. For generating reliable chaotic scenes, the objects 

were dropped at random orientations and positions by gravity. The aligned scene contained the 

same number and classes as the messy scene. We manually arranged the scene by clustering the 

objects with the same classes. After deploying objects, the images from the organized and 

disorganized scenes were generated by a custom UE4 plugin [35] offered by NVIDIA.  

To prevent the training model from overfitting issues, various scene images were 

captured by four different camera positions; each pair of messy and aligned scenes shared the 

same camera’s location. We trained the object arrangement model with an image resolution of 

640 x 480 pixels based on the pix2pixHD model. Note that the dataset was constituted of 1,000 

pairs of the original RGB and its corresponding semantic mask images for both the chaotic and 

arranged scenes. 
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Figure 7. The 10 YCB objects and their appearance count in the entire scene.  
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Figure 8. Our custom dataset using YCB object models [3] 
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B. Object Arrangement using image-to-image translation 

 

 For object position translation, our framework was largely based on pix2pixHD [1]. 

We used the conditional GAN framework from pix2pixHD to translate from a messy scene to 

an ordered one because it shows the best performance at this task compared to other previous 

methods. However, those existing cGAN strategies were not appropriate for our arrangement 

task to a large extent because those were devised to treat local or global editing or style 

transferring. To generate much more accurate scenes, we thus introduced structural loss into the 

discriminator and used semantic masks to concentrate on object class information.  

Our model took a 3D tensor (size 3x512x512) of RGB image as an input. Then, it 

sequentially learned to generate its corresponding semantic masks and to translate object pose 

at the semantic level. Translating object poses at the semantic level may enable the model to 

avoid being distracted by unnecessary information under abundant textures and, thus, 

concentrate on their location information. During training the object pose translation, the latent 

loss was adopted to organize the object positions in semantic masks. Afterward, we used the 

autoencoder from Park et al. [2] to apply RGB textures into semantic masks. The encoder 

separated input images into both the texture and structure code, which represented both RGB 

texture information and skeletal structure component from the images. Then, it swapped the 

texture codes from messy RGB images and structure codes from the aligned semantic masks to 

create the goal images combining both the original RGB textures and the semantic structures. 
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1. The Pix2PixHD Baseline 

  

 We adopted a pix2pixHD model from Wang et al. [1] as the baseline of our model for 

semantic segmentation and object position translation. The pix2pixHD model is a supervised 

learning framework based on the pix2pix [16] model, which is constituted of a generator G and 

a discriminator D. It receives an input image 𝑥𝑖 and a corresponding target output image 𝑦𝑖 

as input training data. It uses an objective function of a conditional GAN represented as: 

 

 𝐿𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸(𝑥, 𝑦)[𝑙𝑜𝑔𝐷(𝑥, 𝑦)]  + 𝐸𝑥[log (1 −  𝐷(𝑥, 𝐺(𝑥))] (1) 

 

Thus, it strives to find the ideal generator which minimizes the loss function, while the 

discriminator tries to maximize it: 

 

 𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝐿𝐺𝐴𝑁(𝐺, 𝐷) (2) 

 

In addition, it uses a coarse-to-fine generator, a multi-scale discriminator, and an additional 

adversarial loss because it aims to enhance the quality of the model for high-resolution images 

(> 512 x 512). 

 To deal with high-resolution images, the generator was decomposed into two sub-

networks: the global generator 𝐺1 and the local generator 𝐺2 (as shown in Figure 9). The 

global generator operated the original images, while the local generator concentrated on local 

areas of interest through increasing the image size. 
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Figure 9. The network architecture of pix2pixHD [1]  

 

Also, Wang et al. [1] proposed using multi-scale discriminators at different image 

scales to cope with both the network capacity and overfitting at the same time. The three 

different discriminators 𝐷1, 𝐷2, 𝐷3 were used in the network structure to distinguish between 

the original and synthesized images at three different levels. Thus, it was able to adjust from 

the coarse-scale to the fine-scale of the image and even assist the coarse-to-fine generator. Thus, 

the equation (1) was transformed into the equation (3) below: 

 

 min
𝐺

max
𝐷1,𝐷2,𝐷3

∑ 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑘)

𝑘=1,2,3

 (3) 

   

 Finally, Wang et al. enhanced the GAN loss by matching intermediate features 

between real and generated images. The feature mating loss is expressed as: 

 

 

𝐿𝐹𝑀(𝐺, 𝐷𝑘) = 𝐸(𝑥,𝑦) ∑
1

𝑁𝑖
[‖𝐷𝑘

(𝑖)(𝑥, 𝑦) − 𝐷𝑘
(𝑖)

(𝑥, 𝐺(𝑦))‖
1

]

𝑇

𝑖=1

 (4) 
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where 𝐷𝑘
(𝑖)

is an ith-layer discriminator, T is the total number of layers, and 𝑁𝑖 is the number 

of elements in ith-layer. By incorporating the equation (3) and (4), the full objective function is 

represented as: 

 

 

min
𝐺

(( max
𝐷1,𝐷2,𝐷3

∑ 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑘)

𝑘=1,2,3

) + 𝜆1 ∑ 𝐿𝐹𝑀(𝐺, 𝐷𝑘)

𝑘=1,2,3

) (5) 

 

2. Swapping Autoencoder Baseline 

 

Because recent object pose estimation techniques require RGB textures to detect 6D 

poses, it was necessary to reconstruct RGB textures of images rather than use semantic mask 

images. Thus, we adopted a deep image manipulation method [2], which decomposed an image 

into a structure and a texture and enforced to swap the latent components between two different 

images.  

Park et al. encoded each image into two latent codes using an encoder E and 

reconstructed both latent components into the original images with a generator G (as shown in 

Figure 10). The image reconstruction loss 𝐿𝑟𝑒𝑐(𝐸, 𝐺) and the non-saturating adversarial loss 

𝐿𝐺𝐴𝑁,𝑟𝑒𝑐(𝐸, 𝐺, 𝐷) were used to confirm whether both codes are successfully separated: 

 

 𝐿𝑟𝑒𝑐(𝐸, 𝐺) = 𝐸𝑥~𝑋‖𝑥 − 𝐺(𝐸(𝑥))‖
1
 

𝐿𝐺𝐴𝑁,𝑟𝑒𝑐(𝐸, 𝐺, 𝐷) = 𝐸𝑥~𝑋[−𝑙𝑜𝑔(𝐷(𝐺(𝐸(𝑥))))] 

(6) 

(7) 
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, where a discriminator D is applied to make the images more realistic. 

 

 

Figure 10. Swapping Autoencoder Model [2].  

 

 Furthermore, latent space Z of images were separated into two latent components 𝒛 =

(𝒛𝒔, 𝒛𝒕), which consisted of a structure component 𝒛𝒔 and a texture component 𝒛𝒕. Then, Park 

et al. enforced the latent components from the hybrid images to produce realistic images using 

the GAN loss. With randomly sampled two images 𝑥1  and 𝑥2 , the adversarial loss on the 

hybrid images is calculated as: 

 

𝐿𝐺𝐴𝑁,𝑠𝑤𝑎𝑝(𝐸, 𝐺, 𝐷) = 𝔼𝑥1,𝑥2~𝑋,𝑥1≠𝑥2[− log (𝐷 (𝐺(𝒛𝒕
𝟏, 𝒛𝒔

2)))] (8) 

 

 Additionally, the co-occurrent loss that compared the textures between the chaotic 

input image 𝑀𝑟𝑔𝑏 and the synthesized RGB image 𝑂𝑟𝑔𝑏 was added. According to Park et al., 

both images have a consistency of textures and, therefore, the loss term makes their textures 
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indistinguishable. They randomly extracted patches from the image and compared those patches 

between images rather than the whole image. 

 

 𝐿𝐶𝑜𝑜𝑐𝑐𝑢𝑟𝐺𝐴𝑁(𝐸, 𝐺, 𝐷𝑝𝑎𝑡ℎ) = 𝔼[− log(𝐷𝑝𝑎𝑡𝑐ℎ(𝑐𝑟𝑜𝑝(𝐺(𝒛𝒕
1, 𝒛𝒔

𝟐)), 𝑐𝑟𝑜𝑝𝑠(𝑀𝑟𝑔𝑏))] (9)  

 

, where the crop is randomly selected between 1/8 to 1/4 of the original images.  

Thus, the total objective function for texture reconstruction is written as 𝐿𝑡𝑜𝑡𝑎𝑙 =

𝐿𝑟𝑒𝑐 + 0.5𝐿𝐺𝐴𝑁,𝑟𝑒𝑐 + 0.5 𝐿
𝐺𝐴𝑁,𝑠𝑤𝑎𝑝

+ 𝐿𝐶𝑜𝑜𝑐𝑐𝑢𝑟𝐺𝐴𝑁. 

 

3. The Proposed Model for Object Position Translation  

 

Although a natural RGB image contains texture-rich information, it hindered our 

model from successfully translating object position because it is challenging to infer exact class 

information of every pixel due to the shadows and various colors of an object. Therefore, we 

conducted semantic segmentation (as shown in Figure 11) and used a semantic mask to focus 

on each object’s class information. It prevented our model from being affected by noises and 

enabled it to translate the poses effectively. 

The existing frameworks [15, 18, 20] were devised for local or global image style 

editing and texture transfer, not for translating object position. Even though the previous model 

has a possibility of performing our object arrangement task to some extent, it was necessary to 

introduce an additional loss term to enhance the performance of the model.  
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Input RGB images Output Ground truth 

Figure 11. The results of semantic segmentation using pix2pixHD model [1] 

 

Thus, like Park et al. [2], we separated images into two latent components 𝒛 =

(𝒛𝒔, 𝒛𝒕) using encoder 𝑬 and confirmed whether the encoder successfully decomposes both 

latent components by using the decoder and its discriminator. Then, we introduced a structural 

loss, which compared the structural components between an arranged image and its ground 

truth. The latent loss comparing both structure codes is expressed below: 

 

𝐿𝐿𝐴𝑇𝐸𝑁𝑇(𝐺, 𝐷) = 𝐸(𝒛𝒔
𝒚

, 𝒛𝒔
𝒙)[𝑙𝑜𝑔𝐷(𝒛𝒔

𝒚
, 𝒛𝒔

𝒙)]  + 𝐸𝒛𝒔
𝒚[log (1 −  𝐷 (𝒛𝒔

𝒚
, 𝐺(𝒛𝒔

𝒚
))] (10) 

 

where 𝒛𝒔
𝒚
 is a structure code of the synthesized image and 𝒛𝒔

𝒙 is that of the ground truth. 

The objective function for object position translation can be transformed as: 

 
min

𝐺
(( max

𝐷1,𝐷2,𝐷3

∑ 𝐿𝐺𝐴𝑁

𝑘=1,2,3

+ 𝜆2𝐿𝐿𝐴𝑇𝐸𝑁𝑇) + 𝜆1 ∑ 𝐿𝐹𝑀(𝐺, 𝐷𝑘)

𝑘=1,2,3

) (11) 
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Figure 12. Our network architecture for object arrangement 
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Therefore, our system can be represented as shown in Figure 12 and the total objective function 

can be expressed with 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑟𝑒𝑐 + 0.5𝐿𝐺𝐴𝑁,𝑟𝑒𝑐 + 0.5 𝐿𝐺𝐴𝑁,𝑠𝑤𝑎𝑝 + 𝐿𝐶𝑜𝑜𝑐𝑐𝑢𝑟𝐺𝐴𝑁 + 𝐿𝐺𝐴𝑁 +

𝐿𝐿𝐴𝑇𝐸𝑁𝑇 + 𝐿𝐹𝑀, which integrates the pix2pixHD losses, swapping autoencoder losses, and our 

structural loss. The model learned the direction of minimizing the total objective function and 

successfully obtained the aligned scenes at the semantic mask level (as shown in Figure 13). 

 

  

  
Input messy scene Output organized scene 

Figure 13. Object pose alignment at the semantic level 
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C. Texture Reconstruction 

  

 While the swapping autoencoder used two natural RGB images as inputs, we used a 

chaotic RGB image 𝑀𝑟𝑔𝑏  and an organized semantic image 𝑂𝑠𝑒𝑔  generated by object 

position translation. As explained above, both images were decomposed into two latent 

components: 𝒁𝑀𝑟𝑔𝑏
= (𝒛𝒔

𝑀𝑟𝑔𝑏
, 𝒛𝒕

𝑀𝑟𝑔𝑏
)  and 𝒁𝑂𝑠𝑒𝑔

= (𝒛𝒔

𝑂𝑠𝑒𝑔
, 𝒛𝑡

𝑂𝑠𝑒𝑔
) . Then, we shuffled the 

texture code of the messy RGB image  𝒛𝒕

𝑀𝑟𝑔𝑏
 and the structure code of the semantic image 

𝒛𝒔

𝑂𝑠𝑒𝑔
. Due to the consistency of the number of objects and their classes between input images, 

it was possible to rebuild the object and background textures of the generated images. Then, the 

loss term 𝐿𝐺𝐴𝑁,𝑠𝑤𝑎𝑝 to generate the hybrid images more realistically is re-written as: 

 

 
𝐿𝐺𝐴𝑁,𝑠𝑤𝑎𝑝(𝐸, 𝐺, 𝐷) = 𝔼𝑀𝑟𝑔𝑏,𝑂𝑠𝑒𝑔~𝑋,𝑀𝑟𝑔𝑏≠𝑂𝑠𝑒𝑔

[− log (𝐷 (𝐺 (𝒛𝒕

𝑀𝑟𝑔𝑏 , 𝒛𝒔

𝑂𝑠𝑒𝑔
)))]. (12) 

 

Also, the co-occurrent loss is expressed as: 

 

 
𝐿𝐶𝑜𝑜𝑐𝑐𝑢𝑟𝐺𝐴𝑁(𝐸, 𝐺, 𝐷𝑝𝑎𝑡ℎ) = 𝔼 [− log (𝐷𝑝𝑎𝑡𝑐ℎ (𝑐𝑟𝑜𝑝(𝐺 (𝒛𝒕

𝑀𝑟𝑔𝑏
, 𝒛𝒔

𝑂𝑠𝑒𝑔
)) , 𝑐𝑟𝑜𝑝𝑠(𝑀𝑟𝑔𝑏))]. (13) 

 

 

By converting the input RGB images with the chaotic RGB image and the aligned semantic 

masks, we successfully obtained the aligned RGB image (as shown in Figure 14) by using the 

existing networks from the swapping autoencoder [2]. 
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Figure 14. Results of texture reconstruction  
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V. Object Pose Estimation 

 

We chose the deep object pose estimation (DOPE) framework [7], which detects and 

estimates the 6-DoF household object poses from a single RGB image. Tremblay et al. [7] used 

a fully convolutional deep neural network to estimate nine belief maps of 2D keypoints for the 

projected eight vertices of the 3D bounding boxes and one centroid. After the vertices and 

centroid of the bounding box have been determined, it utilized a PnP algorithm [36] to extract 

objects’ 3D translation and rotation with respect to the camera.  

Like the DOPE system, we used the pre-trained YCB object models [3], such as 

potted-meat cans and cracker boxes. By integrating the DOPE node with the Gazebo simulation, 

we identify the 6-DoF geometries of objects in unkempt scenes. For estimating object poses 

under an arranged scene, we implemented a ROS image publisher node that published the 

generated organized images and camera information like a fake camera. By offering camera 

intrinsic parameters and providing 3D coordinate frames, it successfully published the images 

as if they were observed by the mobile manipulator. Then, the node was linked with the DOPE 

node for detecting the object poses in the arranged scenes.   
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VI. Experimental Results 

 

In section Ⅵ.A, we explain the experimental setup, specifically, the custom dataset in 

section Ⅵ.B.1, the implementation details in section Ⅵ.B.2, the task and motion planning in 

section Ⅵ.C, and the baselines for comparisons in section Ⅵ.D. In section Ⅵ.E, we show our 

system results and compare the performance of our model and other benchmarks.  

 

A. Implementation Details 

 

 We adopted a variety of techniques to prevent overfitting issues during training: 

weight decay, data augmentation, and dropout. First, we used the default weight decay 

parameter from pix2pixHD, which was initially set as 0.0002 during the first epochs and 

linearly decreased to zero at the last 100 epochs. Second, data augmentation such as flipping 

was arbitrarily applied to both input images. Third, we randomly dropped out the neurons in 

the layers and decreased the number of generator filters to 32. The entire network was trained 

from scratch, using Adam optimizer [37]. We trained all our models on two NVIDIA Titan RTX 

GPU with 24GB GPU memory. During training image-to-image translation and texture 

reconstruction, we resized the images with the resolution of 512 x 512 to reduce the total 

training time. The training time took 4 hours for semantic segmentation, about 13 hours for 

object position translation, and about a week for texture reconstruction. 

  

  



32 

B. Robot Simulation 

 

1. Simulation Setup 

 

 For our purposes, the ultimate test determines whether our framework is sufficient for 

the robot arrangement task. We performed a robot simulation in the Gazebo environment under 

the ROS system. A Fetch robot was initially spawned into the environment (shown in Figure 

15) and objects were placed with respect to various scenarios. We evaluated the framework and 

tested robots in several scenarios.  

 

 

Figure 15. Fetch robot spawned in a Gazebo environment.  

 

During the execution of the feasible actions, we attached objects in a manipulator to 

prevent them from falling. We then executed motion planning using MoveIt! [38], a motion 
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planning framework that supports several sampling-based algorithms such as RRT and RRT-

Connect. Specifically, we utilized the RRT-Connect algorithm and confirmed that the Fetch 

robot could successfully perform the tasks. During the simulation, we used the perception and 

pick-and-place package provided by Fetch robotics to enable the robot to detect the initial object 

poses for grasping and perform sequential actions. Due to the limited reachable space of the 

Fetch robot, it was necessary to confine the scenarios and object positions on the table. To check 

the reachable space, we visualized the head camera topics published from the camera using a 

visualization tool RVIZ (shown in Figure 16). 

 

   

 

Figure 16. Gazebo simulation (top left) and displaying the camera topics (bottom) published 

from the head camera using visualization tool RViz (top right).  
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2. Simulation Results 

 

 We conducted a robot simulation and checked that the robot could generate an aligned 

goal from a chaotic input scene and perform the motion planning regarding the following 

scenarios. Due to the grasping issues, we needed to exclude bulky or flat objects such as a 

cracker box and a gelatin box. As shown in Figure 17, the robot successfully created an arranged 

scene and accomplished it by carrying out the sequences of actions. 
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Figure 17. Results of the arranged scene and the robot simulation in Gazebo 
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C. Comparison against baselines 

 

We compared our framework with two baselines for object location translation: 

pix2pix [16] and cycleGAN [21]. We trained both models with the same image size, 512 x 512. 

While conducting the evaluation, we used the default settings from each model and the same 

details as our model. 

 

Pix2Pix [16] — This method trained on the paired dataset based on the conditional GAN 

(cGAN). The conditional GANs learn a generator 𝐺: {𝑥, 𝑧} → 𝑦, which is trained to generate a 

mapping from input image 𝑥 and random noise vector 𝑧 to output image 𝑦.  

 

cycleGAN [21] — We also compared our model against cycleGAN, which learns a mapping 

from an input domain 𝑋  to an output domain 𝑌 , 𝐺: 𝑋 → 𝑌 . It proposed an unsupervised 

approach that coupled it with an inverse mapping 𝐹: 𝑌 → 𝑋 and introduced a cycle consistency 

loss aimed to find a generator satisfying 𝐹(𝐺(𝑋)) ≈ 𝑋 and vice versa. 

 

As demonstrated in Figure 18, we confirmed that our model using pix2pixHD [1] 

showed better results than the previous works, pix2pix [16] and cycleGAN [21]. The pix2pix 

model rarely accomplished the object placement and almost failed to generate the goals. Also, 

the results using the cycleGAN model were slightly changed, but the object positions were not 

aligned and remained similar to the input images.  
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Figure 18. Comparison of our model against other baselines  
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D. Ablation Study 

 

To show the effect of the structural loss, we perform an ablation study on several 

scenarios for object position translation at the semantic level. In our framework, the original 

images were separated into their latent components, and the structure codes from both generated 

and ground truth images were compared to enhance the result images. To verify the contribution 

of the structural loss, the model for object location translation was trained without using the 

structural loss.  

 

 Input Image With structural loss Without structural loss 

Scene 1 

   

Scene 2 

   

Scene 3 

   

Figure 19. Results of object location translation with and without using structural loss 
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As shown in Figure 19, the model presented better outcomes with structural loss than 

without it. In general, the results with structural loss were consistent with the number of objects 

and their classes. However, the results without the loss showed several defects, such as wrong 

object placement and object class that did not exist in the input images.    
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E. Discussion 

  

  We implemented object location translation and a Gazebo simulation for object pose 

estimation and robot planning. As shown in Figure 13, the objects were arranged at a semantic 

mask level. However, some objects were removed and added, and their classes were sometimes 

hard to distinguish. It is assumed that the training images were too broad to cover the scenarios. 

Thus, we will enhance the object arrangement step by amending our dataset.   

 As shown in Figure 18, we verified that our framework is better at object location 

translation using the pix2pixHD model [1] than the pix2pix [16] and the cycleGAN [21]. For 

generating high-resolution aligned images, the former method is proper than other methods. 

Also, we could confirm that the structural loss is helpful to enhance the accuracy of aligned 

image synthesis by the ablation test. The results revealed that the model is improved by 

comparing the images at the latent level.  

 Also, we executed object pose estimation and motion planning under the ROS system. 

Due to the low accuracy of generated goal scenes at the RGB level, it was difficult to detect the 

objects from the images. Therefore, we manually constructed the initial and goal scenes, then 

executed both approaches to carry out the robot simulation. We performed motion planning 

successfully, but collisions and planning-failed cases still occurred. We are going to amend this 

planning issue, as well.  

 As a limitation, we tested all individual steps; however, we could not integrate the 

entire system into one complete system. The main reason was that the results of the synthesized 

images were not as good as suitable for object pose estimation. Thus, we decided to manually 

put objects and construct the initial and goal scenes that are similar to the synthesized images. 
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Due to the addition and deletion of objects from generated semantic masks, it was difficult to 

recover the RGB textures and obtain the final aligned images for detecting object poses. Also, 

during the texture recovery, the textures were often distorted because there are some pose 

changes between objects from input images and from the generated images. Thus, it was hard 

to represent the realistic textures of the results. To successfully estimate individual object poses 

from the generated RGB images, we still need to improve our system for realistic scene 

synthesis by using other texture reconstruction approaches.  
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VII. Conclusion 

 

 In this thesis, we demonstrate that our framework enables a robot to carry out object 

arrangement by generating the goals by themselves without needing to have goals given as 

human commands. Providing the goals to robots is burdensome; if robots can create the goals 

autonomously, it might lessen the difficulty and be more convenient for people. 

 To achieve our goals, we performed the object arrangement using semantic 

segmentation, object pose translation, and texture reconstruction. To focus on the object class 

information, it was necessary to go down to the semantic level, which was revealed to be helpful. 

To perform a simulation, we generated a similar Gazebo simulation, using a Fetch robot, with 

the Unreal Engine 4.  

 As a result, we confirmed that the objects are successfully arranged by our framework. 

The robot can create an aligned scene from an input scene by applying the pre-trained model. 

After the goal generation, it conducts proper pick-and-place motions and organizes objects like 

the given goal images.  

As we mentioned in the discussion, during the object pose translation and the texture 

reconstruction, the results of the synthesized images were not as good as we expected, and, 

therefore, we could not complete the whole system into one as we planned. The aligned RGB 

scene images were still inaccurate for detecting individual object poses using the existing 

methods.  

 Due to the robot perception and safety issues in real robot hardware, it is difficult to 

operate robot manipulation in the real-world. Thus, in this work, we only tested our framework 

in the robot simulation. However, because of the limitation of the gazebo simulation, it is 
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difficult to encompass more general scenarios because grasping fails easily owing to the 

inaccurate approximation of the physical properties of objects. Also, in this work, we did not 

consider the navigation of the robot’s base, and, therefore, the manipulator could reach only a 

small range of the table. 

As for future work, we would like to enhance the accuracy of the object pose 

translation and texture reconstruction by adopting additional loss terms into the object position 

translation, and other texture recovery approaches. It is necessary to improve it to detect object 

poses from 2D RGB images to carry out further systems. Furthermore, we plan to amend the 

simulation to successfully carry out motion planning and complete our framework. Eventually, 

we will expand our system and test it with a real robot system. 
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국문초록 

김시연 

컴퓨터공학과 

이화여자대학교 대학원 

 

이 논문에서 우리는 정렬되지 않은 장면에서 물체를 정렬된 장면으로 로봇이 

스스로 정리할 수있는 프레임 워크를 제안했다. 이전 연구들에서는 로봇이 정리나 다

른 작업을 수행하기 위해서는 사용자로부터 주어진 목표에 대한 정보나 또는 안내 계

획을 제공되어져야 했다. 하지만, 이렇게 사용자가 목표 정보에 대해서 매번 제공을 

하는 것은 번거롭기 때문에, 로봇이 스스로 목표를 생성함으로써 사용자가 조금 더 

편하고 힘들지 않도록 하는 것이 우리 연구의 목표이다. 

본 연구의 목표인 물체 정리를 달성하기 위해, 정렬되지 않은 장면과 정렬된 

장면의 짝으로 이루어진 데이터 세트의 필요성이 있었다. 따라서, 단순히 여러 물체들

이 놓인 기존의 데이터 세트로는 위의 목표를 달성하기에 부적절하여, 본 연구에서는 

먼저, YCB 객체 모델 [1]로 구성된 사실적인 합성 데이터 세트를 구성하여 활용하였

다. 이렇게 생성된 데이터 셋을 활용하여, 기존의 이미지 변환 모델을 활용하여 물체

들이 정렬되도록 배치하였다. 이를 시뮬레이션에서 로봇이 정리할 수 있도록 모션 계

획 알고리즘을 사용하여 목표를 달성함으로써 로봇이 자율적으로 목표를 세우고 물체 

배치 작업을 성공적으로 수행할 수 있음을 보여주었다. 


