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Summary

In this dissertation, we propose a framework that enables robots to arrange objects
in a chaotic scene autonomously. Previous research showed that robots need to be provided
with a given goal or a guided plan from users to perform manipulation tasks, such as packing
objects into boxes and carrying objects around complex obstacles.

Without the provision of a goal in the form of a human command, a robot can
generate an aligned scene by itself. To attain arranged scenes, we obtain semantic masks and
translate object poses from an initial scene at a semantic level using the existing image-to-
image translation model [1]. Our model also utilizes disentanglement and code swapping
approaches [2] to reconstruct the RGB textures from the aligned semantic images. To obtain
our goal, it is necessary to select a proper dataset; however, the pre-existing datasets are not
appropriate for our object arrangement task. Thus, we construct a photorealistic synthetic
dataset for the arrangement task, which consists of YCB object models [3].

After accomplishing the goal scenes, we enable the manipulator to organize objects
using sample-based motion planning algorithms. We test and demonstrate that the robot can

autonomously set goals and successfully carry out object arrangement tasks on the table.
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I. Introduction

A. Motivation

Recently, there have been increasing concerns about autonomous robots that perform
various high-level tasks under complex situations. To become more intelligent, robots need to
cope with their surrounding environments and read the context of various settings. For these
reasons, robots must be able to process visual data from their environments and analyze the
relationships between objects.

With the desire to develop robots with autonomy, many researchers have focused on
robot manipulation utilizing robot learning approaches. For robot grasping, the existing
research has adopted deep learning techniques to establish a robust grasping algorithm [2, 3, 4].
For instance, 6-DOF GraspNet from Mousavian et al. [4] utilized variational autoencoders for
sampling a set of grasps and for assessing and refining the sampled 6D grasp poses. Moreover,
the previous research on 6 DoF object-pose estimation [5, 6, 7], which is crucial for real-world
robot applications, has introduced deep neural networks for pose estimation to enhance
performance in the presence of lighting variation and occlusion.

Although the robots can perceive the environments, the goals to carry out the
manipulation tasks must be provided through human commands. However, it is inconvenient
and even burdensome for the user to deliver the guides and sequential goals to intelligent agents
every time. Therefore, we focus on the question of what if robots can generate goals by

themselves and carry out feasible actions without having to be guided by a human? Until



relatively recently, there have been just a few existing studies [10, 11] that have answered this
question. Specifically, Kang et al. [11] proposed a method to automatically arrange objects
using task and motion planning. However, in previous works, the robots needed to be guided
by some positive user examples and, thus, did not cover many general cases. Therefore, rather
than being provided with goals given by humans, we aim to accomplish an autonomous robotic

object arrangement in the robot simulation.

B. Research Goal

We propose a novel framework for the robot’s autonomous goal generation, in
particular, to perform object arrangement tasks. In our framework, the robot can automatically
suggest target-aligned scenes without human commands using a novel combination of image
manipulation, such as image-to-image translation and style transferring based on deep learning,
object pose estimation, and task and motion planning. Unlike the previous robot object
arrangement studies, our work enables a robot to carry out feasible actions without human

guidance or interference.



C. Main Contributions

Thus, our main contributions are as follows:

e A mobile manipulator generates a target-aligned goal from an initial messy scene
by itself.

e To focus on the object classes, we perform the object position translation on a
semantic level and use a structural loss by comparing the structures between the
generated and the ground truth of aligned scenes.

e The robot successfully performs object arrangement tasks from an initial scene to

its autonomously-generated scene using task and motion planning.

We utilized the pix2pixHD model from Wang et al. [1] with image-to-image
translation and applied the disentanglement method from Park et al. [2] to decompose images
into the texture and structure codes. Translating images to their target domains enabled the
obtaining of semantic masks from the input RGB images and the organization of object poses.
Also, decomposing images into their components made the model adjust each component and
enhanced the accuracy of synthesized results. We also performed the robot simulation in which
the robot could successfully carry out a series of feasible actions and achieve the goals for object

arrangement.



D. Organization

The rest of the dissertation is organized as follows. Section II presents the previous
research on a photorealistic dataset, image-to-image translation, and object arrangement.
Section III briefly shows the overview of our system, and Section IV explains the baselines and
our model about semantic segmentation, object position translation, and texture reconstruction.
Section V demonstrates the approach to estimating the object poses from the RGB images. Then,
in Section VI, our framework is compared with different models, and the ablation test is
conducted without using the structural loss to show the performance and robustness of our
model. Also, we demonstrate the robot simulation in the Gazebo environment. Finally, we give

conclusions in Section VII.



Il1. Related Works

For objects’ position translation, our framework is primarily based on image-to-image
translation works. Specifically, we used the conditional GAN framework from pix2pixHD [1]
to translate from a messy scene to an ordered one because it showed the best performance at

this task compared to other previous methods.

A. Photorealistic Synthetic Dataset

Recently, there have been rising demands to utilize synthetic data for training deep
neural networks due to its unlimited amount of pre-labeled training data and prevention from
overfitting. In particular, using a photorealistic synthetic dataset lessens the burdensome
annotation and even enhances its accuracy. The use of synthetic data for training deep neural
networks has gained in popularity, as we can see in the following dataset: SIDOD [12], Falling
Things (FAT) Dataset [13], SceneNet RGB-D [14], and others (shown in Figure 1).

However, there was no appropriate photorealistic dataset for our object arrangement
task. As in the existing works, we proposed our own dataset, which consisted of the YCB dataset
[3], a benchmark for robot manipulation. The YCB dataset [3] (shown in Figure 2) is constituted
of several household objects and is widely used to test and evaluate robot tasks such as grasping

and domain adaption.



(c) SceneNet RGB-D dataset [14]

Figure 1. Photorealistic synthetic datasets

Figure 2. YCB object and model set [3]



B. Object Position Translation

Since Goodfellow et al. [15] proposed a revolutionary framework, Generative
Adversarial Networks (GANSs) have widely applied semantic segmentation, local and global
image editing, and image style transfer to various image-to-image translation tasks. We used a
conditional generative model for object position translation and an autoencoder for texture

reconstruction to successfully arrange objects in images.

1. Image-to-Image Translation

Since Isola et al. [16] proposed a pix2pix framework using an adversarial method that
translates images from the input domain to the output domain, image-to-image translation using
the adversarial loss [15] rather than the L1 loss has become a broadly treated problem [7, 8, 9].
The pix2pix framework [16] mapped input images to output images through learning
conditional GANSs and utilized this method for various tasks such as generating cat photos from
user sketches. However, it is difficult to apply this method for high-resolution images (such as
1,024 x 1,024). The pix2pixHD model [1] extended this method to facilitate the image-to-image
translation with high-resolution images by adopting a multi-scale discriminator and coarse-to-
fine generator. Although these frameworks produced sufficient performances, they required a
large amount of labeled data.

Recently, to overcome the limitation, there has been an increased need for
unsupervised learning for image-to-image translation [10, 11, 12]. Specifically, a CycleGAN

from Zhu et al. [21] adopted a cycle-consistency loss (as shown in Figure 3) to transfer image



styles without using a labeled dataset.
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Figure 3. Cycle-consistency loss [21].

Even though the unsupervised learning methods have advantages over the supervised
ones, our system required the high performances of output aligned images and, thus, referred

to the pix2pixHD model.

2. Deep Image Manipulation via Latent Space Exploration

Disentanglement [13, 14, 15, 16] that separates inputs into independent latent matrices
or vectors enables a profound understanding of image manipulation and even the subtle
adjustment of those components for generating many realistic and reliable outputs. Karras et al.
[26] also proposed a generator architecture StyleGAN, which learns high-level attributes such
as the pose and identity of human faces. To leverage the performance, they embedded the input
latent code into an intermediate latent space. Also, StyleGAN2 [27] and Image2StyleGAN [28]
extended the embedding latent space used in StyleGAN to reconstruct the images with a style-

based generator (shown in Figure 4).



Rather than sampling the latent codes from a fixed distribution such as a Gaussian
distribution, the swapping autoencoder model from Park et al. [2] learned the latent code space
and thus decomposed the images into structure and texture codes, which are its representative
components. Then, it shuffled those codes between two images to manipulate images locally
and globally, like other previous code-swapping approaches [16, 21]. We adopted Park et al.’s
model [2] because it is more promising for the reconstruction of our texture reconstruction task

compared to other previous methods.
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Figure 4. Style-based generator [26]



C. Object Arrangement

Fisher et al. [30] proposed a method for synthesizing 3D object arrangements from a
few user-provided examples. They classified object groups into contextual categories in the
scenes, trained a probabilistic model using a small number of user preferences, and utilized the
model as a guide to organizing the scenes. Wang et al. [31] generated an object relation graph
by encoding objects as nodes and spatial object relationships as edges using a deep graph
convolutional generative model for indoor scene synthesis. Also, other previous works [31, 32,
33] used deep generative models and convolutional neural networks to generate synthesized
indoor scenes by collecting reference scenes from users.

In Abdo et al. [10], the robot performed object arrangement in tidy-up tasks such as
organizing a shelf or sorting objects in boxes through collaborative filtering. Like the existing
works [29, 30], Abdo et al. grasped user preferences and performed object grouping using
collected and crowdsourced data. Kang et al. [11] suggested an approach to automatic object
arrangement using task and motion planning. They also extracted object relationships of target
scenes by collecting user-preferrable examples. Although our framework is inspired by this
work [11], we decided to automatically generate goal scenes by utilizing deep learning

approaches rather than establishing object relationship graphs.
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I11. System Overview

To accomplish our goals, we divided our system into three steps, as shown in Figure
6: organized scene generation (step 1), object pose estimation (step 2), and task and motion
planning (step 3). In the first step, we aligned the object poses from input messy scenes by
utilizing the image-to-image translation approach. We used our custom dataset for our object
arrangement task, which consisted of the messy scene images and their corresponding arranged
images. We estimated the individual object’s poses from both input and goal scenes in step 2
and carried out motion planning from the initial object poses to the goal poses in the robotic
action in step 3.

In order to organize the scenes, we needed to create a proper dataset, as the existing
indoor scene dataset was not appropriate for arrangement tasks. Thus, we constructed a dataset
that consisted of unkempt scene images and their corresponding clean scene images using
Unreal Engine 4 and a customed plugin, the Nvidia deep learning dataset synthesizer (NDDS)
[35] provided by NVIDIA. During dataset generation, we considered physical conditions such
as gravity. The dataset also contained semantic masks of both organized and unorganized scenes
to facilitate object position translation. These image sets were used to perform semantic
segmentation, object arrangement, and texture reconstruction.

After the dataset construction, at step 1, as shown in Figure 6, we utilized the image-
to-image translation works, such as the pix2pixHD model [1], to accomplish the arrangement
task. To translate object location, we decomposed the problem into three stages: semantic
segmentation, object pose arrangement, and texture reconstruction. While they may require

additional processes to obtain, semantic masks allow the training model to concentrate on the

12



information of object position by removing the effects of texture information from images.
Since pix2pix and pix2pixHD models were devised to target a segmentation task and its inverse,
we adopted the pix2pixHD model for semantic segmentation and semantic level object
arrangement. We needed to adopt additional loss terms to enhance the accuracy of object
arrangement tasks because the model was not designed for them. Therefore, we introduced a
simple loss called latent loss that compared the structure codes between generated images and
the ground truths. Through comparing these, we enhanced the accuracies of the model.
Finally, the aligned semantic images should recover their textures to detect object
poses because the current object pose estimation techniques require RGB textures to predict
their exact geometries. The swapping autoencoder model [2] proposed that the system
manipulates images using an encoder and generative adversarial networks. It separated input
images into a structure code and a texture code using the encoder. Then, it shuffled those latent
codes between two images to effectively produce a realistic manipulated image. Our model
integrated the swapping model into our system to recover RGB textures from semantic images.
For texture recovery, the aligned semantic images were used as a structure code, while the
chaotic RGB images were used as a texture code. Then, we shuffled both components extracted

from those images and successfully achieved goal scenes, the aligned RGB images.

13
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IVV. Organized Scene Generation

A. Preparing a Dataset

Before conducting autonomous goal generation, we created our dataset devised for
the object arrangement task. To construct the dataset, we imported ten household objects from
the YCB dataset [3] such as a tomato soup can, an apple, or books (shown in Figure 7), which
are widely used benchmarks in robot manipulation, into a virtual environment within Unreal
Engine 4 (UE4) (shown in Figure 8). Multiple YCB objects were randomly placed on the table
or added to the bookshelf in a messy scene. For generating reliable chaotic scenes, the objects
were dropped at random orientations and positions by gravity. The aligned scene contained the
same number and classes as the messy scene. We manually arranged the scene by clustering the
objects with the same classes. After deploying objects, the images from the organized and
disorganized scenes were generated by a custom UE4 plugin [35] offered by NVIDIA.

To prevent the training model from overfitting issues, various scene images were
captured by four different camera positions; each pair of messy and aligned scenes shared the
same camera’s location. We trained the object arrangement model with an image resolution of
640 x 480 pixels based on the pix2pixHD model. Note that the dataset was constituted of 1,000
pairs of the original RGB and its corresponding semantic mask images for both the chaotic and

arranged scenes.

15
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Figure 7. The 10 YCB objects and their appearance count in the entire scene.
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View 3
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Figure 8. Our custom dataset using YCB object models [3]



B. Object Arrangement using image-to-image translation

For object position translation, our framework was largely based on pix2pixHD [1].
We used the conditional GAN framework from pix2pixHD to translate from a messy scene to
an ordered one because it shows the best performance at this task compared to other previous
methods. However, those existing cGAN strategies were not appropriate for our arrangement
task to a large extent because those were devised to treat local or global editing or style
transferring. To generate much more accurate scenes, we thus introduced structural loss into the
discriminator and used semantic masks to concentrate on object class information.

Our model took a 3D tensor (size 3x512x512) of RGB image as an input. Then, it
sequentially learned to generate its corresponding semantic masks and to translate object pose
at the semantic level. Translating object poses at the semantic level may enable the model to
avoid being distracted by unnecessary information under abundant textures and, thus,
concentrate on their location information. During training the object pose translation, the latent
loss was adopted to organize the object positions in semantic masks. Afterward, we used the
autoencoder from Park et al. [2] to apply RGB textures into semantic masks. The encoder
separated input images into both the texture and structure code, which represented both RGB
texture information and skeletal structure component from the images. Then, it swapped the
texture codes from messy RGB images and structure codes from the aligned semantic masks to

create the goal images combining both the original RGB textures and the semantic structures.

19



1. The Pix2PixHD Baseline

We adopted a pix2pixHD model from Wang et al. [1] as the baseline of our model for
semantic segmentation and object position translation. The pix2pixHD model is a supervised
learning framework based on the pix2pix [16] model, which is constituted of a generator G and
a discriminator D. It receives an input image x; and a corresponding target output image y;

as input training data. It uses an objective function of a conditional GAN represented as:

LGAN(GID) = E(x:Y)[logD(x:Y)] + Ex[log (1 - D(x,G(x))] (1)

Thus, it strives to find the ideal generator which minimizes the loss function, while the

discriminator tries to maximize it:

mingmaxpLgay (G, D) (2)

In addition, it uses a coarse-to-fine generator, a multi-scale discriminator, and an additional
adversarial loss because it aims to enhance the quality of the model for high-resolution images
(>512x512).

To deal with high-resolution images, the generator was decomposed into two sub-
networks: the global generator G; and the local generator G, (as shown in Figure 9). The
global generator operated the original images, while the local generator concentrated on local

areas of interest through increasing the image size.

20
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Figure 9. The network architecture of pix2pixHD [1]

Also, Wang et al. [1] proposed using multi-scale discriminators at different image
scales to cope with both the network capacity and overfitting at the same time. The three
different discriminators D, D,, D; were used in the network structure to distinguish between
the original and synthesized images at three different levels. Thus, it was able to adjust from
the coarse-scale to the fine-scale of the image and even assist the coarse-to-fine generator. Thus,

the equation (1) was transformed into the equation (3) below:

IIEHD%3?1(73 Z Lgan(G,Dy) 3)
k=123

Finally, Wang et al. enhanced the GAN loss by matching intermediate features

between real and generated images. The feature mating loss is expressed as:

T
Low (6. D) = By ) Nl [[| 28 ) = D (6 )1 “
i=1 "
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where D,Ei)is an ith-layer discriminator, T is the total number of layers, and N; is the number
of elements in ith-layer. By incorporating the equation (3) and (4), the full objective function is

represented as:

min ( max Lean (G, Dk)) + 4 Ley (G, Dy) ®)]
k=123

2. Swapping Autoencoder Baseline

Because recent object pose estimation techniques require RGB textures to detect 6D
poses, it was necessary to reconstruct RGB textures of images rather than use semantic mask
images. Thus, we adopted a deep image manipulation method [2], which decomposed an image
into a structure and a texture and enforced to swap the latent components between two different
images.

Park et al. encoded each image into two latent codes using an encoder E and
reconstructed both latent components into the original images with a generator G (as shown in
Figure 10). The image reconstruction loss L,..(E,G) and the non-saturating adversarial loss

Lganrec(E, G, D) were used to confirm whether both codes are successfully separated:

Lyec(E,G) = Exx|lx — G(E)], (6)

Lgan rec (E,G,D) = Ex.x[—log(D(G(E(x))))] 0

22



, where a discriminator D is applied to make the images more realistic.

Auto-
encode

Swap

Reference patches Real/fake?
Patch co-occurrence discriminator Dparen

Figure 10. Swapping Autoencoder Model [2].

Furthermore, latent space Z of images were separated into two latent components z =
(zs,2;), which consisted of a structure component zg and a texture component z,. Then, Park
et al. enforced the latent components from the hybrid images to produce realistic images using
the GAN loss. With randomly sampled two images x! and x?2, the adversarial loss on the

hybrid images is calculated as:
LGAN,swap (E,G,D) = IE:xl,x2~X,xl=tx2 [_ log (D (G(Z%, ZE)))] (®)

Additionally, the co-occurrent loss that compared the textures between the chaotic

input image M, ), and the synthesized RGB image 0,4, was added. According to Park et al.,

both images have a consistency of textures and, therefore, the loss term makes their textures

23



indistinguishable. They randomly extracted patches from the image and compared those patches

between images rather than the whole image.

LCooccurGAN (E' G' Dpath) = ]E[_ log(Dpatch (CT‘OP(G(Z%, Z?)): CrOpS(Mrgb))] (9)

, where the crop is randomly selected between 1/8 to 1/4 of the original images.
Thus, the total objective function for texture reconstruction is written as Liyiq =

Lrec + O-SLGAN,rec + 05 LGAN,swap + LCooccuTGAN-

3. The Proposed Model for Object Position Translation

Although a natural RGB image contains texture-rich information, it hindered our
model from successfully translating object position because it is challenging to infer exact class
information of every pixel due to the shadows and various colors of an object. Therefore, we
conducted semantic segmentation (as shown in Figure 11) and used a semantic mask to focus
on each object’s class information. It prevented our model from being affected by noises and
enabled it to translate the poses effectively.

The existing frameworks [15, 18, 20] were devised for local or global image style
editing and texture transfer, not for translating object position. Even though the previous model
has a possibility of performing our object arrangement task to some extent, it was necessary to

introduce an additional loss term to enhance the performance of the model.
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Input RGB images Output Ground truth
Figure 11. The results of semantic segmentation using pix2pixHD model [1]

Thus, like Park et al. [2], we separated images into two latent components z =
(zg,2;) using encoder E and confirmed whether the encoder successfully decomposes both
latent components by using the decoder and its discriminator. Then, we introduced a structural
loss, which compared the structural components between an arranged image and its ground

truth. The latent loss comparing both structure codes is expressed below:

Luarent(G,D) = E(2}, 28)[logD(2),2)] + Epllog (1 — D(22,6(2))]  (10)

where z) is a structure code of the synthesized image and z¥ is that of the ground truth.

The objective function for object position translation can be transformed as:

mGin <<Dn})a)[() Z Lgan + AZLLATENT) + 4 Z LFM(GﬁDk)> (11)
1.Y2,V3

k=1,2,3 k=1,2,3
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Figure 12. Our network architecture for object arrangement
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Therefore, our system can be represented as shown in Figure 12 and the total objective function
can be expressed with Lyytq; = Lyec + 0.5Lganrec + 0.5 Loanswap + Leooccurcan + Lean +
Ly arent + Ly, Which integrates the pix2pixHD losses, swapping autoencoder losses, and our
structural loss. The model learned the direction of minimizing the total objective function and

successfully obtained the aligned scenes at the semantic mask level (as shown in Figure 13).

Input messy scene Output organized scene

Figure 13. Object pose alignment at the semantic level
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C. Texture Reconstruction

While the swapping autoencoder used two natural RGB images as inputs, we used a

chaotic RGB image M, 4, and an organized semantic image O, generated by object
position translation. As explained above, both images were decomposed into two latent

Mgy Mrgp Oseg O
components: Zy, , = (z "2, 7") and Zy,, = (z,°%,z,°*) . Then, we shuffled the

gb

. M .
texture code of the messy RGB image z, ™" and the structure code of the semantic image

0 . . . . .
z.**. Due to the consistency of the number of objects and their classes between input images,

it was possible to rebuild the object and background textures of the generated images. Then, the

loss term Lgan swap tO generate the hybrid images more realistically is re-written as:

M, Ose,
LGAN,SWap(E: G,D) = IEMrgb,Oseg~X,Mrgb$Oseg [_ log <D (G (Zt gb'zs g)))] (12)
Also, the co-occurrent loss is expressed as:
_ Mrgb Oseg
LCooccurGAN (E: G’ Dpath) =E [_ lOg <Dpatch (crop (G (Zt ’ Zs )) ’ CropS(Mrgb)>]- (13)

By converting the input RGB images with the chaotic RGB image and the aligned semantic
masks, we successfully obtained the aligned RGB image (as shown in Figure 14) by using the

existing networks from the swapping autoencoder [2].
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Figure 14. Results of texture reconstruction
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V. Object Pose Estimation

We chose the deep object pose estimation (DOPE) framework [7], which detects and
estimates the 6-DoF household object poses from a single RGB image. Tremblay et al. [7] used
a fully convolutional deep neural network to estimate nine belief maps of 2D keypoints for the
projected eight vertices of the 3D bounding boxes and one centroid. After the vertices and
centroid of the bounding box have been determined, it utilized a PnP algorithm [36] to extract
objects’ 3D translation and rotation with respect to the camera.

Like the DOPE system, we used the pre-trained YCB object models [3], such as
potted-meat cans and cracker boxes. By integrating the DOPE node with the Gazebo simulation,
we identify the 6-DoF geometries of objects in unkempt scenes. For estimating object poses
under an arranged scene, we implemented a ROS image publisher node that published the
generated organized images and camera information like a fake camera. By offering camera
intrinsic parameters and providing 3D coordinate frames, it successfully published the images
as if they were observed by the mobile manipulator. Then, the node was linked with the DOPE

node for detecting the object poses in the arranged scenes.
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VI. Experimental Results

In section VI.A, we explain the experimental setup, specifically, the custom dataset in
section VI.B.1, the implementation details in section VI.B.2, the task and motion planning in
section VI.C, and the baselines for comparisons in section VL.D. In section VLE, we show our

system results and compare the performance of our model and other benchmarks.

A. Implementation Details

We adopted a variety of techniques to prevent overfitting issues during training:
weight decay, data augmentation, and dropout. First, we used the default weight decay
parameter from pix2pixHD, which was initially set as 0.0002 during the first epochs and
linearly decreased to zero at the last 100 epochs. Second, data augmentation such as flipping
was arbitrarily applied to both input images. Third, we randomly dropped out the neurons in
the layers and decreased the number of generator filters to 32. The entire network was trained
from scratch, using Adam optimizer [37]. We trained all our models on two NVIDIA Titan RTX
GPU with 24GB GPU memory. During training image-to-image translation and texture
reconstruction, we resized the images with the resolution of 512 x 512 to reduce the total
training time. The training time took 4 hours for semantic segmentation, about 13 hours for

object position translation, and about a week for texture reconstruction.
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B. Robot Simulation

1. Simulation Setup

For our purposes, the ultimate test determines whether our framework is sufficient for
the robot arrangement task. We performed a robot simulation in the Gazebo environment under
the ROS system. A Fetch robot was initially spawned into the environment (shown in Figure
15) and objects were placed with respect to various scenarios. We evaluated the framework and

tested robots in several scenarios.

Figure 15. Fetch robot spawned in a Gazebo environment.

During the execution of the feasible actions, we attached objects in a manipulator to

prevent them from falling. We then executed motion planning using Movelt! [38], a motion
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planning framework that supports several sampling-based algorithms such as RRT and RRT-
Connect. Specifically, we utilized the RRT-Connect algorithm and confirmed that the Fetch
robot could successfully perform the tasks. During the simulation, we used the perception and
pick-and-place package provided by Fetch robotics to enable the robot to detect the initial object
poses for grasping and perform sequential actions. Due to the limited reachable space of the
Fetch robot, it was necessary to confine the scenarios and object positions on the table. To check
the reachable space, we visualized the head camera topics published from the camera using a

visualization tool RVIZ (shown in Figure 16).

Figure 16. Gazebo simulation (top left) and displaying the camera topics (bottom) published
from the head camera using visualization tool RViz (top right).
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2. Simulation Results

We conducted a robot simulation and checked that the robot could generate an aligned
goal from a chaotic input scene and perform the motion planning regarding the following
scenarios. Due to the grasping issues, we needed to exclude bulky or flat objects such as a
cracker box and a gelatin box. As shown in Figure 17, the robot successfully created an arranged

scene and accomplished it by carrying out the sequences of actions.
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17. Results of the arranged scene and the robot simulation in Gazebo

Figure
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C. Comparison against baselines

We compared our framework with two baselines for object location translation:
pix2pix [16] and cycleGAN [21]. We trained both models with the same image size, 512 x 512.
While conducting the evaluation, we used the default settings from each model and the same

details as our model.

Pix2Pix [16] — This method trained on the paired dataset based on the conditional GAN
(cGAN). The conditional GANs learn a generator G:{x,z} — y, which is trained to generate a

mapping from input image x and random noise vector z to output image Y.

cycleGAN [21] — We also compared our model against cycleGAN, which learns a mapping
from an input domain X to an output domain Y, G:X — Y. It proposed an unsupervised
approach that coupled it with an inverse mapping F:Y — X and introduced a cycle consistency

loss aimed to find a generator satisfying F (G 04 )) ~ X and vice versa.

As demonstrated in Figure 18, we confirmed that our model using pix2pixHD [1]
showed better results than the previous works, pix2pix [16] and cycleGAN [21]. The pix2pix
model rarely accomplished the object placement and almost failed to generate the goals. Also,
the results using the cycleGAN model were slightly changed, but the object positions were not

aligned and remained similar to the input images.
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Figure 18. Comparison of our model against other baselines
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D. Ablation Study

To show the effect of the structural loss, we perform an ablation study on several
scenarios for object position translation at the semantic level. In our framework, the original
images were separated into their latent components, and the structure codes from both generated
and ground truth images were compared to enhance the result images. To verify the contribution
of the structural loss, the model for object location translation was trained without using the

structural loss.

Input Image With structural loss Without structural loss

Scene 1

Scene 2

Scene 3

Figure 19. Results of object location translation with and without using structural loss



As shown in Figure 19, the model presented better outcomes with structural loss than
without it. In general, the results with structural loss were consistent with the number of objects
and their classes. However, the results without the loss showed several defects, such as wrong

object placement and object class that did not exist in the input images.
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E. Discussion

We implemented object location translation and a Gazebo simulation for object pose
estimation and robot planning. As shown in Figure 13, the objects were arranged at a semantic
mask level. However, some objects were removed and added, and their classes were sometimes
hard to distinguish. It is assumed that the training images were too broad to cover the scenarios.
Thus, we will enhance the object arrangement step by amending our dataset.

As shown in Figure 18, we verified that our framework is better at object location
translation using the pix2pixHD model [1] than the pix2pix [16] and the cycleGAN [21]. For
generating high-resolution aligned images, the former method is proper than other methods.
Also, we could confirm that the structural loss is helpful to enhance the accuracy of aligned
image synthesis by the ablation test. The results revealed that the model is improved by
comparing the images at the latent level.

Also, we executed object pose estimation and motion planning under the ROS system.
Due to the low accuracy of generated goal scenes at the RGB level, it was difficult to detect the
objects from the images. Therefore, we manually constructed the initial and goal scenes, then
executed both approaches to carry out the robot simulation. We performed motion planning
successfully, but collisions and planning-failed cases still occurred. We are going to amend this
planning issue, as well.

As a limitation, we tested all individual steps; however, we could not integrate the
entire system into one complete system. The main reason was that the results of the synthesized
images were not as good as suitable for object pose estimation. Thus, we decided to manually

put objects and construct the initial and goal scenes that are similar to the synthesized images.
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Due to the addition and deletion of objects from generated semantic masks, it was difficult to
recover the RGB textures and obtain the final aligned images for detecting object poses. Also,
during the texture recovery, the textures were often distorted because there are some pose
changes between objects from input images and from the generated images. Thus, it was hard
to represent the realistic textures of the results. To successfully estimate individual object poses
from the generated RGB images, we still need to improve our system for realistic scene

synthesis by using other texture reconstruction approaches.

42



VII. Conclusion

In this thesis, we demonstrate that our framework enables a robot to carry out object
arrangement by generating the goals by themselves without needing to have goals given as
human commands. Providing the goals to robots is burdensome; if robots can create the goals
autonomously, it might lessen the difficulty and be more convenient for people.

To achieve our goals, we performed the object arrangement using semantic
segmentation, object pose translation, and texture reconstruction. To focus on the object class
information, it was necessary to go down to the semantic level, which was revealed to be helpful.
To perform a simulation, we generated a similar Gazebo simulation, using a Fetch robot, with
the Unreal Engine 4.

As aresult, we confirmed that the objects are successfully arranged by our framework.
The robot can create an aligned scene from an input scene by applying the pre-trained model.
After the goal generation, it conducts proper pick-and-place motions and organizes objects like
the given goal images.

As we mentioned in the discussion, during the object pose translation and the texture
reconstruction, the results of the synthesized images were not as good as we expected, and,
therefore, we could not complete the whole system into one as we planned. The aligned RGB
scene images were still inaccurate for detecting individual object poses using the existing
methods.

Due to the robot perception and safety issues in real robot hardware, it is difficult to
operate robot manipulation in the real-world. Thus, in this work, we only tested our framework

in the robot simulation. However, because of the limitation of the gazebo simulation, it is
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difficult to encompass more general scenarios because grasping fails easily owing to the
inaccurate approximation of the physical properties of objects. Also, in this work, we did not
consider the navigation of the robot’s base, and, therefore, the manipulator could reach only a
small range of the table.

As for future work, we would like to enhance the accuracy of the object pose
translation and texture reconstruction by adopting additional loss terms into the object position
translation, and other texture recovery approaches. It is necessary to improve it to detect object
poses from 2D RGB images to carry out further systems. Furthermore, we plan to amend the
simulation to successfully carry out motion planning and complete our framework. Eventually,

we will expand our system and test it with a real robot system.
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