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Abstract

 

 

 

Nowadays 2D digital painting is in the transition to 3D with virtual reality. Virtual reality (VR)-

based 3D painting applications have recently surged and are now widely accepted as a new art 

form by artists. However, state-of-the-art VR painting systems are all surface painting systems 

that emit 2D surface geometries as users make brush strokes. A user has difficulty with coloring, 

recoloring, mixing the color, or painting semi-transparent color, while these are natural 

activities in the real painting. In a broader perspective in 3D digital art, various 3D art tools 

have been researched over decades, but 3D art tools do not focus on such painting aspects and 

cannot fully support diverse styles for individuals. Meanwhile, modern 3D art tools allow users 

to create various 3D digital art, from voxel dot designs to sophisticated 3D models. From an 

artistic point of view, remarkably sophisticated art in 3D is made technically possible. However, 

established 3D digital art tools require professional skills with several steps in the workflow 

and a large team of high experts, or limit the free expression due to shape representation, scale, 

or interfaces.  

 

In this dissertation, as a new medium for 3D painting, a high-resolution volumetric painting 

system in VR is introduced to extend the 2D pixel canvas to a 3D voxel canvas. We develop a 

dynamic octree-based painting and rendering system using both CPU and GPU to take 

advantage of the characteristics of both processors—CPU for octree modeling and GPU for 

volume rendering. On the CPU-side, we dynamically adjust an octree and incrementally update 

the octree to a GPU. To allow constant neighbor access time in ray casting, our octree uses 

novel 3-neighbor connectivity for format simplicity and efficient storage. We further reduce the 

GPU-side 3-neighbor computations by precomputing a culling mask in a CPU and uploading it 

to a GPU. To verify the performance of our update strategy, we conduct experiments for 
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compromising low latency and the high frame rates of the rendering. We also analyze the 

problem of our update strategy and suggest methods to reduce artifacts in immediate visual 

feedback. In rendering, we introduce a cell-local coordinate system as a solution for the 

numerical error problem in ray casting through high-resolution octree. We analyze the 

numerical error propagation with the cell-local coordinate system in ray casting, present a 

theoretical error bound, and prove our theory by experiments. To accelerate rendering, we 

revise the CPU-based quadtree/octree interpolation for the GPU and design foveated rendering 

based on a quadtree.  

 

We also address the problem of generalizing 2D brushes that manipulate a large number of 

pixels to 3D brushes that manipulate a large number of voxels in the aspect of a 3D painting. 

Toward this goal, we first generalize 2D brush tools commonly found in 2D digital painting 

system to 3D, including voxel blur, voxel smudge, and voxel dodge/burn, working for high-

resolution octrees. We also propose volumetric brush tools designed to solve the problems 

specific in volumetric painting. For example, voxel resolution control tools are introduced to 

adjust painting details and manage memory consumption while reducing repetitive painting 

tasks. “Voxel melt” refines voxels or smooths out resolution variations while retaining the 

painting details using resolution diffusion. Easy-to-use voxel merge filters, such as room, voxel 

mosaic, and voxel merging based on iso-values, save memory by coarsening invisible or 

unnoticed voxels. Finally, we propose hybrid brush models, by combining surface and 

volumetric paintings to address the problems of depth perception and stoke neatening in 

volumetric painting. 
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I. Introduction 

 

A. Background 

 

From prehistoric times to the present, humans have painted on 2D canvas. Around 40,000 years 

ago, homo sapiens created the oldest painting in El Castillo [Fig. I-1 (a)] and a Neanderthal 

man engraved rocks in Gorham’s cave around the same time. Afterward, pioneers in art 

continued to find new art forms over many centuries. Many interesting attempts, such as 

Realism, Surrealism, Impressionism, or Cubism have been made on 2D canvas. Today, 2D 

painting is transitioning to 3D with virtual reality (VR). Recently, VR-based 3D painting [Fig. 

I-1 (b)] applications have surged and are now widely accepted by artists as a new art form. As 

generating 3D art is vital in computer graphics, such as product design, animation, and game 

design, the importance of VR painting is expected to grow. 

 

 

Figure I-1. A transition from a 2D canvas to a 3D canvas 

 

State-of-the-art 3D painting systems in VR, such as Tilt Brush [33] and Quill [66], are surface 

painting systems that emit 2D surface geometries as users make brush strokes [Fig. I-2 (b)]. 

(a) Cave Art of Homo Sapiens (B.C. 38800~17000) (b) Tilt Brush [33] (2015) 
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However, these systems have intrinsic boundaries. Color mixing between strokes is not 

supported as overlaps between stroke geometries are infinitely thin and expensive to robustly 

compute. The simple recoloring of part of a stroke is complicated because a texture map must 

be invoked, such that updated colors may be stored into the texture map. In addition, semi-

transparent volume depiction is limited because efficient handling of many stroke geometries 

in high-depth complexity is nontrivial. 

 

 

Figure I-2. Comparison of mixed strokes between two different painting systems 

 

 

Figure I-3. Comparison of paintings between two different painting systems 

(a) Volumetric painting [91] (b) Surface painting [33] 

(a) Volumetric painting  

(Ours [91]) 

(b) Surface painting 

(Tilt Brush [33]) 



3 

Thus, the first aim of this dissertation is to explore a new route for VR painting in 3D space; 

namely, volumetric painting. Volumetric strokes applied to a 3D grid are amenable to depicting 

both solid and non-solid shapes. Volumetric painting also naturally supports color mixing [Fig. 

I-2 (a)]. Moreover, users can repeatedly apply strokes to the same area until they are satisfied 

with the mixed color pattern without considering occlusion and z-fighting, as demonstrated in 

Figure 1-3 (a), which is a very typical practice in surface painting. Finally, a volumetric painting 

system naturally handles semi-transparent strokes. 

 

In a broader perspective of 3D digital art, various 3D art tools have been extensively researched 

over decades. Modern 3D art tools allow users to create various 3D digital art, from voxel dot 

designs to sophisticated 3D models. From an artistic point of view, remarkably realistic art in 

3D is only technically possible by a large team of high experts [24]. Established 3D digital art 

tools require professional skills with several steps in the workflow, or limit the free expression 

due to shape representation, scale, or user interface. 

 

In 3D modeling, modeling artists undergo intensive tool training for sculpting, texture mapping, 

and parametric controlling for material properties/rendering. Such tools are complex and 

difficult for 2D digital artists and traditional artists, who mostly create artwork with a paintbrush. 

Painting on models is also difficult for the following reasons: (1) creating an underlying model 

is a prerequisite for following texture mapping/authoring, (2) the discordance between model 

space and texture space requires parameterization, and (3) painting on models cannot fully 

exploit 3D space. For these reasons, intuitive interfaces for modeling, such as sketch-based 

modeling [50], [75] or painting with implicit 3D canvas [44] have been studied. 
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Figure I-4. Sketch-based modeling [75] 

 

Figure I-5. Implicit 3D canvas [44] 

 

Sketch-based modeling introduces a simple way of creating 3D models; however, inherently 

poses modeling errors because of ambiguous transitions from 2D to 3D. To avoid ambiguity, a 

user requires extra touch-up on 3D models, another drawing in various viewpoints [1], [73], or 

create a limited range of shapes based on primitives [6], [92]. In a model painting step, 

OverCoat [44] supports off-model painting for users to blend color like digital painting on 2D 

canvas. However, even with these easy-to-use interfaces, users must make back-and-forth steps 

between model creation and painting. 

 

One of the 3D painting methods that generate meshes [25], [26], [33], [54], [66], [71], called 

surface painting, is aimed for 3D digital art rather than product design. Surface painting can 

both express thin curves or volumetric hull with brush interfaces, yet, it does not provide stroke 
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composition, pigment deposition with a color mix, or partial modifications that are natural 

attributes of painting. In addition, users sometimes use several types of software for painting 

and rendering to achieve the desired style. 

 

Another 3D painting method is voxel editing [28], [61], where users control voxel properties 

with high-quality ray tracing/path tracing. Current voxel painting systems support various sizes 

of paintings, however, a CSG-like interface overloads users to refine their artwork. For example, 

a moderate-sized 3D painting, such as Figure VII-1, has over ten million voxels. Such a heavy 

workload makes 3D art remain a very specialized domain. 

 

 

Figure I-6. Examples of surface painting (left and middle) and voxel painting (right) 

 

The second aim of this dissertation is to study volumetric paintbrush models that allow a novice 

user to create 3D artwork in a 3D digital painting metaphor. When a novice user is inspired to 

create 3D art, she or he can immediately begin through 3D brush stroking without any 

knowledge of 3D modeling. Like classic 2D painting, a user can simultaneously shape and color 

in the 3D space. A user does not need to consider a limited painting area on 3D space or the 

ambiguity of strokes. 

(a) Keefe et al. [25] 

 

(c) MagicaVoxel [28] (b) Quill [66] 
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B. Research Objectives and Contributions 

 

The main objective of the dissertation is to study volumetric painting as a new 3D digital 

painting. For this research goal, our key questions are: 

 

• How can we build a volumetric painting system that extends 2D digital painting, 

especially supporting various scale painting in 3D space? 

• What are the minimum performance and memory requirements for interactivity and 

affordability in such a system? How can we achieve interactivity and affordability? 

• How can we extend 2D painting models (e.g., 2D brush models) in a volumetric 

painting system? 

• What specific brush models are newly required for volumetric painting? 

 

Unlike a 2D planar canvas, on a 3D canvas, perspective can be compromised: distant objects in 

the background can be painted at a relatively large size compared to the foreground objects. For 

example, distant mountains can be painted at their actual sizes with large voxels. However, this 

requires very large canvas support. For a large canvas, we use an array of octrees of high-depth 

(e.g., level 24 or higher). Using an octree, we can maintain a very large canvas with a painting 

space of up to 40𝐾𝑚3 and with very fine details of tiny voxels painted at a size of 0.3𝑚𝑚3 

with respect to the typical room-scale VR setup. 

 

With a prototype of volumetric painting system based on an array of 24-level octrees, we 

conduct extensive experiments and conversations with users. Based on our prior experiments, 

we have concluded that the following elements are required for an interactive and affordable 

volumetric painting system in VR: 
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• Dynamic tree update. Users will continuously modify the underlying tree. Therefore, 

we need to update the tree dynamically. 

• Constant frame rates. Users spend several hours painting in VR, and therefore, 

consideration must be given to mitigate the possibility of VR-sickness [18], [40], [80]. 

One source of such sickness is hitching or stuttering in the rendering frame rates, which 

should not be compromised; the frame rates should stay constant. 

• Low latency stroke display. When a user applies a stroke, the tree should be modified 

immediately and rendered back to the user. Therefore, we require low latency for 

stroke display. 

• Low memory consumption. When a very large canvas is used, we found users tend to 

paint a very large world and add details in multiple locations. Thus, a low memory 

requirement is beneficial for maintaining a large canvas. 

 

 

Based on a volumetric painting system, we design various volumetric brush models which 

extend common brush models in 2D digital painting. Beyond a simple extension from previous 

digital painting techniques, our brush models address the following fundamental challenges in 

volumetric painting. First, manipulating properties of each voxel rapidly increases user 

workload as the painting complexity increases. For fine quality variously-sized 3D artwork, a 

painting interface is essential. Second, memory consumption affects time and the quality of 

paintings. The size of paintings gradually increases over time and eventually reaches the 

memory limit. For a user who has no engineering knowledge, yet, does not want to give up the 

scale or the details of a painting, control tools for the voxel resolution are required. Last, the 

performance of rendering and volume authoring always should be balanced for usability. 
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In summary, our contributions are as follows: 

 

For a volumetric painting system, 

• Interactive adjustment of a large octree in a CPU for painting. 

• Strategies to perform adaptive painting strokes and distributed grid adjustment over 

multiple time steps. 

• Incremental, low latency octree update to the GPU without adverse impact on the 

already GPU-intensive volume rendering. 

• New and simple octree neighbor connectivity with only three connections per cell for 

fast traversal to neighboring cells. 

• Numerical error propagation analysis during ray traversal on a high-depth octree. 

• Novel quadtree-based foveated rendering for acceleration. 

 

For volumetric brush models: 

• Interactive and intuitive volumetric brush models that manipulate a large number of 

voxels with adaptive grids. 

• The generalization of common and frequently used 2D brush models, including paint, 

recolor, color mix, blur, smudge, dodge/burn, etc. 

• Novel volume-specific brush models, such as voxel resolution controls for memory 

management, a voxel split brush based on diffusion and easy-to-use voxel merging 

filters. 

• A shift to a hybrid 3D painting system with surface painting and volumetric painting 

and hybrid brush models that address the problem of depth perception and stroke 

neatening in volumetric painting. 
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C. Organization 

 

The remainder of this dissertation is organized as follows. In Chapter II, we survey 3D painting, 

the elements for volumetric painting (i.e. octrees and rendering based octrees), and brush 

models for volumetric painting. In Chapter III, we outline tasks in a volumetric painting system 

for clarity. In Chapter IV, we describe underlying octree representation and its update strategy. 

We discuss how we dynamically update our octree on a GPU at interactive rates and weaken 

visual artifacts from delayed updates. In Chapter V, we develop an accurate ray casting based 

on the 24-level octrees to avoid ray drifting and distortion. We analyze numerical error 

propagation with our ray casting method and discuss experimental results of accuracy. Based 

on the interpolation of adaptive grids, we introduce a rendering acceleration technique, a 

quadtree-based foveated rendering. We briefly describe the interface of our system and 

introduce volumetric brush models, which are the extended brush models from 2D brush models 

and the volume-specific brush models in Chapter VI. We present and discuss our painting 

results in Chapter VII, and finally, we conclude in Chapter VIII. 
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II. Related Work 

 

In this chapter, we first explore a 3D painting system, including 3D modeling, surface painting, 

voxel editing, and volumetric painting. We then survey the relevant octree works, especially 

focusing on representation, updating, and authoring techniques, as well as GPU-based ray 

casting for high-resolution volumetric painting and rendering. Last, we study previous 

volumetric brush models for voxel painting.     

 

A. 3D Painting System 

 

1. 3D Modeling and Texture Authoring 

 

3D painting on surfaces [53], [76] has been researched well to achieve high quality in 3D 

product designs today. The core idea of 3D painting on surfaces is to separate image space and 

3D object space and bridge the two spaces through parameterization. By using high-resolution 

color-field space, a user can paint detailed color on given models. Various color representation, 

for example, multiple uniform 2D/3D textures [3], [58], adaptive 2D/3D textures [4], [19], [23], 

[41], [85], a texture atlas [11], [74], point samples [7], [65], per face texture, mesh color, etc., 

have been used for 3D painting on surfaces (Fig. II-1). While all these works restrict expressible 

space to the surface of the model, OverCoat [44] proposed isosurface and cross-level painting 

tools which relax the restriction on the 3D painting space. Similar to Kalnins et al. [78], 

OverCoat supports non-photorealistic painting tools on 3D models to pursue the freedom of 

expression in 3D space. OverCoat exploits the signed distance field to embed 2D paint strokes 

to 3D space and renders strokes by projecting them to camera space (Fig. II-2 left). 
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Figure II-1. Various coloring methods for painting on 3D models 

 

 

Figure II-2. Painting on isosurfaces of the underlying 3D model [44] 

 

Regardless of painting algorithms, sculpting and painting are integrated into software, but two 

steps are separate and dependent for each step in the 3D modeling. Sculpting precedes painting 

for equipping vertex positions, textures, or distance field to mapping color in 3D space (Fig. II-

2 right). For the majority of users, sculpting with fine control is a nontrivial task and requires 

professional training. In our study, we develop and exploit an octree-based volumetric painting 

system that color representation and model space coincide in high-resolution. We do not assume 

any underlying models and their surface representation, such as polygonal meshes or NURBs; 

(b) Point Samples [7] (a) Octree Texture [85] 

(c) Texture Atlas [11] (d) Per-face Texture [11] 
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therefore, a user can paint 3D shapes and colors in the same way as pixel painting without space 

restriction. Shape and color modification lie in one space, so back-and-forth steps between 

sculpting and painting are unnecessary. 

 

2. Surface Painting 

 

Besides a 3D model painting, surface painting is a 3D painting that generates thin, connected 

open surface with color. This kind of shape representation is expensive to express in voxel 

editing and volumetric painting because voxels are refined to very small sizes and consume a 

lot of memory (Fig. I-6 left). Surface painting can depict a volumetric stroke by generating a 

shell along with a stroke [25], [26], [33], [54], [66]. Some of the semi-transparent volumetric 

effects like fog also can be expressed based on 2D textures [33], [66]. Currently, only a few 

surface painting systems [29], [66] support partial stroke modification and stroke merging 

similar to 3D modeling. This is because identifying the intersected meshes and modifying their 

properties are complex tasks. Rosales et al. [29] studied stroke merging that connects triangle 

strips in surface painting to form a full 3D model (Fig. II-3); however, a user cannot merge 

sparse (Fig. II-3 left) or randomly oriented strokes (Fig. II-3 right). For this reason, such 

functionalities are devolved onto other painting/rendering/modeling tools. A user needs to 

export their artwork from one software to another and learn how to use this software to achieve 

the desired art styles. For a novice user, z-fighting [Fig. I-2 (b)] and occlusion make users 

repeatedly draw strokes on similar locations. 

 

Figure II-3. Nontrivial stroke merging problems in surface painting [29] 
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3. Voxel Editing and Volumetric Painting 

 

Instead of painting on a separate color representation or triangle stripes generation, some 

research and software of 3D painting employ voxels. When using voxels, a user can begin with 

a blank canvas and partially modify their artwork by painting, recoloring, and erasing voxels. 

Semi-transparent, refractive, or reflective expression is also possible. Compared to other 3D 

painting methods, it is easy to design topologically complex objects with voxels. Voxel editing 

is a painting method to create 3D voxel art by dotting on a 3D space [28], [32], [52], [57], [61]. 

Some voxel editors [28], [32], [61] provide a flexible creation environment to change artwork 

styles with a user-defined shader. Essentially, voxel editors are based on 3D uniform textures 

(Fig. II-4), however, a large-scale artwork can be supported by combining a voxel engine with 

sparse voxel octrees [48], [79], [86]. 

 

Voxel editors support a palette tool to manipulate the color of many voxels and uniform 

volumetric brushes [28], [32], [61]. Yet, they do not support a color mix and pigment deposition 

and have CSG-like tools, such as voxel dotting, carving tools, or snapping tools. In volumetric 

painting, cloud painting [16], [77] has been studied for modeling clouds with scattering (Fig. 

II-5). Using cloud painting, a user can generate complex cloud models with intuitive painting 

interfaces with no knowledge of 3D modeling, volumetric effect, and lighting. The aim of cloud 

painting is to generate specific objects in 3D space and general voxel painting is beyond their 

scope. To the best of our knowledge, our work is the first volumetric painting system that allows 

high-resolution painting in 3D based on octrees and extends 2D pixel painting.   
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Figure II-4. Uniform 3D textures in voxel editing applications 

 

 

Figure II-5. Cloud painting [16] 

 

 

 

 

(a) Qubicle [57] (b) MagicaVoxel [28] 
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B. 3D Adaptive Spatial Grids 

 

1. Octree Representation 

 

Octree grids have been applied to various problems, such as distance field generation [51], [84], 

texturing [19], [23], [85], modeling [5], [60], [88], simulation [30], [48], [79], model 

reconstruction [38], [49], and visualization [12], [13], [27], [36], to name a few. Without 

predetermined, fixed topological configurations, an octree is ideal for painting on a large canvas, 

as the tree can be refined at any location at a desirable depth. However, one concern when using 

a high-depth octree is the traversal time from a root cell to a leaf cell. To reduce this traversal 

time, a shallower tree has been used [4], [48], [79], [86]. Lefohn et al. [4] used multi-level page 

tables and brick-border voxels to achieve O(1) memory access, even for the look-ups from a 

root cell. While accessing octree cells from a root at a constant time is the key feature for 

coordinate-based look-ups, (e.g., texture fetching problem [4]), octree cells are still accessed 

locally in many applications, such as starting from the leaves, moving to the children of the 

non-root parent nodes, or accessing neighbors. To render a large-scale scene, full or out-of-core 

[13], [27], [31], [48], [56], updates to GPU have been made for rendering applications. Recently, 

studies on a directed acyclic graph with scalar fields [8], [22] have achieved rendering scenes 

in high-resolution (32𝐾3∼128𝐾3), which is compressed on GPU memory using geometry 

redundancy. For dynamic updates, a directed acyclic graph needs real-time compression 

techniques, otherwise, reconstruction takes several minutes for updates. 
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2. Dynamic Octree Update 

 

In addition to one-time construction or full reconstruction [13], [19], [23] [85], octree can also 

be incrementally adjusted. Here, real-time dynamic octree adjustment in GPU has been applied 

[4], [14]. In Crassin et al. [14], a scene is classified to static and dynamic parts and stored as 

separate memories in GPU. When objects move, the entire dynamic part is updated. Note that 

in our volumetric painting application, dynamic and static parts cannot be separated. In another 

study, an octree was stored on a CPU and the subtree data was streamed through CPU-GPU 

data transfer in a view-dependent manner [27]. To retain connectivity information with subtrees, 

the indices of all eight children are stored. Recently, Hoetzlein [79] supports dynamic 

topological updates on GPU; however, it only supports insertions for now. 
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C. GPU-Based Ray Casting on Adaptive Grids 

 

Ray casting has been extensively researched for several decades [46], [55]. Since a ray traversal 

on 3D adaptive grids is expensive, acceleration techniques, such as neighbor precomputation, 

early ray termination, and empty space skipping [42] are often used. To reduce the cost of 

finding neighbors, the ROPE algorithm [89] was developed for a k-d tree, and neighbor linking 

was proposed [34], [39] for an octree. Since a k-d tree has a varying number of neighbors per 

cell, six ropes were linked from a cell to bounding boxes along with axial directions rather than 

pointing to neighbor cells directly [70]. An octree, even when 2-to-1 balanced, needs a 

maximum of 24 neighbors per cell. Gobbetti et al. [27] have reduced the number of neighbors 

down to six per cell by pointing to the parents of neighbors. In this dissertation, we use only 

three neighbors per cell, computed on a GPU with the primal octree represented by only two 

indices: a parent and the first child. Our precomputed neighbors enable stackless ray casting 

and the dynamic updating of an octree on-the-fly on a GPU as the tree connectivity changes. 

 

A sparse voxel octree (SVO) [13], [86] showed both high-quality rendering and efficient ray 

traversal benefits of shallow tree topology and bricks. These works address the static scene 

rendering problem that does not require a dynamic update. Particular objects in Crassin et al. 

[14] can be updated dynamically while rendering. In this work, rendering with dynamic updates, 

which are not limited to specific objects, was not the target problem. SVOs extend to a tree with 

resolution configurable at each level, called OpenVDB [48]. Recently, OpenVDB structure was 

implemented in GPU [79], which enables efficient neighbor access using ghost voxels and 

GPU-based ray casting. OpenVDB [48] and GVDB [79] address rendering of dynamic scenes 

that do not have hard real-time constraints while updating structure simultaneously. 
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To the best of our knowledge, octrees as deep as 24 have not been used for ray casting. The 

deepest 3D adaptive structure we found in the literature was 128𝐾3 [8], which is equivalent 

to the octree depth of 17 [whereas, our canvas is equivalent to (4 × 224)3]. Moreover, the ray 

angle drift error has not been identified as an important challenge due to the limited size of a 

3D scene. Spacing between floating points can cause sudden movement of the ray origin with 

continuously changing viewpoints, which makes rendering unstable in a VR environment. Ize 

et al. [87] used a padding factor to not miss a cell due to such precision. In this dissertation, we 

study a more principled approach; we propose to analyze the propagation of numerical error 

and ensure that ray computation does not increase the numerical error regardless of the ray 

length. 
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D. Volumetric Brush Models 

 

Since prehistoric times, paint-brushing is one of the common tools to show one’s creative 

activity and is employed in a variety of fields. For clarity, we here define a volumetric brush 

model as a brush interface that (1) authors elements for volume rendering at any locations in 

3D, (2) has a full volume brush stamp, and (3) updates elements along the swept volume of a 

stroke.  

 

In medical imaging, a volume editing interface has been researched in the context of assisting 

visual perception. Such an interface aims to emphasize the region of interest or to reveal the 

important features in a volume data set by erasing voxels. VolumeShop [82] introduces an 

interactive brush model to select the region of interest in a given volume for segmentation. A 

set of all the intersected voxels with a brush can be transformed, rendered indifferent materials, 

or recolored through a color transfer function [Fig. II-6 (a)]. Bürger et al. [45] introduced a 

brush operating at a higher resolution than that of VolumeShop. This brush model directly 

interacts with 3D textures on the GPU; therefore, a user can paint either voxels or an iso-surface 

similar to sculpting/painting in 3D modeling. Both studies adopt a non-photorealistic recoloring 

or erasing, however, 3D painting is beyond their scope. Voxel editing interfaces have also 

developed volumetric brushes in 3D voxel dotting art [28], [32], [61]. They have a CSG-like 

interface (Fig.II-6), yet, these works provide a volumetric brush model functioning as a brush 

with max deposition. All these works assume the underlying volume is a uniform grid with 

limited resolution, therefore, brush models or filters for voxel resolution or 3D painting are not 

their concern. 
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Several basic volumetric brush models are presented in volumetric painting. Wei [16] and 

Brucks [77] presented cloud brush models based on uniform 3D textures. Although cloud brush 

models do not pursue a user’s own style, it is an effective way of painting clouds; painting 

illumination and shade is a difficult task even with a single light in 3D and is much harder with 

light-particle interactions. Among cloud brush models, one interesting brush model is a velocity 

painting brush to animate clouds [77]. While cloud brush models promote specific purposes, 

our work provides interactive brush models for general purpose painting based on octrees. 

 

To the best of our knowledge, volumetric brush models have not been studied in the context of 

3D non-photorealistic painting that generalizes 2D pixel painting. We believe that this is the 

first work that identifies important problems in digital painting when transitioning from 2D to 

3D and extends 2D brushes to 3D brushes. 
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Figure II-6. Interfaces in the voxel editing applications 

 

  

(b) A palette and a CSG-like interface (MagicaVoxel [28]) 

(a) Transfer function (VolumeShop [82]) 
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III. System Overview 

 

Painting and rendering are considered simultaneous tasks in a painting system. For our 

interactive painting system, we build a CPU-side octree for painting and a GPU-side octree for 

rendering. The benefits of maintaining two copies of the same octree are to exploit the 

characteristics of the hardware and make them hazard-free. A CPU-side octree is primarily for 

painting operations, including color blending and octree adjustment (Sec. IV.D.1). A GPU-side 

octree is for rendering operations, including volume ray casting and rendering acceleration (Sec. 

V.A). Both octrees are synchronized by uploading the CPU-side octree to the GPU in a 

streamlined fashion (Sec. IV.D.2 ~ IV.D.4); therefore, a user can immediately see what he or 

she draws in a 3D space.  

 

 

Figure III-1. Simultaneous read/write access to the octrees 

 

However, simultaneous read/write operations can interrupt other tasks even though two octrees 

independently handle painting and rendering (Fig. III-1). Therefore, in our system, a stroke 

drawing consists of several subtasks in parallel: a stroke processing, the CPU-side octree 

adjustment, the GPU-side octree update, and the octree-based volume rendering (Fig. III-2). 

When a user starts to draw a stroke, the stroke properties, such as color, the stamp, hardness, 
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and segments are pushed to a stroke job queue in the painting thread. Next, we perform a stroke-

cell intersection test and split/merge the intersecting cells based on stroke properties in the 

stroke thread. In the staging thread, we duplicate a sequential memory block containing colored, 

split, or merged cells into a temporary buffer called a staged block (Fig. IV-6). We also queue 

staged blocks and later pop them when overwriting staged blocks to the GPU in the upload 

thread. Last, we render output based on the octree-based ray casting in the rendering thread.  

 

 

Figure III-2. A flow of CPU-side threads 
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IV. Dynamic Octree Representation 

 

In our system, a 3D array of octrees is used to support deep levels and efficient octree traversal, 

which lead to high resolution and dynamic volumetric field authoring. Since each element of a 

3D array corresponds to the root cell of a single octree, we call this array a root array. The 

maximum depth of each element in a root array is currently up to 24 levels, which sufficiently 

supports fine details in the painting. A root array can reduce the tree depth in octree traversal 

compared to a single octree by assuming that the level of root cells is greater than zero. For 

example, the highest resolution of a 643 root array with 14-level octrees is equal to that of a 

20-level single octree. The maximum depth in octree traversal is 14 in the former and 20 in the 

latter. A root array also provides several other benefits, including trivial parallelization for each 

element. However, these advantages can rapidly diminish with highly adaptive details in a large 

canvas. Therefore, we depend on a relatively coarse root array (i.e., a 43 array of 24-level 

octrees, which is equal to a single 26-level octree). In the room-scale VR environment, this 

resolution sustains a volumetric space from 0.3mm3 to 40km3.  
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A. Dynamic Octree Representation on a CPU 

 

Our dynamic octrees are based on a 2:1 balanced octree [10]. In a 2:1 balanced octree, the depth 

between every cell and their neighbors is less than or equal to one. One cell is refined or 

coarsened to eight children for simplicity, as painting can occur anywhere in the 3D space. For 

each cell, we use the unique index, I, of the cell rather than pointers, similar to Gobbetti et al. 

[27]. 

 

As illustrated in Figure IV-1, our CPU-side octree consists of many linear memory pools that 

are accessed through I. Parent and child pools are essential and define the structure of our octree. 

In a parent pool and a child pool, the indices of the parent and the first child for each cell are 

stored. We can obtain the indices of the remaining seven children by consecutively numbering 

from the first child. Any volumetric properties (e.g., color, distance field, refractive indices, or 

temporary variables) can be dynamically updated in separate field pools. Field pools can be 

supplemented if additional volumetric properties are required. If several volumetric properties 

are frequently accessed together, they can be grouped and stored in a single memory pool to 

increase the cache hit. For dynamic octree adjustment, we develop memory management based 

on a linked list. Per generated or freed eight cells, the amount of an allocation or deallocation 

unit is fixed. When freeing eight cells, we check the front of the memory pool to ascertain 

whether it is populated from the front. The memory pool containing a root array cannot be 

deallocated. The depth of the cells and bit flags are separately stored for octree adjustment.    
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B. Dynamic Octree Representation on a GPU 

 

Our octree mapping from a CPU pool to a GPU texture is one-to-one correspondence in 

memory space. On the GPU-side, we adopt 2D textures and map the linear index, I, to two 

indices (ti, tj) because of the limited resolution of a 1D texture. Where a dimension of 2D 

texture is W × H, the mapping formula between the two octrees is as follows: 

 

 
ti = ⌊

𝐼

𝑊
⌋ 

tj = 𝐼 mod 𝑊 

(4.1) 

 

Since contemporary GPUs provide more than 16,000 texels per dimension, we can supply more 

than 265M cells with 2D textures. As illustrated in Figure IV-2, parent, child, and the depth are 

stored to an octree structure, 𝐺𝑝, in a 32-bit integer format. We store RGBA color as a 16-bit 

float texture. Another 32-bit integer texture, 𝐺3 texture, is a 3-neighbor texture for the indices 

of neighbors in XYZ direction. Note that 𝐺3 is not used on the CPU. Along with the dynamic 

update, we construct a 𝐺3  of each cell in parallel from the 𝐺𝑝  texture (See Sec. IV.C). 

Although the 𝐺3 computation is fast on the GPU, it hinders the frame rate in an interactive 

painting system. In Chapter IV.D.3, we adopt a tactic to reduce the amount of 𝐺3 computation 

with a lightweight mask calculation and to deliver the mask from the CPU to the GPU. 
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Figure IV-1. A dynamic octree on the CPU 

 

 

 

Figure IV-2. A dynamic octree on the GPU 

 

 

 



28 

C. GPU-Based 3-Neighbor Computation 

 

Only with the indices of a parent and the first child, rendering performance decreases while the 

maximum tree depth increases. For example, an octree traversal path from a leaf and its 

neighbor is 48 in a worst-case scenario based on 𝐺𝑝. Because the octree traversal is a sequence 

of conditional branches, this long and divergent branching can slow down ray casting on the 

GPU [59]. For this reason, topologies for directly accessing neighbors (i.e., neighbor linking 

for octrees [34], [39] or ROPEs for KD-trees [89]) have been researched to accelerate the 

rendering. As illustrated in Figure IV-3, two cases of the neighbors for given cells, C and D, 

the parent-level neighbor, 𝐶0,  and the child-level neighbors in 𝐷1  can exist in a 2-to-1 

balanced octree except for same-level neighbors (𝐶1~𝐶3, 𝐷0, 𝐷2, 𝐷3). Here we illustrate the 

example as quadtrees with one different-level neighbor for simplicity, but 6 to 24 neighbors can 

exist in an octree. 

   

 

Figure IV-3. The minimum number of neighbor connectivity for a cell 

 

Neighbor linking [34], [39] and ROPE [89] essentially link all the neighbors, which are across 

the faces of C and D (the blue connections). To connect the same-level or parent-level neighbors 

[27] or a group of neighbors per face [70], we can reduce the number of neighbors to six. 
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Considering that the number of cells in the volumetric painting of moderate size is possibly 

greater than millions, the total number of neighbors can be over 6 million. This is a huge 

memory consumption and causes performance degradation due to neighbor computation. 

Therefore, we decrease the number of neighbors to three.  

 

When considering the parent-level neighbor, 𝐶0, and the child-level neighbors in 𝐷1, every 

cell has six neighbors because only one neighbor exists across each face in +/-XYZ directions. 

As addressed in Chapter IV.A, eight children have consecutive indices. Thus, three of these 

neighbors share the same parent and can be immediately obtained from its associated cell index. 

For example, 𝐶1 and 𝐶2 share the same parent with C and can be accessed by adding an offset 

to the index of C (C1 = 𝐶 + 1, C2 = 𝐶 − 2). It is the same for 𝐷1 and 𝐷2 with D. The other 

three neighbors may have different parents (𝐶0, 𝐶3, 𝐷0 and 𝐷3 in Fig. IV-3), and computing 

such neighbors can be long tree traversals, as mentioned earlier in this section. Therefore, we 

precompute the indices of the three neighbors, called 3-neighbor topology 𝐺3. 

    

Using the union of 𝐺3 and 𝐺𝑝, we can quickly discover all the 6 to 24 neighbors, since in 𝐺𝑝 

∪ 𝐺3, the distance between two cells sharing a face is 2 in 𝐺𝑝, or 1 or 2 in 𝐺3. Therefore, 

finding neighbors in our scheme incurs a low cost, while finding a group of cells [27], [70] can 

have a distance between neighbors greater than 2 in 𝐺𝑝. In Figure IV-3, the child cells of 𝐷1 

that are in contact with D can be found easily as 𝐶𝐻𝐼𝐿𝐷(𝐷1) and 𝐶𝐻𝐼𝐿𝐷(𝐷1) + 2, where 

𝐶𝐻𝐼𝐿𝐷(·) denotes the first child. When a ray traverses to 𝐷1 in ray casting, we can quickly 

identify 𝐶𝐻𝐼𝐿𝐷(𝐷1) or 𝐶𝐻𝐼𝐿𝐷(𝐷1) + 2 using the ray parameter (See Chapter V.A.1). Using 

𝐺3, we simplified variable numbers of immediate neighbors to a constant 3. We also reduced 

the memory required for a fast traversal from the maximum 24 neighbors to three neighbors, 

while still allowing small constant time access to all 24 neighbors. 
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D. Dynamic Octree Update 

 

Avoiding sickness, nausea, and postural instability has significance in VR [18], [40], [80] 

because painting can last several hours. Among factors on those symptoms, a little delay in 

synchronization between the rendered scene and the head motion is a minimum requirement. 

However, simply copying an octree to a texture (i.e., 134M cells, which is equivalent to 2.15GB 

memory) will take 222 milliseconds even with the full bandwidths of a CPU, a PCIe, and a 

GPU. In this section, we address how we incrementally update the octree on a CPU and 

dynamically update the octree on the GPU rather than updating the entire octree. 

 

1. Incremental Octree Adjustment on a CPU 

  

Even though we effectively ignore cells that do not intersect with brush stamps, painting an 

octree is still expensive. A large brush stroke can be applied near a highly-refined region, or a 

small brush stroke can be applied near a coarsened region. In other words, we may coarsen 24-

level leaves to a root-level cell or refine a root-level cell to 24-level leaves in the worst-case 

scenario on the CPU. To address a sharp change in the depth of cells, we develop a multi-step 

octree adjustment strategy. Again, we illustrate the example of incremental tree adjustment 

using a quadtree for simplicity, as shown in Figure IV-4. For a given stroke from a user (a 

capsule in Frame t0), we read stroke data from the stroke job queue in a CPU thread separate 

from rendering. We first paint on the CPU tree without tree adjustment and update on the GPU 

at Frame t1a. The next step is the tree adjustment stage. We mark cells that should be refined 

or coarsened based on the intersection status of the cells (outside, boundary, inside at Frame 

t1b in Fig. IV-4). Outside and inside cells are candidates to be coarsened, and boundary cells 

are candidates to be refined. All refining candidates are refined, but coarsening candidates are 
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only coarsened when a coarsening candidate is not a refining candidate and is a parent cell of a 

leaf cell to satisfy the 2-to-1 balance [10]. After marking the cells, we perform one-level 

refinement or coarsening per frame. The result of the one-level octree adjustment of Frame t1 

is illustrated in Frame t2. After one-level tree adjustment, we reflect these changes to the GPU. 

We repeat this process until no cell needs to be refined or coarsened (Frame t1 to t𝑛, where n 

is the desired depth for a given stroke). In the next section, we propose algorithms for dynamic 

low latency updating to the GPU while keeping the frame rate constant for VR. 

 

 

Figure IV-4. Incremental octree adjustment on the CPU 

 

2. Block-Based Staging and the GPU-Side Octree Update 

 

In our system, up to approximately 1,000 cells per stroke would require updates as the stroke 

diameter is set to be approximately 10 cells for a stroke length of one. Since uploading 1,000 

times to the GPU would be prohibitively slow, we use large blocks to reduce the upload counts. 

Since our CPU-side memory manager maintains a free pool in the last-in-first-out (LIFO) 

manner, texture memory 𝐺𝑝 tends to be filled from bottom to top in the texture space. For 

example, in Figure IV-5, colored cells at Frame t2 are generated later than colored cells at 
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Frame t1; therefore, they stay relatively right in a CPU-side octree and top in a GPU-side octree. 

Based on this spatial coherence in 3D space, the CPU, and GPU, we use a block, which refers 

to linear pitched packing that divides texture horizontally. The width of the texture of each 

block is equal to 16,384 with a relatively smaller height, shown as translucent boxes on octree 

textures in Figure IV-5. 

 

 

Figure IV-5. The blocks for updating color at Frame t1 and t2 

 

If we directly upload updated blocks to the GPU, the whole CPU-side tree would be locked and 

the painting thread would stall (See Fig. III-1). Rendering would also stall while overwriting 

the whole GPU-side octree. To avoid this painting and rendering interruption, we improved the 

simple block-based update for the CPU-side hazard control (Fig. IV-6). Note that we are basing 

this on the idea that brushing a stroke in a 3D space is local not only in the space but also in the 
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memory (red cells in the 3D space and the octree on a CPU). We divide the octree into blocks 

shown as sky blue and orange boxes in the CPU-side octree. Among the blocks, we find a block 

(orange box) containing updated cells (dotted ellipse). We then copy the block to a staging 

buffer that serves as an update queue (a box with an orange line). A block copied to a staging 

buffer is called a staged block. We collect the staged blocks in a separate thread using only 

small atomic sections during tree adjustments (see Chapter IV.D.4 for discussion on hazards) 

and queue them in the LIFO queues with upload-to-GPU tasks. Along with staged blocks, we 

upload a neighbor computation mask (a box with an orange line) that we discuss in the next 

section. Note that 𝐺3 is not uploaded but is rather computed on the GPU. Finally, we simply 

upload one block per rendering frame and compute the 3-neighbor based on a neighbor 

computation mask. 

 

To verify that the algorithms we developed in this section satisfy the hard frame rate and latency 

requirements, we develop custom benchmark tests. To reproduce painting practice in the real 

use case, we first load a pre-painted scene and play a pre-recorded set of painting strokes. We 

fix the head-mounted display (HMD) position to make rendering time nearly constant. 

Dominant variables are thus controlled variables: updating parameters, such as the number of 

blocks per frame, block sizes, and the granularity of neighbor computation mask for selective 

𝐺3  rendering. The only uncontrolled variables are the CPU thread allocations, the GPU 

command dispatches, and other minor random system interventions. Our painting stroke 

sequences are sufficiently long to minimize the impacts of these variables, shown as minor 

fluctuations in Figures IV-8 and IV-9. 
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Figure IV-6. Block-based update with a neighbor mask 
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On the CPU-side, Table IV-1 shows the average staging time and the maximum number of 

updated cells per second. Staging larger blocks tends to increase the maximum number of 

updated cells per second and reduces the number of updates. Although larger blocks can update 

more cells per second, latency tends to increase, and it would be inefficient to upload a large 

block when only a small number of cells have changed. On the other hand, staging smaller 

blocks decreases the staging time and provides frequent updates, although bandwidth utilization 

may be lower. For example, when the size of the block is 16,384×4 (i.e., the number of cells 

per block is equal to 65K), blocks can be updated 77 times per second, and the maximum 

number of uploaded cells per second is five million cells. The average bandwidth of the block 

size under two million cells is less than 5ms, thus, it is sufficient to stage blocks at the refresh 

rate of 60 or higher, corresponding to a rather long drawing sequence. While a block-based 

upload improves the frame rate from five frames per second (FPS) up to 22 FPS, this rate is 

still not acceptable. The next bottleneck is a neighbor connectivity update, which will be 

discussed in the next section. 

 

Table IV-1. Average staging time, the maximum number of staged blocks  

and staged cells that can be processed per second 
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3. Neighbor Update with Neighbor Computation Mask 

 

Even though a neighbor computation on the GPU corresponds to a simple computation of the 

graph 𝐺3 , the resolution of the texture can be large (16384×8192), which affects the 

interactivity (See the no mask case in Fig. IV-9). Therefore, we develop a simple and efficient 

method to dramatically reduce this rendering cost. Once a cell is created or deleted, not only 

the cell but also its neighbors should be updated in 𝐺3. Since neighbors may not be inside a 

block that contains the cell, updating 𝐺3 within the block would not be sufficient. One solution 

would be to have an additional list of expanded blocks for the neighbor update. Since this will 

increase complexity in the system, we instead propose a simpler approach. We compute a very 

small mask in the CPU that contains dirty bits, indicating which cells need to recompute their 

neighbors due to the tree topology change. While staging the cells on the CPU, we upload this 

small mask to the GPU and perform a neighbor computation only on the cells in the marked 

area. 

 

A neighbor computation mask is allocated per a block and accumulates dirty bits when a cell 

has topological changes. Every cell with its own topological change requires updating in 𝐺3. 

If a cell is allocated, all three neighbors should be newly computed. If a cell is deallocated, all 

three neighbors should be cleaned. However, not all the neighbors of a cell need updates on 𝐺3. 

For the neighbors of a cell, changes in 𝐺3 can be routed to the four cases in Figure IV-7, where: 

(a) the case that a cell C0 is refined with the same-level neighbor C1, (b) the case that a cell 

C0 is refined with the child-level neighbors C4 and C6, (c) the case that a cell C7 is refined 

with the parent-level neighbor C1, and (d) the case that a cell C7 is refined with the same-level 

neighbors C10. We assume that C0 ~ C3  have different parents. In case (a), neighbors (C1 and 

C2) of a cell to be refined (C0) do not need to update its 𝐺3 because the same-level neighbor 
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of C1 and C2 is still C0 after a cell refinement. This is the same in (b), however, the neighbors 

of child-level cells (C4 and C6) in C1 change from C0 to C9 and C11. In coarsening cases, 

neighbors (C1 and C2) of a cell to be coarsened (C7) have no changes in 𝐺3, because C7 is 

the same-level neighbor after coarsening. However, if a cell is coarsened with the same-level 

neighbor as in (d), the neighbor (C10) of C7 has the neighbor C0, not C7. In summary, from 

the point of view of neighbors of a cell to be refined or coarsened, (1) if a cell is the parent level 

and will be refined, or (2) if a cell is the same level and will be coarsened, we mark in a neighbor 

computation mask to recompute 𝐺3 for a neighbor of a cell.        

 

 

Figure IV-7. The cases of the 𝐺3 update after adjusting a cell 

 

We then tested various mask sizes. If the size of the neighbor computation mask is over 64 by 

32 (which takes only 256 bytes), the overall frame rate stays around 90 FPS, which is a lower 

bound of frame rate, as shown in Figure IV-9. We also further tested the degree to which the 

(a) Refinement w/ the same-level neighbor (b) Refinement w/ the child-level neighbor 

(c) Coarsening w/ the parent-level neighbor (d) Coarsening w/ the same-level neighbor 
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size of the blocks affects the frame rates with lightweight neighbor precomputation cost. Figure 

IV-8 shows that the frame rates remain stable when the number of cells per block is under 524K. 

 

 

Figure IV-8. The performance results with staged blocks of different sizes 

 

Figure IV-9. The performance results with neighbor computation masks of different sizes 
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4. Immediate Visual Feedback 

 

To minimize wait state between painting and staging threads, we divide the painting task into 

the finer grained jobs in the earlier section. Here, we review all steps from painting to rendering 

for potential hazards in updating: when a stroke is applied to the CPU-side octree, we 

incrementally adjust the octree by one level in the stroke thread (Figures III-2 and IV-4). This 

ensures that the CPU-side octree is valid without orphan cells (i.e., cells that are allocated but 

not linked to their parents) or balancing violations. In the next step, staging blocks may depend 

on each other due to octree connectivity. For example, if the parent cell exists in block 0 and 

the child cell exists in block 1, the parent has the index of its first child, but the children do not 

exist in 𝐺𝑝 texture. Hence, dependent blocks may be grouped, uploaded to GPU-side staging 

buffers, and then copied together in the GPU at the beginning of rendering. However, in our 

experiment, the GPU-side staging buffer always yielded greater latency. More importantly, the 

dependency chain between staging buffers can be very large, resulting in much higher latency 

for accurate rendering results. 

 

Therefore, we experiment with strategies to ignore dependency between staging blocks. As a 

result, users can see the strokes at a lower latency at the cost of temporal GPU-side violations. 

First, 2:1 balancing can be violated to 3:1 balancing. This can cause minor temporal visual 

artifacts in the raycaster that assumes 2:1 balancing. Second, since parent-child referencing is 

valid only inside a block, some inter-block parent and child indices may be invalid. This causes 

visible artifacts. Thus, we designed two strategies to reduce these artifacts: aggressive staging 

and handling invalid parent/child. To experiment with the strategies, we developed a stroke 

replay system to render frames with and without corruptions. We then computed the number of 

rendered frames that had mismatching pixels. 
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By just ignoring inter-staging buffer dependency, corruption occurs in 33.3% of the total frames 

[Fig. IV-11 (a)]. The corruption lasts up to 450ms. Aggressive staging is to use smaller atomic 

sections that can temporally break the CPU-side 2:1 balancing to 3:1. However, since 

aggressive staging does not lock the CPU-side octree with whole one-level octree adjustment, 

aggressive staging guarantees stable and fast staging time (Fig. IV-10) and the corruption goes 

away faster [Fig. IV-11 (b)]. The corruption rate falls to 21.7%. Handling invalid parent/child 

is simply to check whether parent and child mutually point to each other, and if fails, to ignore 

visiting such cells. This way, the corruption rate goes further down to 3.62% [Fig. IV-11 (c)]. 

 

 

 

Figure IV-10. The CPU-side staging time with/without aggressive staging 
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Figure IV-11. The frames with corruptions for the same stroke 

 

 

 

(a) Naively ignoring staging block dependencies 

(b) Aggressive staging 

(c) Aggressive staging and preventing access to invalid parent/child 
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V. Ray Casting and Color Interpolation  

on the GPU-side Octree 

 

Rendering 3D volumetric fields poses challenges in accuracy and performance. One viable 

solution for accuracy involves extracting voxel faces and rendering them through a raster 

graphics pipeline similar to Minecraft [61]. However, as the number of grids in the non-uniform 

size increases, the extracted vertex positions, particularly far from the origin, may not be 

accurate due to numerical error. More significantly, geometric extraction requires a substantial 

amount of computational time as the number of voxels grows. In this chapter, we explore an 

accurate approach of ray casting through an octree volumetric field. The proposed cell-local 

coordinate system is accurate and enables faster rendering with 3-neighbor access (Chapter 

IV.C); however, we further explore an interpolation-based acceleration technique for stable 

frame rates in VR.  

 

A. A Cell-Local Coordinate System 

 

 

Figure V-1. Example of 24-level painting with color-encoded depth 
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When editing fine detail, users should be able to zoom in to observe the cells that have the 

highest depth (i.e., 24, as in Fig. V-I). However, the size of these tree cells may be even smaller 

than the single precision floating point granularity except near the origin. For example, in a VR 

environment, naively using the floating point for the eye position in a world coordinate will 

force the head positions to jump toward nearby floating points, and more significantly, the eye 

distance will be erratic. This leads to extreme discomfort. Therefore, we carefully maintain 

canvas-to-VR, VR-to-HMD, and HMD-to-eye coordinate transformations to avoid loss of the 

eye position precision. 

 

Based on the ideas that (1) floating point numbers are dense near the zero, and (2) the world 

coordinate system is only required for extracting volumetric properties of a given cell, not 

related to the rendering result, we propose computing the ray starting point in a cell-local 

coordinate frame and retain the positioning error of the starting point sufficiently small. 

 

               PL = (𝑖𝑑, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧)      (−0.5 ≤ 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 ≤ 0.5) (5.1) 

 

Our cell-local coordinate system represents position PL as the combination of indices of cells 

and a barycentric coordinate system that has the origin at the cell center with a size of one, as 

in Equation 5.1. The range of coordinates inside the cell is [-0.5, 0.5]. Consequently, the finest 

resolution inside a cell is 0.5 × 2−23 in single precision floating point regardless of the size of 

the cell. If a ray starts from a leaf cell whose depth is 24, its resolution inside the leaf becomes 

extremely high. In addition, using the world coordinate system, we first compute the index of 

a cell by traversing based on the position. This can be a long traversal from the root to a leaf in 

the worst-case. We then obtain volumetric properties of the cell using the index of the cell. On 

the other hand, our cell-local coordinate system holds the index of the cell and does not need to 
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traverse the octree from the top to the bottom. We can directly access volumetric properties 

using the index of the cell in a cell-local coordinate system.     

 

1. Ray Traversal with the Cell-Local Coordinate System 

 

As illustrated in Figure V-2, given a ray and its direction d, and a cell-entry point 𝑝𝑖 of the ray 

into the ith cell, we compute the cell traversal distance 𝑡𝑖 and the cell-exit point 𝑝𝑖,
′  as well 

as a neighboring cell containing 𝑝𝑖
′. Since our volumetric canvas covers a large space and the 

cell sizes vary by a large magnitude, using a global coordinate system to calculate 𝑝𝑖
′ and the 

ray traversal length t may be inaccurate. In contrast, the cell-local coordinate system can 

produce accurate results regardless of the zoom level. We represent 𝑝𝑖 and 𝑝𝑖
′ with respect to 

the frame, whose origin is located at the cell center and the size is normalized to one. Using the 

intersecting face which contains pi
′ and the neighbor texture described in Chapter IV.C, we 

choose the neighbor cell [the (i +  1)th cell] to visit and set pi
′  to pi+1

′ . This process is 

repeated until the ray terminates after accumulating full opacity or exits the canvas. 

 

 

Figure V-2. A 2D illustration of ray casting on adaptive grids 
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2. Accuracy Analysis 

 

As illustrated in Figure V-2, in the ith cell, if the ray hits the top surface, the ray traversal 

length 𝑡𝑖 is computed as 𝑡𝑖  =  (0.5 − 𝑝𝑦)/𝑑𝑦, where 𝑝𝑦 is the y coordinate of 𝑝𝑖, and 𝑑𝑦 

is the y component of d. The error in 𝑡𝑖 will be proportional to 𝑡𝑖. When taking the machine 

epsilon ε =  2−23 for single precision, x and y for arbitrarily accurate real numbers, and 𝑓(𝑥) 

for a floating-point representation of x, 𝑓(𝑥 + 𝑦) = (𝑥 + 𝑦)(1 + 𝜀+) with some ε+  ≤  ε. 

Similarly, the error in ti is computed as: 

 

𝑓(𝑡𝑖) =  𝑓 (
𝑓(0.5 − 𝑝𝑦)

𝑑𝑦
)  =

(0.5 −  𝑝𝑦)(1 + 𝜀1)

𝑑𝑦(1 + 𝜀2)
 

=  𝑡𝑖(1 + 𝜀1   + 𝜀2  + 𝜀1𝜀2)  =  𝑡𝑖(1 + 2𝜀𝑡), 𝜀1, 𝜀2  ≤  𝜀 

(5.2) 

 

Note that ignoring ε1ε2, we have εt  ≤  ε. We then compute: 

 

𝑓(𝑝𝑖
′) =  𝑓(𝑝𝑖  +  𝑓(𝑡𝑖)) =  𝑓(𝑝𝑖  + 𝑡𝑖(1 +  2𝜀𝑡)) 

=  (𝑝𝑖  + 𝑡𝑖(1 +  2𝜀𝑡))(1 +  𝜀3))  

=  (𝑝𝑖  + 𝑡𝑖)(1 +  3𝜀𝑝) 

(5.3) 

 

for some 𝜀𝑝  ≤  𝜀 , ignoring ε3εt . Next, we transform the coordinates of 𝑓(𝑝𝑖
′)  to the 

neighboring (i + 1)th cell where the ray continues. This point is computed as: 

 

𝑝𝑖+1  =  𝑓(𝑓(𝑓(𝑝𝑖
′)𝑠) +  𝑐)  =  ((𝑝𝑖  +  𝑡𝑖)𝑠 +  𝑐)(1 +  5𝜀𝑖)  (5.4) 

 

for some 𝜀𝑖 ≤ 𝜀, where scale s and shift c depend on depth and location. Therefore, 𝑓(𝑝𝑖+1̃ )  =

 𝑝𝑖+1̃ + 1(1 +  5𝜀), where 𝑝𝑖+1,̃ is the exact value computed from 𝑝𝑖. Thus, the numerical 
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error added during the traversal point is proportional to the coordinate values, the number of 

floating-point operations and ε. 

 

Since we are using a cell coordinate system, each coordinate of 𝑝𝑖 is in [-0.5,0.5]. Therefore, 

the error is always bounded by 2.5𝜀. In a global coordinate system, the error is bounded by 

2.5𝜀𝑤𝑖 , where wi is the size of the 𝑖𝑡ℎ cell along the ray. Let 𝑒0 be the error in the eye 

location (i.e., the error introduced to compute 𝑝𝑟𝑖𝑔ℎ𝑡−𝑒𝑦𝑒 in the cell-local coordinate frame). 

Starting from this initial error 𝑒0, traversing n cells results in total error: 

𝑒0  +  ∑ 2.5𝜀𝑤𝑖  

𝑛

𝑖=0

 =  𝑒0  + 2.5𝜀 ∑ 𝑤𝑖

𝑛

𝑖=0

   

≤  𝑒0  + 2.5 √3𝜀𝐿 

<  𝑒0  + 5𝜀𝐿, 

(5.5) 

 

where L is the ray length. Note that ∑ 𝑤𝑖  𝑖=0
𝑛  ≤  √3𝐿. Thus, by using the cell coordinate system 

for a ray/voxel traversal, we have shown that the error is proportional to L. Moreover, the error 

bound in angle 𝑠𝑖𝑛−1 (
𝑒0

𝐿
+  5𝜀)  does not increase as a function of L, and consequently, the 

ray does not deviate from the pixel center by more than a small fixed angle regardless the length 

of the ray L. 
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Figure V-3. A ray traversal using cell-local coordinate system 

 

Figure V-4. The error in ray angle (degrees) 

 

 

 

(a) Test Scene (b) Errors in Ray Angle (c) # of Cells Crossed 

(a) Ray length VS Ray angle Error (b) Crossed cells VS Ray Angle error 
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To verify our analysis, we performed an experiment, as demonstrated in Figure V-3. The 

maximum level of the octree in our test scene reaches 24. In (b), we visualize the error angle 

between the final ray location and the initial ray direction, magnified by 109 for display in 

gray. We also visualize the number of cells crossed in gray [(c) in Fig. V-3]. Figure V-4 is the 

result of our test scene. We show that the screen space ray-deviation from the pixel center, 

formulated as the ray angle error, does not accumulate during ray traversal. In fact, the error is 

indeed very small and is relatively larger in the nearby pixels (the maximum ray angle error is 

7.5 × 10−9 degrees) due to the initial position error (the position error is 2.5 × 10−7 in 𝐿2 

norm). It then slightly decays as L increases. The red line in (a) is the worst-case error bound. 

In (b), as the number of cells crossed by the ray increases, the stochastic decay increases. The 

experimental result implies that we can perform the ray casting even on mobile GPUs with only 

half-precision floats (𝜀 =
1

1024
) using fragment shaders. We compare the results using the world 

coordinate and local coordinate in Figure V-5. 

 

 

 

Figure V-5. The comparison on distortion with two coordinate systems 

 

 

(a) World Coordinate (b) Cell-local Coordinate 
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B. Rendering Acceleration Based on Color Interpolation 

 

In ray casting, a ray traverses 3D space while sampling color from the octree. Major cost factors 

for ray casting are (1) the number of rays per pixel, (2) the numbers of samples per ray, and (3) 

the computational complexity of sampling color. In an earlier section, we introduced techniques 

to reduce the computational complexity of sampling color by directly moving from a cell to its 

neighbor cell along the ray (Chapters IV.C and V.A.1). We further simply reduce the number 

of samples per ray by skipping empty cells. If the sampled cell is empty, we traverse toward the 

root of the octree to find the largest empty cell and resume the ray traversal; otherwise, we 

traverse to the leaf and move to the next sample position. We can also reduce the number of 

rays per pixel; however, discontinuity of color increases due to missing pixel color in screen 

space. In the following section, we first describe the color interpolation of a quadtree and an 

octree, which generates continuous color vectors. We then propose quadtree-based foveated 

rendering, which reduces the number of rays per pixel with color interpolation of a quadtree.  

 

1. GPU-Based Quadtree/Octree Interpolation 

 

As we construct a 2:1 balanced octree on the GPU, we also transplant quadtree/octree 

interpolation from the CPU to the GPU based on Kim et al. [10]. A 2:1 balanced quadtree/octree 

generates the limited number of local cell connectivity types called stencils [10]. Without 

rotational and reflection symmetry, a quadtree has 16 stencils (Fig. V-6), and an octree has 255 

stencils. In other words, we have 16 different cases in the quadtree interpolation and 255 

different cases in the octree interpolation. 
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Figure V-6. 16 stencils in a 2:1 balanced quadtree 

 

While interpolating samples in a quadtree/octree, samples to be interpolated (vertices of red 

dotted boxes and green dotted boxes in Fig. V-7) and their interpolation weights are different 

for each stencil. We compactly store local connectivity of the samples and interpolation weights 

in a 16-bit float texture 𝑇𝑤 with RG channels and the indices of lookup for 𝑇𝑤 in a 16-bit 

integer texture 𝑇𝑖. Based on 𝐺𝑝, 𝐺3, 𝑇𝑤, and 𝑇𝑖, we rapidly interpolate random color samples 

in a quadtree on the GPU (Fig. V-7 bottom). 

 

 
Figure V-7. Stencils in 2D (top) [10] and their quadtree interpolation on the GPU (bottom) 

 

Octree interpolation has only one higher dimension of quadtree interpolation; however, it 

degrades the performance on the GPU, especially during ray casting. The reason is that 255 

interpolation cases aggravate the divergent branching for the SIMD architecture of the GPU 

[59]. Accessing all the cells to be interpolated and reading the interpolation weights are also not 
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inexpensive operations. Multiple texture reads degrade the GPU performance even with the 

help of caching. In the worst-case, octree interpolation on empty cells with eight children 

significantly lowers the performance, while the resulting color is simply transparent. 

 

Therefore, we accelerate octree interpolation in the following ways. First, we reduced the 

number of texture-read operations by using the more compact interpolation weight table that 

prevents multiple access on the same cell. Furthermore, to avoid repeated unnecessary 

computation, we precompute the stencil type and a flag for the existence of interpolated color 

per cell on the GPU. These properties are not changed until the octree changes its topology or 

field and can avoid the aforementioned worst-case. Last, we store 𝑇𝑤  and 𝑇𝑖  as uniform 

buffer objects [47] that have smaller storage than texture objects, yet, provide faster read 

operation. After acceleration, we obtain the result of the octree interpolation 255 stencils with 

random colors, as illustrated in Figure V-8.  

 

 

Figure V-8. The octree interpolation for 255 stencils [10] on the GPU 
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2. Foveated Rendering Based on a Quadtree 

 

Unlike common 2D screens, the position of the eyes is fixed with respect to the screen in a VR 

environment. Since the view angles of the eyes have limits, the range of visible area in the 

screen is limited in VR, and the rendering cost can be reduced by ignoring the invisible area. 

By obtaining further physiological information from the eyes, more cost reduction is also 

possible. With the availability of an affordable gaze tracker, we can obtain a gaze point, at 

which a user looks in VR. Human eyes perceive sharply near the gaze point and vaguely far 

from the gaze point. This degree of perception forms layers from the gaze point, including the 

foveal region, the peripheral region, etc. By observing the physiological nature of the eyes, we 

reduce rendering computation in the screen space by rendering the focused area at a high 

resolution and the rest at a low resolution, a technique known as foveated rendering. Notice the 

number of rays (red dots) in the full resolution and in the screen space quadtree for the same 

area in Figure V-9. Foveated rendering greatly reduces the rendering cost, while providing the 

same rendering quality to users. 

 

 

Figure V-9. The ray casting in full resolution and quadtree-based foveated rendering 
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The core idea of our foveated rendering method is to generate several layers of a rendered screen 

and composite the layers for the final screen, as with Guenter et al. [9] (Fig. V-9). The main 

difference, however, is that we represent the screen space using a quadtree (the rightmost figure 

in Fig.V-9) and blend layers using quadtree interpolation. Based on the gaze point and the area 

ratio of each layer, we first create a heat map, which captures the normalized degree of 

perception for a human subject. Note that we can add multiply-focused points in a heat map 

and freely add additional regions of interest. Next, we determine the size of each layer and 

assign the depth to the layers based on the heat map (the depth of layers in Fig. V-9). We then 

refine or coarsen the screen space quadtree and perform ray casting in various resolutions based 

on the depth of layers from low to high-resolution, as shown in Figure V-10. Finally, for the 

final composite scene, we interpolate the rendering results with various resolutions by 

traversing the quadtree using screen space quadtree interpolation, as in Figure V-10. 

 

By adjusting the size of the layers and the maximum depth of the quadtree (i.e., the number of 

layers), we can find a balance between the rendering performance and quality. In our 

experiment, our quadtree-based foveated rendering is on average 2-4 times faster than full 

resolution rendering, without noticeable visual difference inside the VR environment (Fig. V-

11). 
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Figure V-10. The rendering and blending layers in different resolutions 

 

 

 

Figure V-11. The full resolution rendering and foveated rendering of the paintings 
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VI. Painting Interfaces and Volumetric Brush Models 

 

In 2D painting, brushes allow users to paint a large number of pixels. Along with the 

development of 2D digital painting, a large number of brushing tools have been developed. 

Most of these tools can be naturally generalized to 3D in our painting framework, and they can 

be immediately understood by 2D users who can paint a very large number of voxels. In this 

chapter, we introduce a few examples of such 2D brushes. We also describe volume-specific 

brush models and filters, which can provide a resolution control, support other shape 

representations, enhance depth perception, and neaten strokes. 

 

A. Painting Interfaces 

 

Our volume painting system supports conventional painting tools for users, such as color 

mixing, erasing, recoloring, and color blending. As a choice for painting user interfaces, we use 

off-the-shelf VR controllers, such as HTC Vive controllers [35]. When the controller is 

triggered, we record the location of the controller and sub-sample the location at a lower 

frequency (about 5Hz) to paint. Left-handed and right-handed horizontal touch-swipe changes 

the painting transparency and the brush radius for each. The brush radius is scaled by the zoom 

level. Thus, to have a larger brush, the user must zoom out. Trigger pressure also affects the 

brush radius. 

 

We implemented novel 3D color picking interfaces that allow the user to select a color using a 

left-handed controller while drawing (Figures VI-1 and VI-2). Note that existing color pickers 

often require a user to use both of their hands, and do not allow changing color during stroking. 

Our first color picker displays an RGB color cube, and the user can move the controller inside 
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the cube to change the brush color. As illustrated in Figure VI-1, using only one hand, a user 

can choose a yellowish color (left), rotate or translate the cube (middle), and change color while 

applying strokes at the same time (right). 

 

 

Figure VI-1. A one-handed color picker (RGB color cube) 

 

Since the user may have difficulty finding the proper color and its brightness level, our 

advanced color picker model is shaped as a cylinder in the HSV color space (Fig. VI-2). A user 

can choose the color projected on a disk, which is a horizontal cross section of the cylinder, and 

select the brightness of color by moving up or down inside the cylinder. If a user wants to 

choose a color from painting, a user may also directly sample the color from the painting by 

pointing at the desired color and pushing a grab button on the right-hand HMD controller.       

 

 

Figure VI-2. A one-handed color picker: HSV color cylinder 
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In addition to color picking, we provide users with several shortcuts for painting modes and 

options. A user can quickly choose their paint mode, such as paint, erase, recolor, or color mix 

by clicking the left/right side of a touchpad on the right-hand controller. However, as the 

number of painting modes increase, this approach takes time to choose the proper paint mode. 

Therefore, our system provides a quick menu for paint mode and options using the left-hand 

controller (Fig. IV-3). For navigating the canvas, painters use both hand controllers in such a 

way that they grab some points in the canvas and move them around. 

 

 

Figure VI-3. A quick menu for paint modes and options 
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B. Basic Volumetric Brush Models 

 

In 2D painting, users quickly apply brush strokes and react to immediate feedback. Modern 

CPUs can handle reasonably large brush sizes of up to a few hundred pixels at interactive rates, 

however, for a larger brush, interactivity begins to diminish. This can be quite restrictive to 

users because the user must tolerate the delay or switch to a smaller brush to fill in the large 

area. In 3D painting, this delay can be felt even at a much smaller brush scale. One solution is 

to use adaptive brush strokes, where we refine the grid only up to a resolution that is sufficient 

to represent the brush details. For a smaller brush, we further refine the adaptive grid, and for a 

larger brush, we stop at a certain resolution, which is roughly ten voxels corresponding to the 

brush radius. The sky in Figure VII-7 was painted with a very large brush (spanning about one 

kilometer in size), the effective radius of which in the finest resolution is millions of voxels. 

 

In digital painting, pigment deposition from the brush and mixing with the canvas color is a 

separate topic and is beyond the scope of this dissertation. Fortunately, color flow, deposition, 

and mixing methods developed in 2D digital painting applications are directly applicable to our 

3D volumetric painting. Here, we implement the popular per stroke maximum blending mode 

(i.e., “paint” mode in Tab. VI-1) found in painting applications [2] to extend 2D digital painting 

to 3D (Fig. VI-4). We denote t𝑟 as a certain point in run time and t𝑒 as the time when the 

input stroke ends. By exploiting a temporary RGBA buffer on the CPU-side, we update the 

color of the cells that intersect with the input stroke in a blank canvas (i.e., temporary RGBA 

buffer) and then merge color to the painted color (i.e., RGBA pool). This prevents the repeated 

accumulation of alpha at the cells that interest with more than two segments in the input stroke 

(black spheres in Fig. VI-5). Note that many other alternatives are available, such as physically-
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based pigment mixing using the Kubelka-Munk mode [90], RYB mixing [94], or advanced 

RGB space color mixing [43]. 

 

Figure VI-4. A flow of pigment deposition with color buffers 

 

2D brush stamping methods (another orthogonal topic) can also be directly applied to 3D 

painting. We currently support multiple stamp shapes: a sphere, a cylinder, a box, a cone, and 

procedural Perlin noise. For spherical stamping, our system supports the sweeping tool, 

resulting in tapered capsules. We place these tapered capsules to connect the two consecutive 

samples of a stroke path (the swept stroke algorithm in Diverdi [83], Fig. IV-5). 

 

 

Figure VI-5. An input stroke (top) and its swept stroke (bottom) [83] 

 

Based on Figure IV-4, we provide basic brush models, including paint, erase, recolor, and color 

mix. We implement a simple color mix method, another common 2D painting practice, as 

follows. At each sampling point, a brush can pick up color from the canvas and blend it with 
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the current brush color. As shown in Figure I-2 (b), surface painting systems like Tilt Brush 

[33] do not have color mixing between strokes. In contrast, color mix automatically generates 

spatially-varying colors, and this is a popular method used to generate color gradation in a 

painting, as shown in Figure I-2 (a). 

 

“Voxel dodge” and “voxel burn”, which can increase or decrease the brightness of voxels, work 

like recoloring. For the voxels intersected with a brush stamp, we pick up their original color, 

update the color by increasing or decreasing the value in HSV color space, and overwrite the 

original color with the updated one. An interesting point observed during our experiments is 

that users frequently employ voxel dodge and voxel burn to depict highlight, shadow, and shade, 

while both brushes were originally introduced to emphasize photos in 2D. 

 

 

 

Figure VI-6. A flow of diffusion with color buffers 

 

Using the same color buffers shown in Figure VI-4, we implement other basic brush models 

based on diffusion (Fig. VI-6), such as voxel blur or voxel smudge. Note that copy at the time 

𝑡𝑟1, diffuse at the 𝑡𝑟2, and overwrite at the time 𝑡𝑟3 transpire in order. The voxel blur and 

smudge brushes spread color using tree adjustment on octrees. The RGBA pool on the CPU-

side preserves painted color as input for the diffusion step. The temporary RGBA buffer stores 
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diffused color of cells. At each diffusion step, the output color in the temporary RGBA buffer 

is overwritten to the RGBA pool. When users draw a stroke with a voxel blur brush (Fig. VI-

7), the weighted one-step diffusion is applied to each cell with their nearest six neighbors, as 

shown in Equation 6.1. The diffused RGB 𝐶𝑑 and alpha 𝐴𝑑 of a cell can be obtained from 

the averaged RGB/alpha value of the cell (𝐶𝑝, 𝐴𝑝) and six neighbors (𝐶𝑛, 𝐴𝑛) along +/- XYZ 

direction, where D is the diffusion coefficient.  

 

𝐴𝑑 = 𝐴𝑝 + 𝐷 × 𝛴𝑛=1
6 (𝐴𝑛 − 𝐴𝑝) 

𝐶𝑑 =
𝐶𝑝 + 𝐷 × 𝛴𝑛=1

6 (𝐶𝑛 ∗ 𝐴𝑛 − 𝐶𝑝 ∗ 𝐴𝑝)

𝐴𝑑
 

 

(6.1) 

 

If we allow only 3-neighbor diffusion in the direction of a stroke, we obtain voxel smudge (Fig. 

IV-8). For rendering, our system decides between the color in the RGBA pool and color in the 

temporary RGBA buffer (choosing at 𝑡𝑟 in Fig. VI-6). In the middle of drawing a stroke, we 

render color in the temporary RGBA buffer if the diffused alpha is not zero; otherwise, we 

render color in the RGBA pool. 
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Figure VI-7. The volume strokes before/after applying voxel blur 

 

Figure VI-8. The volume strokes before/after applying voxel smudge 

 

Table VI-1. Color blending operations and color merging methods of basic brush models 
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C. Volume-specific Brush Models and Filters 

 

1. Voxel Resolution Control 

 

In our system, the brush size determines tree depth so that users do not have to choose the size 

of an individual voxel (Chapter VI.B). To change the voxel size in painted strokes, users 

typically adjust the zoom setting to decrease or increase the brush size and then paint over 

strokes. Although this is a natural workflow of controlling voxel size, more advanced resolution 

control tools are desired to refine/coarsen voxels or control resolution variations over a large 

area. We introduce such tools for 3D painting, including voxel melt, voxel merge, mosaic, and 

view-dependent adjustment. We adopt various strategies for increasing/decreasing the size of 

voxels based on user behavior. A user develops their artwork from a rough sketch to a detailed 

painting and locally retouches their painting to complete the painting; in this case, only a small 

number of voxels is required to increase resolution. On the other hand, a user may decrease the 

resolution of many voxels at once when the voxel memory reaches its limit. By observing user 

behavior, we introduce novel brush models for generating finer voxels, as in Chapter VI.C.1.a, 

and filters for merging voxels in Chapter VI.C.1.b. 

 

a. Voxel-Refining Brush Model 

 

Voxel melt is a voxel-refining brush that smooths paintings by splitting large voxels into smaller 

voxels and coloring split voxels. Like voxel blur and voxel smudge, voxel melt also exploits 

diffusing color. One difference is that voxel melt composes the final color from the original 

color based on the alpha validity test, which decides the existence of color. For the alpha 

validity test, we preserve the alpha channel of all the cells intersected with the voxel melt brush 
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before color diffusion 𝑡𝑠, in the temporary alpha buffer (Fig. VI-9). We then diffuse the color 

using the RGBA pool and the temporary RGBA buffer as with voxel blur and voxel smudge. 

Next, we perform the alpha validity test that compares the original alpha and the diffused alpha 

reading from the RGBA pool and the temporary alpha buffer. If the diffused alpha of the cells 

is less than the user-specified threshold of the original alpha, we erase the color of the cell. If 

not, we restore the alpha from the temporary RGBA buffer after finishing a segment (𝑡𝑒). 

 

 

Figure VI-9. A flow of diffusion and alpha test with color buffers 

 

Simultaneously, our system determines whether the cells may be adjusted by computing the 

desired size of the cell in a view-dependent manner. In the tree adjustment step (Fig. VI-9), we 

merge the cells if all the siblings of an invalid cell have no color. In case of valid cells, we split 

the voxels, which are bigger than the desired size of the voxels. After generating children of 

valid cells, we repeat the color diffusion and alpha validity test without further tree adjustment. 

In Figure VI-10, we show the example case when a voxel melt brush is desired. A user can 

smooth the boxy head of an octopus by applying the voxel melt brush. In a similar way, we can 

design a swollen brush model based on the maximum blending for each diffusion step and color 

validity test with inverse conditions. 
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Figure VI-10. Before/after applying voxel melt on the octopus head 

 

b. Voxel Merging Filters 

 

One solution for decreasing voxel resolution is to regulate the maximum depth of cells in the 

octree from the beginning. Alternatively, we provide small user-defined areas called rooms for 

an intended appreciation view of the painting (yellow boxes in Fig. VI-11 left). The detailed 

painting inside the rooms corresponds to foreground objects, and the remainder of the scene 

serves as a background. When a user defines a room with scale, space, and location, the 

maximum voxel resolution of entire cells varies based on the distance or visibility from the 

rooms. Multiple rooms can be defined as well by computing the maximum voxel resolution 

from the closest room. By defining rooms, users can roughly make a memory plan for their 

painting and navigate quickly in a large 3D painting. In addition, rooms support a fast startup 

of 3D painting, thanks to lightweight tree adjustment. A user already hints where they make 

painting details, therefore, the difference between the size of pre-refined voxels in the rooms 

and the desired voxels to be painted is small. 
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Figure VI-11. Example of a painting with two rooms ©  2019 Jisu Kim 

 

Figure VI-12. An application of voxel mosaic to a painting example 

 

(b) Level=20 

Memory=28.95% 

(a) Level=24 

Memory=100% 

(c) Level=18 

Memory=14.67% 

A painting example ©  2018 Jini Kwon 
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Another filter used to restrict the maximum depth of the cell during painting is called voxel 

mosaic. Voxel mosaic merges voxels in a painting (Fig. VI-12 top) with a preview at different 

viewpoints (Fig. VI-12 bottom). Thanks to octree mipmapping, the expected results of voxel 

mosaic are interactively rendered by limiting the maximum depth in tree traversal on the GPU. 

Once a user specifies the smallest size (or the maximum depth) of voxels in a region of interest, 

as well as a blending mode (the maximum alpha/the average alpha blending), voxels smaller 

than the user-specified size are merged with the blending mode. Voxel mosaic saves multiple 

and expensive topological changes in the octree when voxel merge is expensive and irreversible. 

As illustrated in Figure VI-12, a user can also make sure that the intended details of the painting 

do not disappear after applying the voxel mosaic. While preserving a similar appearance, a user 

can reduce 71.05% of memory consumption within minutes [Fig. VI-12 (a) and (b)]. 

 

 

Figure VI-13. The color-encoded cross section of a volumetric stroke 

 

However, simply restricting the depth is not enough to merge voxels efficiently in some cases. 

In Figure VI-13, we visualize the cross section of a volumetric stroke, coloring the area with 

opaque color as blue and the area without color as red. Like red voxels in the middle of the blue 

voxels, the swept stroke algorithm (Fig. VI-5) may produce refined voxels inside a stroke. Some 

cells can be inside one segment but outside another. While adjusting the octree, the intersection 
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status of these cells is overwritten and the cells are refined as outside. Or while elaborating 

artwork, small and opaque voxels become an inner part of the painting, or residual voxels 

remain after being erased. These types of voxels are undetectable to the naked eye or voxel 

merging filters above and may gradually increase over time. We address the problem by 

filtering voxels with a user-specified iso-value, such as 3D erosion or dilation (Fig. VI-14). 

Based on the distance field generated from the painting, we classify voxels whether they are 

inside (blue in Fig. VI-14) or outside (red in Fig. VI-14) of the painting with respect to the iso-

values. If the outside voxels have colorless siblings or the inside voxels have siblings with the 

same color, such voxels are merged. With different iso-values, users can decide how much 

detail they preserve in the painting (yellow circles in Fig. VI-15) and save memory.        

 

 

Figure VI-14. The cross section of “Floating Island” and its color-encoded distance field  

with different iso-values 

 

Figure VI-15. Results and memory ratio after merging voxels with different iso-values 

(a) RGBA Color (b) iso-value = 0.2 (c) iso-value = 0 (d) iso-value = -0.2 

(a) iso-value = 0.2 

Memory = 25.15% 
(b) iso-value = 0 

Memory = 55.26% 
(c) iso-value = 0.2 

Memory = 80.11% 
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2. Hybrid 3D Painting and Brush Models 

 

In 3D painting, each painting method has its own advantage or disadvantage over the creation 

process, painting material, shape support, and user-customizable resource control. If different 

choices on painting methods are available to users, they cannot only express various styles but 

also manage the achievability of their design plan. For example, depending on memory budget 

or desired painting quality, a user may choose to either paint various materials on a volumetric 

canvas or paint a volumetric hulls stroke with texture maps. Another example is that users can 

provide an interesting view to their spectators with a semi-transparent volumetric brush (e.g., 

looking outward from inside smoke) or want to restrict viewpoints, in some cases, to save 

memory (e.g., looking outward from inside a rock). For these reasons, we provide a hybrid 3D 

painting that combines both surface and volumetric paintings for general 3D painting. With a 

hybrid system, a user can paint both volumetric and surface strokes in one scene (Fig. VI-16). 

 

 

Figure VI-16. Example of strokes using hybrid 3D painting 

 

Painting and rendering engines are independent for two different methods in hybrid 3D painting. 

One application of hybrid 3D painting is to use a surface painting engine for fast sketching and 

use volumetric painting for color painting (Fig. VI-17). Thanks to inexpensive mesh 
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generations and shading in the surface painting engine, a user may quickly sketch with depth 

perception. During the painting phase, a user can paint color in the 3D space without occlusion 

or z-fighting. Since rendering engines are separate, a user can exploit two painting engines like 

two different layers. 

 

 

Figure VI-17. Fast sketching with surface painting  

and color painting with volumetric painting 

 

To take advantage of the interaction between the two painting methods, we invent a smooth 

volume brush, which postpones the creation of a volume stroke like a 3D printing pen (Fig. VI-

18). In volumetric painting, a user experiences difficulty in drawing a straight line or a smooth 

curve, as the volumetric brush can easily create squiggles due to imprecise hand control and 

unstable controller tracking (Fig. VI-20 left and Fig. VI-20 left). Moreover, the position change 

in volume segments during painting may lower the performance due to frequent modification 

on octrees. We address this problem by using the smooth volume brush. 
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Figure VI-18. A modeling of a smooth volume brush 

 

A smooth volume brush first generates 3D cylindrical shell segments from the user input to 

visualize the positions of segments using a surface painting engine (unset 3D cylinder shell in 

Fig. VI-18). In this stage, a user may modify the position of the 3D shell segments by 

meticulously moving the input controller. 3D shell segments are linearly interpolated by 

translation between the starting point of the first segment and the end point of the last segment. 

Similar to the solidification progress, the ratio of the delayed movement to the interpolated 

position is inversely proportional to the elapsed time from generation. That is, the older 

segments move shorter than the new ones. After a user-specified period passes, all the 3D shell 

segments are completely solidified into 3D volume segments using the volume painting engine 

(set 3D volume in Fig. VI-18). Thus, a user can control the solidification progress by specifying 

the scale of the movement and the time to complete solidification. 
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Figure VI-19. The actual use of a smooth volume brush 

 

 

Figure VI-20. The comparison on paintings without/with a smooth volume brush 

 

 

Figure VI-21. The zoomed comparison on paintings without/with a smooth volume brush 
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As illustrated in Figure VI-20 right and Figure VI-21 right, the smooth volume brush model 

aids quick painting with straight/curved lines for users. A smooth volume brush model is simple 

enough for novice users in that it provides a "squeezing paint" interface and an automatic stroke 

revision with simple 3D geometric shells. This reduces squiggles due to imprecise hand control 

and unstable controller tracking (circle in Fig. VI-21 left) and increases the painting quality 

(Fig. VI-21 right). In 3D painting, stroke alignment (e.g., two crossed lines meeting at a point 

or two parallel lines) is more difficult than in 2D painting due to the lack of depth perception. 

With a smooth volume brush, users would rather align their strokes using a preview of the 3D 

cylinder shell than repeatedly draw lines at similar locations multiple times. As a result, users 

can easily match radial lines and spiral lines of the spider web at the intersection points in Figure 

VI-21. 
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VII. Results and Discussion 

 

We use C++ programming language with Visual Studio 2017, OpenGL 4.3, OpenVR, and the 

Grizzly library [10] under Windows 10 OS to implement our system. Our hardware setup 

includes Nvidia GTX Titan Xp GPU and an Intel Core i7-4790 CPU with 16GB RAM for 

rendering computation and HTC Vive for interfacing immersive and personal VR environments. 

 

A. Painting Results 

 

We invited digital painting users and novice users to produce volumetric paintings. The “Island” 

(Fig. VII-3) represents a good example of an extension of 2D painting to 3D. The user painted 

the scene with three distinct locations and a large sky background. Semi-transparent objects, 

such as clouds and smoke, and other detailed objects like wires and lamb, also show the benefits 

of our system. The user uses a recolor mode and a color mix mode for adding rough shades on 

buildings and on the island. Similar to Island, the user explores a much larger painting space in 

“Flying Dragons” (Fig. VII-7). Rougher and more colorful shades on the dragon’s body-surface 

were used, however, fine details on the eyes, teeth, and horns were maintained. 

 

Our system also shows development possibilities for serious 3D digital painting tools. Each 

image of “A Sneaker” (Fig. VII-1) seems like the results of a 2D digital painting, except that 

the painting can be appreciated from any viewpoint. Another example with various sizes of 

objects is Figure 14. In “Spring Concert” (Fig. VII-2), the user not only produced a digital 

painting, but also developed a story with a full 3D scene, including retouched chipmunks, tiny 

bees with a detailed score, and a translucent spring haze. From this aspect, we anticipate that 

many 2D digital users may extend their existing techniques to 3D. As with Spring Concert, the 
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user creates a funny story with a twist exploiting 3D space in “A Detective Dog and A Turtle 

Killer” (Fig. VII-4). 

 

Novice users who do not have any experience with 3D modeling can rapidly create their 3D 

artwork using our volumetric brush models (Table VII-1). Novice users have difficulty finding 

proper colors to express brightness or shadow because they typically do not have training 

experience that strengthens their color sensibility. Using voxel dodge/voxel burn brushes, 

novice users can easily paint highlights, shading, or shadows without picking colors in “An Eye” 

(Fig. VII-10). “A Spider” (Fig.VII-11) only took a total of 15 minutes to finish using the smooth 

volume brush without requiring heavy training on the tools. Painting times vary according to 

an individual’s painting style, the fineness and scale of the artwork, and interval times for 

changes in the painting plan. However, most of the users update 29𝐾 −  287𝐾 of voxels per 

minute. 

 

Table VII-1. Memory usage, the number of voxels, and painting time of artwork 
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Interestingly, the users remarked that they needed to change the way they had previously 

perceived painting and that they needed to step away from the familiarity of perspectives on the 

2D canvas. The second part of the remark is very interesting, as it appears to be the result of 

being able to paint on a very large 3D canvas. We believe future explorations with users will 

reveal how perspectives can be painted on 3D canvases. For example, recoloring remote 

mountains from a foreground location would be an interesting approach. 
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Figure VII-1. "A Sneaker" from various viewpoints ©  2018 Daichi Ito 

 

 

Figure VII-2. "Spring Concert" from various viewpoints ©  2018 Jini Kwon 
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Figure VII-3. "Island" from various viewpoints ©  2018 Daichi Ito 

 

Figure VII-4. "A Turtle Killer" from various viewpoints ©  2019 Jini Kwon 
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Figure VII-5. "Nature" from various viewpoints ©  2018 Jini Kwon 

 

 

Figure VII-6. "Floating Island" from various viewpoints ©  2017 Jaehyun Kim 
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Figure VII-7. "Flying Dragons" from various viewpoints ©  2017 Yunhyeong Kim 

 

 

Figure VII-8. "Snow Mountain" from various viewpoints ©  2017 Daeun Song 
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Figure VII-9. "Cupcake Monsters" from various viewpoints ©  2019 Daeun Song 

 

 

Figure VII-10. "An Eye" from various viewpoints ©  2019 Yunhyeong Kim 

 

 

Figure VII-11. "A Spider" from various viewpoints ©  2019 Yunhyeong Kim 
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B. Qualitative Comparisons of Using Dynamic Octree 

 

For volumetric painting, we must locate parent cells that contain a brush, and from these parents 

(not from roots) we then refine, coarsen, or compute blending. For rendering, we visit cells 

from a child to its neighbor using our novel memory-efficient neighbor representation and 

dynamic and incremental tree update strategy. Thus, volumetric painting application does not 

require traversal from a root, and shallow tree benefits [4], [48] are minimal. In addition, 

shallow N-trees would require selecting the depth and the tile size N (per level or cell) at an 

early stage. This priority requirement is difficult for users to understand and modify at a later 

stage. We claim that the simple octree, which has uniform adaptivity and painting quality in the 

canvas regardless of zoom levels, is a more viable approach to volume painting. 

 

Incremental dynamic update, while maintaining high rendering frame rates, is essential for 

volume painting, yet, not a key requirement in existing dynamic tree update techniques. In 

simulation problems [79], [81], trees are updated globally as they are often adjusted based on 

velocity, smoke, proximity to the liquid surface, or details on the liquid surface. Moreover, 

rendering is not required, and the frame rate is less demanding than the VR painting applications. 

In other studies [4], [14], heavy updating was allowed in a GPU-only dynamic tree, where the 

CPU cannot be involved in painting. Because Octomap [5] does not require immediate visual 

feedback, a low latency visualization method has not been studied, thus, Octomap cannot be 

used for volume painting. 
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C. Limitations and Future Work 

 

While painting a large stroke over a detailed complex area, a large number of octree cells should 

be deleted. In this case, while the frame rate is still constant, the delay can be quite large. An 

indicator would notify the users of a heavy-weight operation. Our system may also eventually 

suffer from out-of-memory. Although the memory size available in modern GPUs is increasing 

over time, users can indeed consume all the GPU memory. This can be greatly relieved by using 

the topology cleaning operations introduced in Chapter VI.C.1.b., however, more memory plan-

ahead interfaces would be required. Because users spend a long time wearing a VR headset, the 

weight of the headset is currently a dominating discomfort factor. One way to reduce such 

discomfort is to move some tasks, such as recoloring, from the VR to a conventional 2D monitor. 

 

Error analysis suggests that ray casting can be performed in the half-float precision of 𝜀 =
1

1024
. 

Therefore, we plan to examine the performance and accuracy implications of using half-

precision for ray casting and tracing applications. In color blending, the distance of the ray 

inside the cell and the alpha value are used to compute the opacity of a color. Currently, color 

blending formulas with two independent variables show sudden changes in opacity near 0 and 

1. By analyzing the independent variable patterns, in the future, we can model more accurate 

color blending formulas at a high resolution.   

 

In digital painting, having multiple layers is indispensable to avoid an unintended touch to 

finished parts and apply various effects per layer. The support for multiple volumetric layers 

will be a challenging topic for future research. Currently, a user must begin painting on an 

empty canvas. Constructing 3D adaptive volumes from uniform 3D volumes, voxelization with 

polygonal models [15], [21], [62], [63], [72], or 3D reconstruction and voxelization with 
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multiple 2D images [64], [69] can reduce user workload and support a fast start-up of 3D 

painting. Editing functionality, like undo/redo, copy/paste, select, and history look-up, is also 

essential for users to reduce work time. For undo/redo operations, one possible solution is to 

first provide the rendering results of the editing tools and update octree after users confirm the 

operation. For example, if we store texture blocks before/after applying strokes, we can show 

the rendering results of an undo/redo without changing the octree on the CPU. For selection 

tools, choosing voxels based on various criteria in addition to color expands user’s options [47], 

[80]. In this case, we can support volume segmentation by storing each segmented volume to 

different layers or allocating a new scalar field pool for labels of segmentation.    

 

Our system is equipped with several basic brush models: volume-specific brush models, filters, 

and brush models in hybrid 3D painting. To increase the quality of painting and support various 

styles, more volumetric brush models and filters should be further explored. Typically, many 

brushes and filters in 2D painting are easily extended to 3D without significant changes in 

modeling designs. However, some tools can be computationally expensive in 3D painting if we 

directly reuse their 2D modeling designs, due to heavy tree adjustment. Therefore, in the future 

work, we would like to study lightweight 3D brushes and filters for such tools. Similar to 

proposed approaches in Chapter IV and Chapter VI, we can adopt incremental or ‘rendering 

first/update later’ strategies for lightweight 3D tools; for example, a color-fill operation with 

3D contouring exploits distance fields to decide the interior and exterior of the painting, and 

incrementally update the color of voxels near the cursor. As with updating color, various 

physical properties, such as gravity, viscosity, or heat, locally simulated brushes and advanced 

brush models for the complex design of physical properties [67] might result in interesting 

painting styles. More diverse volumetric brush models, such as stylized brush models, including 

watercolor [17] and Impasto [90], and sculpting brush models, including 3D warp brush [93] 

and procedural brushes [68], will be interesting ways to create various styles of 3D digital art. 
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Various styles of rendering [20], including isosurface rendering based on our GPU-side octree 

interpolation, will be part of our future work as well.    

 

Finally, we discussed a volumetric painting system and its brush models in the scope of a new 

medium for 3D painting. Other than 3D painting, many research areas (e.g. modeling [5], [60], 

[88], film and game design [19], [23], [85], simulation [30], [48], [79], robot navigation [5], 

scientific visualization [12], [13], [27], [36], 3D printing [79], and medical imaging [27], to 

name a few) employ 3D volumes for representing data. Our system provides both authoring 

and visualizing tools for 3D volumes, therefore applying volumetric painting system to those 

areas would be interesting.  
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VIII. Conclusions 

 

In this dissertation, we proposed the first volumetric painting system that can paint volumetric 

strokes, mix colors, recolor existing strokes, erase, and depict semi-transparency at a very large 

scale and with high details in VR. To achieve this goal, we used octree with high-depth and 

performed ray casting to render the volume. We used the CPU to implement dynamic tree 

adjustment and proposed low latency update methods that keep the rendering frame rate highly 

interactive. We showed that small staged blocks and neighbor computation masks maintain the 

system performance, while the latency and artifacts were well suppressed. To reduce the 

memory footprint, we showed that three neighbors per cell are sufficient for efficient neighbor 

access in an octree. For rendering, we provided a ray traversal error bound using posterior error 

analysis and verified the bound with experiments. To accelerate rendering, we extended the 

CPU-side quadtree/octree interpolation to the GPU and devised quadtree-based foveated 

rendering. 

 

For 3D painting for non-expert individuals with various style support, we extended common 

2D brushes to 3D, such as paint, erase, recolor, color mix, blur, smudge, dodge, and burn. We 

also proposed volume-specific brushes and filters, which reduces repetitive painting works: 

voxel melt, room, voxel mosaic, and voxel merge based on iso-values to control the resolution 

of many voxels and user-driven memory management. We proposed other volume-specific 

brush models based on the hybrid 3D painting system, which is a combination of surface 

painting and volumetric painting. Hybrid brush models solve problems of depth perception [37] 

and stroke neatening in volumetric painting. 
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국문초록 

가상현실 기반 고해상도 3차원 페인팅과 볼륨 브러시 모델 연구 

 

김여진 

컴퓨터공학과 

이화여자대학교 대학원 

 

최근 들어 가상현실(VR) 기술이 발전함에 따라 2차원 디지털 페인팅이 3차원 공

간으로 확장되고 있다. VR기반의 3차원 페인팅 시스템들이 잇따라 등장하면서, 아티

스트들이 점차 VR 페인팅을 하나의 예술 장르로 받아들이고 있는 추세이다. 그러나 

현재의 VR 페인팅 시스템은 모두 표면기반 페인팅 시스템으로, 사용자가 3차원 공간

에 그린 경로를 따라 3차원 볼륨이 아닌 2차원 평면 기하만을 생성한다. 표면기반 페

인팅 시스템에서는 그려진 스트로크들은 서로 합치기가 힘들며, 사용자가 실제 페인

팅을 하듯이 색상을 칠하거나, 재색칠 하거나, 색상을 섞거나, 혹은 불투명한 색상을 

칠하는 것이 매우 어렵다. 뿐만 아니라 3차원 디지털 아트라는 거시적인 관점에서도 

이 문제를 조명해보자면, 오랫동안 다양한 종류의 3차원 저작 도구들이 연구되어 왔

음에도 불구하고 3차원 공간 자체에 디지털 페인팅을 할 수 있는 프로그램은 부재한 

상황이다. 물론 기존의 3차원 저작 도구를 이용하면 복셀 도트 디자인, 복잡한 3차원 

모델 디자인 등과 같은 특정한 스타일의 3차원 디지털 아트 작품을 만들 수 있다. 특

히 3차원 모델링 분야에서, 사용자가 저작 도구를 이용하여 정교하고 사실적인 3차원 

아트 작품도 만드는 것도 가능하다. 하지만 기존 3차원 저작 도구들은 여러 단계의 

워크플로우를 거치는 전문적인 기술을 요구하거나, 팀 단위의 저작 활동을 필요로 하

거나, 혹은 모양, 표현, 규모, 사용자 인터페이스 측면에서의 한계점 때문에 3차원 디

지털 아트의 확장성을 떨어뜨린다. 
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  본 학위 논문에서는 새로운 3차원 디지털 아트의 한 장르로써, 2차원 디지털 페인

팅을 3차원 디지털 페인팅으로 확장하는 가상현실 기반의 고해상도 볼륨 페인팅 시스

템을 제안한다. 제안하는 시스템은 동적 팔진 트리 기반의 페인팅 및 렌더링 시스템

으로, 각 프로세서의 하드웨어적 특성을 반영하여 CPU 기반 팔진 트리는 팔진 트리 

모델링을, GPU 기반 팔진 트리에서는 볼륨 렌더링을 위해 사용한다. 입력한 스트로크

에 대해 CPU 상에서 팔진 트리는 동적으로 노드를 생성/삭제하며, CPU 상 팔진 트

리 구조의 변화를 GPU 상 팔진 트리 구조에 점진적으로 업데이트 한다. GPU 상 팔

진 트리에서 광선투사 시 상수시간의 이웃 노드 접근을 보장하기위해, 형식적으로 간

결하면서도 효율적으로 메모리를 사용하는 3-이웃 연결성을 새롭게 제시한다. 나아

가 GPU 상에서의 3-이웃 계산량을 줄일 수 있는 컬링 마스크를 CPU상에서 계산하

여 GPU쪽으로 업로드하는 기법에 대해서도 기술한다. 이 과정에서 렌더링 프레임 률

과 저 지연 업데이트를 절충하는 업데이트 성능을 실험적으로 검증하며, 업데이트가 

지연될 시 일어날 수 있는 잘못된 시각적 피드백을 줄이는 기법을 제시한다. 렌더링 

측면에서는, 고해상도 팔진 트리에서 광선 투사시 발생하는 수치 오차 문제를 해결하

기 위해 셀 국부 좌표계 기법을 제시하였다. 또한 광선 투사 시 수치 오차가 전파되

는 과정을 분석하여 제시한 기법이 이론적인 오차범위에서 정밀함을 보였으며, 실험

적으로도 이를 입증하였다. 추가적으로 렌더링 속도를 가속화하기 위하여 CPU기반의 

사진 트리/팔진 트리의 보간을 GPU기반의 보간으로 확장하고, 사진 트리 기반의 포

비티드 렌더링(Foveated rendering)기법을 기술하였다. 

  또한 본 논문에서는 3차원 디지털 페인팅 측면에서, 많은 복셀을 동시에 다루는 3

차원 페인트 브러시 모델을 제안한다. 우선, 2차원 디지털 페인팅에서 주로 사용되는 

칠하기, 지우기, 재색칠, 색 섞기, 블러, 스머지 등과 같은 2차원 브러시 모델을 고해

상도 팔진트리에서 사용할 수 있는 브러시 모델로 재구성하였다. 두 번째로, 3차원 디

지털 페인팅에서 발생하는 고유한 문제들을 다루는 볼륨 특이적 브러시 모델을 제안

하였다.  3차원 볼륨 페인팅에서 자주 일어나는 작업 중 하나인 생성된 복셀의 해상

도를 조절하는 반복작업을 줄이기 위해, 페인팅 디테일을 조정하면서도 메모리 관리

를 할 수 있도록 돕는 복셀 해상도 조절 도구들을 모델링한다. 복셀 해상도를 증가시
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키는 모델로는, 색상과 복셀 해상도의 확산을 기반으로 하는 복셀 멜트 브러시를 모

델링한다. 복셀 멜트는 페인팅의 디테일을 유지하면서도, 급격한 복셀 해상도 변화를 

완만하게 한다. 또한, 사용자가 복잡한 공학지식이 없어도 사용할 수 있는 룸, 복셀 

모자이크, 등위값 기반 복셀 머지와 같은 복셀 해상도를 낮추는 필터들을 모델링한다. 

마지막으로, 서피스 기반의 페인팅 엔진과 볼륨 기반의 페인팅 엔진 결합을 처음으로 

시도하여, 볼륨 페인팅에서의 깊이 감각 문제를 해결하고 불안정한 입력에 대해 직선/

곡선을 그릴 수 있도록 하는 하이브리드 브러시 모델들을 제안한다. 

 


