
이화여자대학교 대학원

2018학년도

박사학위 청구논문

High-Resolution 3D Painting

in Virtual Reality

with Volumetric Brush Models

컴 퓨 터 공 학 과

Yeojin Kim

2019

High-Resolution 3D Painting

in Virtual Reality

with Volumetric Brush Models

이 논문을 박사학위 논문으로 제출함

2019 년 7 월

이화여자대학교 대학원

컴 퓨 터 공 학 과 Yeojin Kim

Yeojin Kim 의 박사학위 논문을 인준함

지도교수 김 영 준 ____

심사위원 이 상 호 ____

 민 동 보 ____

오 유 란 ____

 김 병 문 ____

 김 영 준 ____

이화여자대학교 대학원

i

Table of Contents

I. Introduction…………………………..…...…………………….……….… 1

A. Background.…………………………………………………………… 1

B. Research Objectives and Contributions………………………………... 6

C. Organization…………………………………………………………… 9

II. Related Work…….………….…………………………….…………….. 10

A. 3D Painting System.…………………………………………… 10

1. 3D Modeling and Texture Authoring……………..……………….. 10

2. Surface Painting……………………………………….…………... 12

3. Voxel Editing and Volumetric Painting…...………….…………… 13

B. 3D Adaptive Spatial Grids………………….………………....…..…... 15

1. Octree Representation……………………………………………... 15

2. Dynamic Octree Update…………………………………………… 16

C. GPU-Based Ray Casting on Adaptive Grids…….……………………. 17

D. Volumetric Brush Models……………………….……..……………… 19

III. System Overview……………………..………………………………..... 22

IV. Dynamic Octree Representation…………………..………………….... 24

A. Dynamic Octree Representation on a CPU...…………………………. 25

B. Dynamic Octree Representation on a GPU......………...…...………… 26

C. GPU-Based 3-Neighbor Computation….……………………..……… 28

D. Dynamic Octree Update……………………………………………..... 30

1. Incremental Octree Adjustment on a CPU……………………....... 30

2. Block-Based Staging and the GPU-Side Octree Update…………. 31

3. Neighbor Update with Neighbor Computation Mask………...…… 36

4. Immediate Visual Feedback………………………….………......... 39

ii

V. Ray Casting and Color Interpolation on the GPU-Side Octree….… 42

A. A Cell-Local Coordinate System………………………………..….. 42

1. Ray Traversal with the Cell-Local Coordinate System………… 44

2. Accuracy Analysis……………………………………………..….. 45

B. Rendering Acceleration Based on Color Interpolation...……….....… 49

1. GPU-Based Quadtree/Octree Interpolation.………………......… 49

2. Foveated Rendering Based on a Quadtree...………………………. 52

VI. Painting Interfaces and Volumetric Brush Models……………… 55

A. Painting Interfaces.…...………………………………..…………… 55

B. Basic Volumetric Brush Models………………………....…………… 58

C. Volume-Specific Brush Models and Filters……….…….…...……….. 63

1. Voxel Resolution Control……….………………….…….……….. 63

a. Voxel-Refining Brush Model...…………….….………….. 63

b. Voxel Merging Filters………………..…….….………….. 65

2. Hybrid 3D Painting and Brush Models….………….…….……….. 69

VII. Results and Discussion……………………………………………… 74

A. Painting Results….…………………………………………………… 74

B. Qualitative Comparisons of Using Dynamic Octree………………..… 82

C. Limitations and Future Work………………………...……………… 83

VIII. Conclusions……...……………………………………..……………… 86

Bibliography..………………….……………………..……….………. 87

Abstract (in Korean) ………………………………………………. 97

iii

List of Figures

Figure I-1. A transition from a 2D canvas to a 3D canvas.………….…..……... 1

Figure I-2. Comparison of mixed strokes between two different painting systems...

……………………………………………………………………………………. 2

Figure I-3. Comparison of paintings between two different painting systems…… 2

Figure I-4. Sketch-based modeling [75]……….………..………………………... 4

Figure I-5. Implicit 3D canvas [44]……….……..…………….…..……………... 4

Figure I-6. Examples of surface painting (left and middle) and voxel painting (right).

……..…………………………………...……………….…..……………... 5

Figure II-1. Various coloring methods for painting on 3D models….…………... 11

Figure II-2. Painting on isosurfaces of the underlying 3D model [44]………….. 11

Figure II-3. Nontrivial stroke merging problems in surface painting [29]………. 12

Figure II-4. Uniform 3D textures in voxel editing applications…..……………... 14

Figure II-5. Cloud painting [16]…………………………………..……………... 14

Figure II-6. Interfaces in the voxel editing applications……...……..….……….. 21

Figure III-1. Simultaneous read/write access to the octrees……….…………….. 22

Figure III-2. A flow of CPU-side threads………………..………..…………….. 23

Figure IV-1. A dynamic octree on the CPU……………...………..………..…… 27

Figure IV-2. A dynamic octree on the GPU……………..….……..…………….. 27

Figure IV-3. The minimum number of neighbor connectivity for a cell….…….. 28

Figure IV-4. Incremental octree adjustment on the CPU…………….………….. 31

Figure IV-5. The blocks for updating color at Frame 𝑡1 and 𝑡2..........………… 32

Figure IV-6. Block-based update with a neighbor mask.........…….....………..… 34

Figure IV-7. The cases of the 𝐺3 update after adjusting a cell.…......………….. 37

iv

Figure IV-8. The performance results with staged blocks of different sizes…..... 38

Figure IV-9. The performance results with neighbor computation masks of different

sizes ……………………………………………………………………………... 38

Figure IV-10. The CPU-side staging time with/without aggressive staging…...... 40

Figure IV-11. The frames with corruptions for the same stroke……………...... 41

Figure V-1. Example of 24-level painting with color-encoded depth.................... 42

Figure V-2. A 2D illustration of ray casting on adaptive grids…...……............... 44

Figure V-3. A ray traversal using cell-local coordinate system……………......... 47

Figure V-4. The error in ray angle (degrees)……………........……………......... 47

Figure V-5. The comparison on distortion with two coordinate systems……..… 48

Figure V-6. 16 stencils in a 2:1 balanced quadtree [10]….……………….…...… 50

Figure V-7. Stencils in 2D (top) [10] and their quadtree interpolation on the GPU

(bottom)……………………………….………………………………………… 50

Figure V-8. The octree interpolation for 255 stencils [10] on the GPU…….....… 51

Figure V-9. The ray casting in full resolution and quadtree-based foveated rendering

……………………………………………….………………………………...… 52

Figure V-10. The rendering and blending layers in different resolutions….......... 54

Figure V-11. The full resolution rendering and foveated rendering of the paintings...

……….....……...……………………………………………………………...… 54

Figure VI-1. A one-handed color picker (RGB color cube)……….…………..... 56

Figure VI-2. A one-handed color picker (HSV color cylinder)……...…….……. 56

Figure VI-3. A quick menu for paint modes and options..........................………. 57

Figure VI-4. A flow of pigment deposition with color buffers.................………. 59

Figure VI-5. An input stroke (top) and its swept stroke (bottom) [83]…......…… 59

Figure VI-6. A flow of diffusion with color buffers…….........................………. 60

Figure VI-7. The volume strokes before/after applying voxel blur…………..…. 62

Figure VI-8. The volume strokes before/after applying voxel smudge………..... 62

v

Figure VI-9. A flow of diffusion and alpha test with color buffers…….......…… 64

Figure VI-10. Before/after applying voxel melt on the octopus head……....….... 65

Figure VI-11. Example of a painting with two rooms © 2019 Jisu Kim………... 66

Figure VI-12. An application of voxel mosaic to a painting example….….......... 66

Figure VI-13. The color-encoded cross section of a volumetric stroke…….…… 67

Figure VI-14. The cross section of “Floating Island” and its color-encoded distance

field with different iso-values…….………………..…………..…….......……… 68

Figure VI-15. Results and memory ratio after merging voxels with different iso-

values……………………………………………………………………………. 68

Figure VI-16. Example of strokes using hybrid 3D painting……...…......……… 69

Figure VI-17. Fast sketching with surface painting and color painting with volumetric

painting…………..……..………………………………………...….......……… 70

Figure VI-18. A modeling of a smooth volume brush...………...............………. 71

Figure VI-19. The actual use of a smooth volume brush……...............…...……. 72

Figure VI-20. The comparison on paintings without/with a smooth volume brush

…….………………………….…………………………………………………. 72

Figure VI-21. The zoomed comparison on paintings without/with a smooth volume

brush…………..…………………………………………………….......………. 72

Figure VII-1. "A Sneaker" from various viewpoints © 2018 Daichi Ito...……… 77

Figure VII-2. "Spring Concert" from various viewpoints © 2018 Jini Kwon…. 77

Figure VII-3. "Island" from various viewpoints © 2018 Daichi Ito..............…… 78

Figure VII-4. "A Turtle Killer" from various viewpoints © 2019 Jini Kwon….….78

Figure VII-5. "Nature" from various viewpoints © 2018 Jini Kwon.............…… 79

Figure VII-6. "Floating Island" from various viewpoints © 2017 Jaehyun Kim... 79

Figure VII-7. "Flying Dragons" from various viewpoints © 2017 Yunhyeong Kim...

………………………………………………………………………………… 80

Figure VII-8. "Snow Mountain" from various viewpoints © 2017 Daeun Song... 80

vi

Figure VII-9. "Cupcake Monsters" from various viewpoints © 2019 Daeun Song…..

……………………………………………………………………………………81

Figure VII-10. "An Eye" from various viewpoints © 2019 Yunhyeong Kim.….. 81

Figure VII-11. "A Spider" from various viewpoints © 2019 Yunhyeong Kim… 81

vii

List of Tables

Table IV-1. Average staging time, the maximum number of staged blocks,

and staged cells that can be processed per second……....………………………35

Table VI-1. Color blending operations and color merging methods of basic brush

models……..….……………………62

Table VII-1. Memory usage, the number of voxels, and painting time of

artworks…………………………………………………….…….…………… 75

viii

Abstract

Nowadays 2D digital painting is in the transition to 3D with virtual reality. Virtual reality (VR)-

based 3D painting applications have recently surged and are now widely accepted as a new art

form by artists. However, state-of-the-art VR painting systems are all surface painting systems

that emit 2D surface geometries as users make brush strokes. A user has difficulty with coloring,

recoloring, mixing the color, or painting semi-transparent color, while these are natural

activities in the real painting. In a broader perspective in 3D digital art, various 3D art tools

have been researched over decades, but 3D art tools do not focus on such painting aspects and

cannot fully support diverse styles for individuals. Meanwhile, modern 3D art tools allow users

to create various 3D digital art, from voxel dot designs to sophisticated 3D models. From an

artistic point of view, remarkably sophisticated art in 3D is made technically possible. However,

established 3D digital art tools require professional skills with several steps in the workflow

and a large team of high experts, or limit the free expression due to shape representation, scale,

or interfaces.

In this dissertation, as a new medium for 3D painting, a high-resolution volumetric painting

system in VR is introduced to extend the 2D pixel canvas to a 3D voxel canvas. We develop a

dynamic octree-based painting and rendering system using both CPU and GPU to take

advantage of the characteristics of both processors—CPU for octree modeling and GPU for

volume rendering. On the CPU-side, we dynamically adjust an octree and incrementally update

the octree to a GPU. To allow constant neighbor access time in ray casting, our octree uses

novel 3-neighbor connectivity for format simplicity and efficient storage. We further reduce the

GPU-side 3-neighbor computations by precomputing a culling mask in a CPU and uploading it

to a GPU. To verify the performance of our update strategy, we conduct experiments for

ix

compromising low latency and the high frame rates of the rendering. We also analyze the

problem of our update strategy and suggest methods to reduce artifacts in immediate visual

feedback. In rendering, we introduce a cell-local coordinate system as a solution for the

numerical error problem in ray casting through high-resolution octree. We analyze the

numerical error propagation with the cell-local coordinate system in ray casting, present a

theoretical error bound, and prove our theory by experiments. To accelerate rendering, we

revise the CPU-based quadtree/octree interpolation for the GPU and design foveated rendering

based on a quadtree.

We also address the problem of generalizing 2D brushes that manipulate a large number of

pixels to 3D brushes that manipulate a large number of voxels in the aspect of a 3D painting.

Toward this goal, we first generalize 2D brush tools commonly found in 2D digital painting

system to 3D, including voxel blur, voxel smudge, and voxel dodge/burn, working for high-

resolution octrees. We also propose volumetric brush tools designed to solve the problems

specific in volumetric painting. For example, voxel resolution control tools are introduced to

adjust painting details and manage memory consumption while reducing repetitive painting

tasks. “Voxel melt” refines voxels or smooths out resolution variations while retaining the

painting details using resolution diffusion. Easy-to-use voxel merge filters, such as room, voxel

mosaic, and voxel merging based on iso-values, save memory by coarsening invisible or

unnoticed voxels. Finally, we propose hybrid brush models, by combining surface and

volumetric paintings to address the problems of depth perception and stoke neatening in

volumetric painting.

1

I. Introduction

A. Background

From prehistoric times to the present, humans have painted on 2D canvas. Around 40,000 years

ago, homo sapiens created the oldest painting in El Castillo [Fig. I-1 (a)] and a Neanderthal

man engraved rocks in Gorham’s cave around the same time. Afterward, pioneers in art

continued to find new art forms over many centuries. Many interesting attempts, such as

Realism, Surrealism, Impressionism, or Cubism have been made on 2D canvas. Today, 2D

painting is transitioning to 3D with virtual reality (VR). Recently, VR-based 3D painting [Fig.

I-1 (b)] applications have surged and are now widely accepted by artists as a new art form. As

generating 3D art is vital in computer graphics, such as product design, animation, and game

design, the importance of VR painting is expected to grow.

Figure I-1. A transition from a 2D canvas to a 3D canvas

State-of-the-art 3D painting systems in VR, such as Tilt Brush [33] and Quill [66], are surface

painting systems that emit 2D surface geometries as users make brush strokes [Fig. I-2 (b)].

(a) Cave Art of Homo Sapiens (B.C. 38800~17000) (b) Tilt Brush [33] (2015)

2

However, these systems have intrinsic boundaries. Color mixing between strokes is not

supported as overlaps between stroke geometries are infinitely thin and expensive to robustly

compute. The simple recoloring of part of a stroke is complicated because a texture map must

be invoked, such that updated colors may be stored into the texture map. In addition, semi-

transparent volume depiction is limited because efficient handling of many stroke geometries

in high-depth complexity is nontrivial.

Figure I-2. Comparison of mixed strokes between two different painting systems

Figure I-3. Comparison of paintings between two different painting systems

(a) Volumetric painting [91] (b) Surface painting [33]

(a) Volumetric painting

(Ours [91])

(b) Surface painting

(Tilt Brush [33])

3

Thus, the first aim of this dissertation is to explore a new route for VR painting in 3D space;

namely, volumetric painting. Volumetric strokes applied to a 3D grid are amenable to depicting

both solid and non-solid shapes. Volumetric painting also naturally supports color mixing [Fig.

I-2 (a)]. Moreover, users can repeatedly apply strokes to the same area until they are satisfied

with the mixed color pattern without considering occlusion and z-fighting, as demonstrated in

Figure 1-3 (a), which is a very typical practice in surface painting. Finally, a volumetric painting

system naturally handles semi-transparent strokes.

In a broader perspective of 3D digital art, various 3D art tools have been extensively researched

over decades. Modern 3D art tools allow users to create various 3D digital art, from voxel dot

designs to sophisticated 3D models. From an artistic point of view, remarkably realistic art in

3D is only technically possible by a large team of high experts [24]. Established 3D digital art

tools require professional skills with several steps in the workflow, or limit the free expression

due to shape representation, scale, or user interface.

In 3D modeling, modeling artists undergo intensive tool training for sculpting, texture mapping,

and parametric controlling for material properties/rendering. Such tools are complex and

difficult for 2D digital artists and traditional artists, who mostly create artwork with a paintbrush.

Painting on models is also difficult for the following reasons: (1) creating an underlying model

is a prerequisite for following texture mapping/authoring, (2) the discordance between model

space and texture space requires parameterization, and (3) painting on models cannot fully

exploit 3D space. For these reasons, intuitive interfaces for modeling, such as sketch-based

modeling [50], [75] or painting with implicit 3D canvas [44] have been studied.

4

Figure I-4. Sketch-based modeling [75]

Figure I-5. Implicit 3D canvas [44]

Sketch-based modeling introduces a simple way of creating 3D models; however, inherently

poses modeling errors because of ambiguous transitions from 2D to 3D. To avoid ambiguity, a

user requires extra touch-up on 3D models, another drawing in various viewpoints [1], [73], or

create a limited range of shapes based on primitives [6], [92]. In a model painting step,

OverCoat [44] supports off-model painting for users to blend color like digital painting on 2D

canvas. However, even with these easy-to-use interfaces, users must make back-and-forth steps

between model creation and painting.

One of the 3D painting methods that generate meshes [25], [26], [33], [54], [66], [71], called

surface painting, is aimed for 3D digital art rather than product design. Surface painting can

both express thin curves or volumetric hull with brush interfaces, yet, it does not provide stroke

5

composition, pigment deposition with a color mix, or partial modifications that are natural

attributes of painting. In addition, users sometimes use several types of software for painting

and rendering to achieve the desired style.

Another 3D painting method is voxel editing [28], [61], where users control voxel properties

with high-quality ray tracing/path tracing. Current voxel painting systems support various sizes

of paintings, however, a CSG-like interface overloads users to refine their artwork. For example,

a moderate-sized 3D painting, such as Figure VII-1, has over ten million voxels. Such a heavy

workload makes 3D art remain a very specialized domain.

Figure I-6. Examples of surface painting (left and middle) and voxel painting (right)

The second aim of this dissertation is to study volumetric paintbrush models that allow a novice

user to create 3D artwork in a 3D digital painting metaphor. When a novice user is inspired to

create 3D art, she or he can immediately begin through 3D brush stroking without any

knowledge of 3D modeling. Like classic 2D painting, a user can simultaneously shape and color

in the 3D space. A user does not need to consider a limited painting area on 3D space or the

ambiguity of strokes.

(a) Keefe et al. [25]

(c) MagicaVoxel [28] (b) Quill [66]

6

B. Research Objectives and Contributions

The main objective of the dissertation is to study volumetric painting as a new 3D digital

painting. For this research goal, our key questions are:

• How can we build a volumetric painting system that extends 2D digital painting,

especially supporting various scale painting in 3D space?

• What are the minimum performance and memory requirements for interactivity and

affordability in such a system? How can we achieve interactivity and affordability?

• How can we extend 2D painting models (e.g., 2D brush models) in a volumetric

painting system?

• What specific brush models are newly required for volumetric painting?

Unlike a 2D planar canvas, on a 3D canvas, perspective can be compromised: distant objects in

the background can be painted at a relatively large size compared to the foreground objects. For

example, distant mountains can be painted at their actual sizes with large voxels. However, this

requires very large canvas support. For a large canvas, we use an array of octrees of high-depth

(e.g., level 24 or higher). Using an octree, we can maintain a very large canvas with a painting

space of up to 40𝐾𝑚3 and with very fine details of tiny voxels painted at a size of 0.3𝑚𝑚3

with respect to the typical room-scale VR setup.

With a prototype of volumetric painting system based on an array of 24-level octrees, we

conduct extensive experiments and conversations with users. Based on our prior experiments,

we have concluded that the following elements are required for an interactive and affordable

volumetric painting system in VR:

7

• Dynamic tree update. Users will continuously modify the underlying tree. Therefore,

we need to update the tree dynamically.

• Constant frame rates. Users spend several hours painting in VR, and therefore,

consideration must be given to mitigate the possibility of VR-sickness [18], [40], [80].

One source of such sickness is hitching or stuttering in the rendering frame rates, which

should not be compromised; the frame rates should stay constant.

• Low latency stroke display. When a user applies a stroke, the tree should be modified

immediately and rendered back to the user. Therefore, we require low latency for

stroke display.

• Low memory consumption. When a very large canvas is used, we found users tend to

paint a very large world and add details in multiple locations. Thus, a low memory

requirement is beneficial for maintaining a large canvas.

Based on a volumetric painting system, we design various volumetric brush models which

extend common brush models in 2D digital painting. Beyond a simple extension from previous

digital painting techniques, our brush models address the following fundamental challenges in

volumetric painting. First, manipulating properties of each voxel rapidly increases user

workload as the painting complexity increases. For fine quality variously-sized 3D artwork, a

painting interface is essential. Second, memory consumption affects time and the quality of

paintings. The size of paintings gradually increases over time and eventually reaches the

memory limit. For a user who has no engineering knowledge, yet, does not want to give up the

scale or the details of a painting, control tools for the voxel resolution are required. Last, the

performance of rendering and volume authoring always should be balanced for usability.

8

In summary, our contributions are as follows:

For a volumetric painting system,

• Interactive adjustment of a large octree in a CPU for painting.

• Strategies to perform adaptive painting strokes and distributed grid adjustment over

multiple time steps.

• Incremental, low latency octree update to the GPU without adverse impact on the

already GPU-intensive volume rendering.

• New and simple octree neighbor connectivity with only three connections per cell for

fast traversal to neighboring cells.

• Numerical error propagation analysis during ray traversal on a high-depth octree.

• Novel quadtree-based foveated rendering for acceleration.

For volumetric brush models:

• Interactive and intuitive volumetric brush models that manipulate a large number of

voxels with adaptive grids.

• The generalization of common and frequently used 2D brush models, including paint,

recolor, color mix, blur, smudge, dodge/burn, etc.

• Novel volume-specific brush models, such as voxel resolution controls for memory

management, a voxel split brush based on diffusion and easy-to-use voxel merging

filters.

• A shift to a hybrid 3D painting system with surface painting and volumetric painting

and hybrid brush models that address the problem of depth perception and stroke

neatening in volumetric painting.

9

C. Organization

The remainder of this dissertation is organized as follows. In Chapter II, we survey 3D painting,

the elements for volumetric painting (i.e. octrees and rendering based octrees), and brush

models for volumetric painting. In Chapter III, we outline tasks in a volumetric painting system

for clarity. In Chapter IV, we describe underlying octree representation and its update strategy.

We discuss how we dynamically update our octree on a GPU at interactive rates and weaken

visual artifacts from delayed updates. In Chapter V, we develop an accurate ray casting based

on the 24-level octrees to avoid ray drifting and distortion. We analyze numerical error

propagation with our ray casting method and discuss experimental results of accuracy. Based

on the interpolation of adaptive grids, we introduce a rendering acceleration technique, a

quadtree-based foveated rendering. We briefly describe the interface of our system and

introduce volumetric brush models, which are the extended brush models from 2D brush models

and the volume-specific brush models in Chapter VI. We present and discuss our painting

results in Chapter VII, and finally, we conclude in Chapter VIII.

10

II. Related Work

In this chapter, we first explore a 3D painting system, including 3D modeling, surface painting,

voxel editing, and volumetric painting. We then survey the relevant octree works, especially

focusing on representation, updating, and authoring techniques, as well as GPU-based ray

casting for high-resolution volumetric painting and rendering. Last, we study previous

volumetric brush models for voxel painting.

A. 3D Painting System

1. 3D Modeling and Texture Authoring

3D painting on surfaces [53], [76] has been researched well to achieve high quality in 3D

product designs today. The core idea of 3D painting on surfaces is to separate image space and

3D object space and bridge the two spaces through parameterization. By using high-resolution

color-field space, a user can paint detailed color on given models. Various color representation,

for example, multiple uniform 2D/3D textures [3], [58], adaptive 2D/3D textures [4], [19], [23],

[41], [85], a texture atlas [11], [74], point samples [7], [65], per face texture, mesh color, etc.,

have been used for 3D painting on surfaces (Fig. II-1). While all these works restrict expressible

space to the surface of the model, OverCoat [44] proposed isosurface and cross-level painting

tools which relax the restriction on the 3D painting space. Similar to Kalnins et al. [78],

OverCoat supports non-photorealistic painting tools on 3D models to pursue the freedom of

expression in 3D space. OverCoat exploits the signed distance field to embed 2D paint strokes

to 3D space and renders strokes by projecting them to camera space (Fig. II-2 left).

11

Figure II-1. Various coloring methods for painting on 3D models

Figure II-2. Painting on isosurfaces of the underlying 3D model [44]

Regardless of painting algorithms, sculpting and painting are integrated into software, but two

steps are separate and dependent for each step in the 3D modeling. Sculpting precedes painting

for equipping vertex positions, textures, or distance field to mapping color in 3D space (Fig. II-

2 right). For the majority of users, sculpting with fine control is a nontrivial task and requires

professional training. In our study, we develop and exploit an octree-based volumetric painting

system that color representation and model space coincide in high-resolution. We do not assume

any underlying models and their surface representation, such as polygonal meshes or NURBs;

(b) Point Samples [7] (a) Octree Texture [85]

(c) Texture Atlas [11] (d) Per-face Texture [11]

12

therefore, a user can paint 3D shapes and colors in the same way as pixel painting without space

restriction. Shape and color modification lie in one space, so back-and-forth steps between

sculpting and painting are unnecessary.

2. Surface Painting

Besides a 3D model painting, surface painting is a 3D painting that generates thin, connected

open surface with color. This kind of shape representation is expensive to express in voxel

editing and volumetric painting because voxels are refined to very small sizes and consume a

lot of memory (Fig. I-6 left). Surface painting can depict a volumetric stroke by generating a

shell along with a stroke [25], [26], [33], [54], [66]. Some of the semi-transparent volumetric

effects like fog also can be expressed based on 2D textures [33], [66]. Currently, only a few

surface painting systems [29], [66] support partial stroke modification and stroke merging

similar to 3D modeling. This is because identifying the intersected meshes and modifying their

properties are complex tasks. Rosales et al. [29] studied stroke merging that connects triangle

strips in surface painting to form a full 3D model (Fig. II-3); however, a user cannot merge

sparse (Fig. II-3 left) or randomly oriented strokes (Fig. II-3 right). For this reason, such

functionalities are devolved onto other painting/rendering/modeling tools. A user needs to

export their artwork from one software to another and learn how to use this software to achieve

the desired art styles. For a novice user, z-fighting [Fig. I-2 (b)] and occlusion make users

repeatedly draw strokes on similar locations.

Figure II-3. Nontrivial stroke merging problems in surface painting [29]

13

3. Voxel Editing and Volumetric Painting

Instead of painting on a separate color representation or triangle stripes generation, some

research and software of 3D painting employ voxels. When using voxels, a user can begin with

a blank canvas and partially modify their artwork by painting, recoloring, and erasing voxels.

Semi-transparent, refractive, or reflective expression is also possible. Compared to other 3D

painting methods, it is easy to design topologically complex objects with voxels. Voxel editing

is a painting method to create 3D voxel art by dotting on a 3D space [28], [32], [52], [57], [61].

Some voxel editors [28], [32], [61] provide a flexible creation environment to change artwork

styles with a user-defined shader. Essentially, voxel editors are based on 3D uniform textures

(Fig. II-4), however, a large-scale artwork can be supported by combining a voxel engine with

sparse voxel octrees [48], [79], [86].

Voxel editors support a palette tool to manipulate the color of many voxels and uniform

volumetric brushes [28], [32], [61]. Yet, they do not support a color mix and pigment deposition

and have CSG-like tools, such as voxel dotting, carving tools, or snapping tools. In volumetric

painting, cloud painting [16], [77] has been studied for modeling clouds with scattering (Fig.

II-5). Using cloud painting, a user can generate complex cloud models with intuitive painting

interfaces with no knowledge of 3D modeling, volumetric effect, and lighting. The aim of cloud

painting is to generate specific objects in 3D space and general voxel painting is beyond their

scope. To the best of our knowledge, our work is the first volumetric painting system that allows

high-resolution painting in 3D based on octrees and extends 2D pixel painting.

14

Figure II-4. Uniform 3D textures in voxel editing applications

Figure II-5. Cloud painting [16]

(a) Qubicle [57] (b) MagicaVoxel [28]

15

B. 3D Adaptive Spatial Grids

1. Octree Representation

Octree grids have been applied to various problems, such as distance field generation [51], [84],

texturing [19], [23], [85], modeling [5], [60], [88], simulation [30], [48], [79], model

reconstruction [38], [49], and visualization [12], [13], [27], [36], to name a few. Without

predetermined, fixed topological configurations, an octree is ideal for painting on a large canvas,

as the tree can be refined at any location at a desirable depth. However, one concern when using

a high-depth octree is the traversal time from a root cell to a leaf cell. To reduce this traversal

time, a shallower tree has been used [4], [48], [79], [86]. Lefohn et al. [4] used multi-level page

tables and brick-border voxels to achieve O(1) memory access, even for the look-ups from a

root cell. While accessing octree cells from a root at a constant time is the key feature for

coordinate-based look-ups, (e.g., texture fetching problem [4]), octree cells are still accessed

locally in many applications, such as starting from the leaves, moving to the children of the

non-root parent nodes, or accessing neighbors. To render a large-scale scene, full or out-of-core

[13], [27], [31], [48], [56], updates to GPU have been made for rendering applications. Recently,

studies on a directed acyclic graph with scalar fields [8], [22] have achieved rendering scenes

in high-resolution (32𝐾3∼128𝐾3), which is compressed on GPU memory using geometry

redundancy. For dynamic updates, a directed acyclic graph needs real-time compression

techniques, otherwise, reconstruction takes several minutes for updates.

16

2. Dynamic Octree Update

In addition to one-time construction or full reconstruction [13], [19], [23] [85], octree can also

be incrementally adjusted. Here, real-time dynamic octree adjustment in GPU has been applied

[4], [14]. In Crassin et al. [14], a scene is classified to static and dynamic parts and stored as

separate memories in GPU. When objects move, the entire dynamic part is updated. Note that

in our volumetric painting application, dynamic and static parts cannot be separated. In another

study, an octree was stored on a CPU and the subtree data was streamed through CPU-GPU

data transfer in a view-dependent manner [27]. To retain connectivity information with subtrees,

the indices of all eight children are stored. Recently, Hoetzlein [79] supports dynamic

topological updates on GPU; however, it only supports insertions for now.

17

C. GPU-Based Ray Casting on Adaptive Grids

Ray casting has been extensively researched for several decades [46], [55]. Since a ray traversal

on 3D adaptive grids is expensive, acceleration techniques, such as neighbor precomputation,

early ray termination, and empty space skipping [42] are often used. To reduce the cost of

finding neighbors, the ROPE algorithm [89] was developed for a k-d tree, and neighbor linking

was proposed [34], [39] for an octree. Since a k-d tree has a varying number of neighbors per

cell, six ropes were linked from a cell to bounding boxes along with axial directions rather than

pointing to neighbor cells directly [70]. An octree, even when 2-to-1 balanced, needs a

maximum of 24 neighbors per cell. Gobbetti et al. [27] have reduced the number of neighbors

down to six per cell by pointing to the parents of neighbors. In this dissertation, we use only

three neighbors per cell, computed on a GPU with the primal octree represented by only two

indices: a parent and the first child. Our precomputed neighbors enable stackless ray casting

and the dynamic updating of an octree on-the-fly on a GPU as the tree connectivity changes.

A sparse voxel octree (SVO) [13], [86] showed both high-quality rendering and efficient ray

traversal benefits of shallow tree topology and bricks. These works address the static scene

rendering problem that does not require a dynamic update. Particular objects in Crassin et al.

[14] can be updated dynamically while rendering. In this work, rendering with dynamic updates,

which are not limited to specific objects, was not the target problem. SVOs extend to a tree with

resolution configurable at each level, called OpenVDB [48]. Recently, OpenVDB structure was

implemented in GPU [79], which enables efficient neighbor access using ghost voxels and

GPU-based ray casting. OpenVDB [48] and GVDB [79] address rendering of dynamic scenes

that do not have hard real-time constraints while updating structure simultaneously.

18

To the best of our knowledge, octrees as deep as 24 have not been used for ray casting. The

deepest 3D adaptive structure we found in the literature was 128𝐾3 [8], which is equivalent

to the octree depth of 17 [whereas, our canvas is equivalent to (4 × 224)3]. Moreover, the ray

angle drift error has not been identified as an important challenge due to the limited size of a

3D scene. Spacing between floating points can cause sudden movement of the ray origin with

continuously changing viewpoints, which makes rendering unstable in a VR environment. Ize

et al. [87] used a padding factor to not miss a cell due to such precision. In this dissertation, we

study a more principled approach; we propose to analyze the propagation of numerical error

and ensure that ray computation does not increase the numerical error regardless of the ray

length.

19

D. Volumetric Brush Models

Since prehistoric times, paint-brushing is one of the common tools to show one’s creative

activity and is employed in a variety of fields. For clarity, we here define a volumetric brush

model as a brush interface that (1) authors elements for volume rendering at any locations in

3D, (2) has a full volume brush stamp, and (3) updates elements along the swept volume of a

stroke.

In medical imaging, a volume editing interface has been researched in the context of assisting

visual perception. Such an interface aims to emphasize the region of interest or to reveal the

important features in a volume data set by erasing voxels. VolumeShop [82] introduces an

interactive brush model to select the region of interest in a given volume for segmentation. A

set of all the intersected voxels with a brush can be transformed, rendered indifferent materials,

or recolored through a color transfer function [Fig. II-6 (a)]. Bürger et al. [45] introduced a

brush operating at a higher resolution than that of VolumeShop. This brush model directly

interacts with 3D textures on the GPU; therefore, a user can paint either voxels or an iso-surface

similar to sculpting/painting in 3D modeling. Both studies adopt a non-photorealistic recoloring

or erasing, however, 3D painting is beyond their scope. Voxel editing interfaces have also

developed volumetric brushes in 3D voxel dotting art [28], [32], [61]. They have a CSG-like

interface (Fig.II-6), yet, these works provide a volumetric brush model functioning as a brush

with max deposition. All these works assume the underlying volume is a uniform grid with

limited resolution, therefore, brush models or filters for voxel resolution or 3D painting are not

their concern.

20

Several basic volumetric brush models are presented in volumetric painting. Wei [16] and

Brucks [77] presented cloud brush models based on uniform 3D textures. Although cloud brush

models do not pursue a user’s own style, it is an effective way of painting clouds; painting

illumination and shade is a difficult task even with a single light in 3D and is much harder with

light-particle interactions. Among cloud brush models, one interesting brush model is a velocity

painting brush to animate clouds [77]. While cloud brush models promote specific purposes,

our work provides interactive brush models for general purpose painting based on octrees.

To the best of our knowledge, volumetric brush models have not been studied in the context of

3D non-photorealistic painting that generalizes 2D pixel painting. We believe that this is the

first work that identifies important problems in digital painting when transitioning from 2D to

3D and extends 2D brushes to 3D brushes.

21

Figure II-6. Interfaces in the voxel editing applications

(b) A palette and a CSG-like interface (MagicaVoxel [28])

(a) Transfer function (VolumeShop [82])

22

III. System Overview

Painting and rendering are considered simultaneous tasks in a painting system. For our

interactive painting system, we build a CPU-side octree for painting and a GPU-side octree for

rendering. The benefits of maintaining two copies of the same octree are to exploit the

characteristics of the hardware and make them hazard-free. A CPU-side octree is primarily for

painting operations, including color blending and octree adjustment (Sec. IV.D.1). A GPU-side

octree is for rendering operations, including volume ray casting and rendering acceleration (Sec.

V.A). Both octrees are synchronized by uploading the CPU-side octree to the GPU in a

streamlined fashion (Sec. IV.D.2 ~ IV.D.4); therefore, a user can immediately see what he or

she draws in a 3D space.

Figure III-1. Simultaneous read/write access to the octrees

However, simultaneous read/write operations can interrupt other tasks even though two octrees

independently handle painting and rendering (Fig. III-1). Therefore, in our system, a stroke

drawing consists of several subtasks in parallel: a stroke processing, the CPU-side octree

adjustment, the GPU-side octree update, and the octree-based volume rendering (Fig. III-2).

When a user starts to draw a stroke, the stroke properties, such as color, the stamp, hardness,

23

and segments are pushed to a stroke job queue in the painting thread. Next, we perform a stroke-

cell intersection test and split/merge the intersecting cells based on stroke properties in the

stroke thread. In the staging thread, we duplicate a sequential memory block containing colored,

split, or merged cells into a temporary buffer called a staged block (Fig. IV-6). We also queue

staged blocks and later pop them when overwriting staged blocks to the GPU in the upload

thread. Last, we render output based on the octree-based ray casting in the rendering thread.

Figure III-2. A flow of CPU-side threads

24

IV. Dynamic Octree Representation

In our system, a 3D array of octrees is used to support deep levels and efficient octree traversal,

which lead to high resolution and dynamic volumetric field authoring. Since each element of a

3D array corresponds to the root cell of a single octree, we call this array a root array. The

maximum depth of each element in a root array is currently up to 24 levels, which sufficiently

supports fine details in the painting. A root array can reduce the tree depth in octree traversal

compared to a single octree by assuming that the level of root cells is greater than zero. For

example, the highest resolution of a 643 root array with 14-level octrees is equal to that of a

20-level single octree. The maximum depth in octree traversal is 14 in the former and 20 in the

latter. A root array also provides several other benefits, including trivial parallelization for each

element. However, these advantages can rapidly diminish with highly adaptive details in a large

canvas. Therefore, we depend on a relatively coarse root array (i.e., a 43 array of 24-level

octrees, which is equal to a single 26-level octree). In the room-scale VR environment, this

resolution sustains a volumetric space from 0.3mm3 to 40km3.

25

A. Dynamic Octree Representation on a CPU

Our dynamic octrees are based on a 2:1 balanced octree [10]. In a 2:1 balanced octree, the depth

between every cell and their neighbors is less than or equal to one. One cell is refined or

coarsened to eight children for simplicity, as painting can occur anywhere in the 3D space. For

each cell, we use the unique index, I, of the cell rather than pointers, similar to Gobbetti et al.

[27].

As illustrated in Figure IV-1, our CPU-side octree consists of many linear memory pools that

are accessed through I. Parent and child pools are essential and define the structure of our octree.

In a parent pool and a child pool, the indices of the parent and the first child for each cell are

stored. We can obtain the indices of the remaining seven children by consecutively numbering

from the first child. Any volumetric properties (e.g., color, distance field, refractive indices, or

temporary variables) can be dynamically updated in separate field pools. Field pools can be

supplemented if additional volumetric properties are required. If several volumetric properties

are frequently accessed together, they can be grouped and stored in a single memory pool to

increase the cache hit. For dynamic octree adjustment, we develop memory management based

on a linked list. Per generated or freed eight cells, the amount of an allocation or deallocation

unit is fixed. When freeing eight cells, we check the front of the memory pool to ascertain

whether it is populated from the front. The memory pool containing a root array cannot be

deallocated. The depth of the cells and bit flags are separately stored for octree adjustment.

26

B. Dynamic Octree Representation on a GPU

Our octree mapping from a CPU pool to a GPU texture is one-to-one correspondence in

memory space. On the GPU-side, we adopt 2D textures and map the linear index, I, to two

indices (ti, tj) because of the limited resolution of a 1D texture. Where a dimension of 2D

texture is W × H, the mapping formula between the two octrees is as follows:

ti = ⌊

𝐼

𝑊
⌋

tj = 𝐼 mod 𝑊

(4.1)

Since contemporary GPUs provide more than 16,000 texels per dimension, we can supply more

than 265M cells with 2D textures. As illustrated in Figure IV-2, parent, child, and the depth are

stored to an octree structure, 𝐺𝑝, in a 32-bit integer format. We store RGBA color as a 16-bit

float texture. Another 32-bit integer texture, 𝐺3 texture, is a 3-neighbor texture for the indices

of neighbors in XYZ direction. Note that 𝐺3 is not used on the CPU. Along with the dynamic

update, we construct a 𝐺3 of each cell in parallel from the 𝐺𝑝 texture (See Sec. IV.C).

Although the 𝐺3 computation is fast on the GPU, it hinders the frame rate in an interactive

painting system. In Chapter IV.D.3, we adopt a tactic to reduce the amount of 𝐺3 computation

with a lightweight mask calculation and to deliver the mask from the CPU to the GPU.

27

Figure IV-1. A dynamic octree on the CPU

Figure IV-2. A dynamic octree on the GPU

28

C. GPU-Based 3-Neighbor Computation

Only with the indices of a parent and the first child, rendering performance decreases while the

maximum tree depth increases. For example, an octree traversal path from a leaf and its

neighbor is 48 in a worst-case scenario based on 𝐺𝑝. Because the octree traversal is a sequence

of conditional branches, this long and divergent branching can slow down ray casting on the

GPU [59]. For this reason, topologies for directly accessing neighbors (i.e., neighbor linking

for octrees [34], [39] or ROPEs for KD-trees [89]) have been researched to accelerate the

rendering. As illustrated in Figure IV-3, two cases of the neighbors for given cells, C and D,

the parent-level neighbor, 𝐶0, and the child-level neighbors in 𝐷1 can exist in a 2-to-1

balanced octree except for same-level neighbors (𝐶1~𝐶3, 𝐷0, 𝐷2, 𝐷3). Here we illustrate the

example as quadtrees with one different-level neighbor for simplicity, but 6 to 24 neighbors can

exist in an octree.

Figure IV-3. The minimum number of neighbor connectivity for a cell

Neighbor linking [34], [39] and ROPE [89] essentially link all the neighbors, which are across

the faces of C and D (the blue connections). To connect the same-level or parent-level neighbors

[27] or a group of neighbors per face [70], we can reduce the number of neighbors to six.

29

Considering that the number of cells in the volumetric painting of moderate size is possibly

greater than millions, the total number of neighbors can be over 6 million. This is a huge

memory consumption and causes performance degradation due to neighbor computation.

Therefore, we decrease the number of neighbors to three.

When considering the parent-level neighbor, 𝐶0, and the child-level neighbors in 𝐷1, every

cell has six neighbors because only one neighbor exists across each face in +/-XYZ directions.

As addressed in Chapter IV.A, eight children have consecutive indices. Thus, three of these

neighbors share the same parent and can be immediately obtained from its associated cell index.

For example, 𝐶1 and 𝐶2 share the same parent with C and can be accessed by adding an offset

to the index of C (C1 = 𝐶 + 1, C2 = 𝐶 − 2). It is the same for 𝐷1 and 𝐷2 with D. The other

three neighbors may have different parents (𝐶0, 𝐶3, 𝐷0 and 𝐷3 in Fig. IV-3), and computing

such neighbors can be long tree traversals, as mentioned earlier in this section. Therefore, we

precompute the indices of the three neighbors, called 3-neighbor topology 𝐺3.

Using the union of 𝐺3 and 𝐺𝑝, we can quickly discover all the 6 to 24 neighbors, since in 𝐺𝑝

∪ 𝐺3, the distance between two cells sharing a face is 2 in 𝐺𝑝, or 1 or 2 in 𝐺3. Therefore,

finding neighbors in our scheme incurs a low cost, while finding a group of cells [27], [70] can

have a distance between neighbors greater than 2 in 𝐺𝑝. In Figure IV-3, the child cells of 𝐷1

that are in contact with D can be found easily as 𝐶𝐻𝐼𝐿𝐷(𝐷1) and 𝐶𝐻𝐼𝐿𝐷(𝐷1) + 2, where

𝐶𝐻𝐼𝐿𝐷(·) denotes the first child. When a ray traverses to 𝐷1 in ray casting, we can quickly

identify 𝐶𝐻𝐼𝐿𝐷(𝐷1) or 𝐶𝐻𝐼𝐿𝐷(𝐷1) + 2 using the ray parameter (See Chapter V.A.1). Using

𝐺3, we simplified variable numbers of immediate neighbors to a constant 3. We also reduced

the memory required for a fast traversal from the maximum 24 neighbors to three neighbors,

while still allowing small constant time access to all 24 neighbors.

30

D. Dynamic Octree Update

Avoiding sickness, nausea, and postural instability has significance in VR [18], [40], [80]

because painting can last several hours. Among factors on those symptoms, a little delay in

synchronization between the rendered scene and the head motion is a minimum requirement.

However, simply copying an octree to a texture (i.e., 134M cells, which is equivalent to 2.15GB

memory) will take 222 milliseconds even with the full bandwidths of a CPU, a PCIe, and a

GPU. In this section, we address how we incrementally update the octree on a CPU and

dynamically update the octree on the GPU rather than updating the entire octree.

1. Incremental Octree Adjustment on a CPU

Even though we effectively ignore cells that do not intersect with brush stamps, painting an

octree is still expensive. A large brush stroke can be applied near a highly-refined region, or a

small brush stroke can be applied near a coarsened region. In other words, we may coarsen 24-

level leaves to a root-level cell or refine a root-level cell to 24-level leaves in the worst-case

scenario on the CPU. To address a sharp change in the depth of cells, we develop a multi-step

octree adjustment strategy. Again, we illustrate the example of incremental tree adjustment

using a quadtree for simplicity, as shown in Figure IV-4. For a given stroke from a user (a

capsule in Frame t0), we read stroke data from the stroke job queue in a CPU thread separate

from rendering. We first paint on the CPU tree without tree adjustment and update on the GPU

at Frame t1a. The next step is the tree adjustment stage. We mark cells that should be refined

or coarsened based on the intersection status of the cells (outside, boundary, inside at Frame

t1b in Fig. IV-4). Outside and inside cells are candidates to be coarsened, and boundary cells

are candidates to be refined. All refining candidates are refined, but coarsening candidates are

31

only coarsened when a coarsening candidate is not a refining candidate and is a parent cell of a

leaf cell to satisfy the 2-to-1 balance [10]. After marking the cells, we perform one-level

refinement or coarsening per frame. The result of the one-level octree adjustment of Frame t1

is illustrated in Frame t2. After one-level tree adjustment, we reflect these changes to the GPU.

We repeat this process until no cell needs to be refined or coarsened (Frame t1 to t𝑛, where n

is the desired depth for a given stroke). In the next section, we propose algorithms for dynamic

low latency updating to the GPU while keeping the frame rate constant for VR.

Figure IV-4. Incremental octree adjustment on the CPU

2. Block-Based Staging and the GPU-Side Octree Update

In our system, up to approximately 1,000 cells per stroke would require updates as the stroke

diameter is set to be approximately 10 cells for a stroke length of one. Since uploading 1,000

times to the GPU would be prohibitively slow, we use large blocks to reduce the upload counts.

Since our CPU-side memory manager maintains a free pool in the last-in-first-out (LIFO)

manner, texture memory 𝐺𝑝 tends to be filled from bottom to top in the texture space. For

example, in Figure IV-5, colored cells at Frame t2 are generated later than colored cells at

32

Frame t1; therefore, they stay relatively right in a CPU-side octree and top in a GPU-side octree.

Based on this spatial coherence in 3D space, the CPU, and GPU, we use a block, which refers

to linear pitched packing that divides texture horizontally. The width of the texture of each

block is equal to 16,384 with a relatively smaller height, shown as translucent boxes on octree

textures in Figure IV-5.

Figure IV-5. The blocks for updating color at Frame t1 and t2

If we directly upload updated blocks to the GPU, the whole CPU-side tree would be locked and

the painting thread would stall (See Fig. III-1). Rendering would also stall while overwriting

the whole GPU-side octree. To avoid this painting and rendering interruption, we improved the

simple block-based update for the CPU-side hazard control (Fig. IV-6). Note that we are basing

this on the idea that brushing a stroke in a 3D space is local not only in the space but also in the

33

memory (red cells in the 3D space and the octree on a CPU). We divide the octree into blocks

shown as sky blue and orange boxes in the CPU-side octree. Among the blocks, we find a block

(orange box) containing updated cells (dotted ellipse). We then copy the block to a staging

buffer that serves as an update queue (a box with an orange line). A block copied to a staging

buffer is called a staged block. We collect the staged blocks in a separate thread using only

small atomic sections during tree adjustments (see Chapter IV.D.4 for discussion on hazards)

and queue them in the LIFO queues with upload-to-GPU tasks. Along with staged blocks, we

upload a neighbor computation mask (a box with an orange line) that we discuss in the next

section. Note that 𝐺3 is not uploaded but is rather computed on the GPU. Finally, we simply

upload one block per rendering frame and compute the 3-neighbor based on a neighbor

computation mask.

To verify that the algorithms we developed in this section satisfy the hard frame rate and latency

requirements, we develop custom benchmark tests. To reproduce painting practice in the real

use case, we first load a pre-painted scene and play a pre-recorded set of painting strokes. We

fix the head-mounted display (HMD) position to make rendering time nearly constant.

Dominant variables are thus controlled variables: updating parameters, such as the number of

blocks per frame, block sizes, and the granularity of neighbor computation mask for selective

𝐺3 rendering. The only uncontrolled variables are the CPU thread allocations, the GPU

command dispatches, and other minor random system interventions. Our painting stroke

sequences are sufficiently long to minimize the impacts of these variables, shown as minor

fluctuations in Figures IV-8 and IV-9.

34

Figure IV-6. Block-based update with a neighbor mask

35

On the CPU-side, Table IV-1 shows the average staging time and the maximum number of

updated cells per second. Staging larger blocks tends to increase the maximum number of

updated cells per second and reduces the number of updates. Although larger blocks can update

more cells per second, latency tends to increase, and it would be inefficient to upload a large

block when only a small number of cells have changed. On the other hand, staging smaller

blocks decreases the staging time and provides frequent updates, although bandwidth utilization

may be lower. For example, when the size of the block is 16,384×4 (i.e., the number of cells

per block is equal to 65K), blocks can be updated 77 times per second, and the maximum

number of uploaded cells per second is five million cells. The average bandwidth of the block

size under two million cells is less than 5ms, thus, it is sufficient to stage blocks at the refresh

rate of 60 or higher, corresponding to a rather long drawing sequence. While a block-based

upload improves the frame rate from five frames per second (FPS) up to 22 FPS, this rate is

still not acceptable. The next bottleneck is a neighbor connectivity update, which will be

discussed in the next section.

Table IV-1. Average staging time, the maximum number of staged blocks

and staged cells that can be processed per second

36

3. Neighbor Update with Neighbor Computation Mask

Even though a neighbor computation on the GPU corresponds to a simple computation of the

graph 𝐺3 , the resolution of the texture can be large (16384×8192), which affects the

interactivity (See the no mask case in Fig. IV-9). Therefore, we develop a simple and efficient

method to dramatically reduce this rendering cost. Once a cell is created or deleted, not only

the cell but also its neighbors should be updated in 𝐺3. Since neighbors may not be inside a

block that contains the cell, updating 𝐺3 within the block would not be sufficient. One solution

would be to have an additional list of expanded blocks for the neighbor update. Since this will

increase complexity in the system, we instead propose a simpler approach. We compute a very

small mask in the CPU that contains dirty bits, indicating which cells need to recompute their

neighbors due to the tree topology change. While staging the cells on the CPU, we upload this

small mask to the GPU and perform a neighbor computation only on the cells in the marked

area.

A neighbor computation mask is allocated per a block and accumulates dirty bits when a cell

has topological changes. Every cell with its own topological change requires updating in 𝐺3.

If a cell is allocated, all three neighbors should be newly computed. If a cell is deallocated, all

three neighbors should be cleaned. However, not all the neighbors of a cell need updates on 𝐺3.

For the neighbors of a cell, changes in 𝐺3 can be routed to the four cases in Figure IV-7, where:

(a) the case that a cell C0 is refined with the same-level neighbor C1, (b) the case that a cell

C0 is refined with the child-level neighbors C4 and C6, (c) the case that a cell C7 is refined

with the parent-level neighbor C1, and (d) the case that a cell C7 is refined with the same-level

neighbors C10. We assume that C0 ~ C3 have different parents. In case (a), neighbors (C1 and

C2) of a cell to be refined (C0) do not need to update its 𝐺3 because the same-level neighbor

37

of C1 and C2 is still C0 after a cell refinement. This is the same in (b), however, the neighbors

of child-level cells (C4 and C6) in C1 change from C0 to C9 and C11. In coarsening cases,

neighbors (C1 and C2) of a cell to be coarsened (C7) have no changes in 𝐺3, because C7 is

the same-level neighbor after coarsening. However, if a cell is coarsened with the same-level

neighbor as in (d), the neighbor (C10) of C7 has the neighbor C0, not C7. In summary, from

the point of view of neighbors of a cell to be refined or coarsened, (1) if a cell is the parent level

and will be refined, or (2) if a cell is the same level and will be coarsened, we mark in a neighbor

computation mask to recompute 𝐺3 for a neighbor of a cell.

Figure IV-7. The cases of the 𝐺3 update after adjusting a cell

We then tested various mask sizes. If the size of the neighbor computation mask is over 64 by

32 (which takes only 256 bytes), the overall frame rate stays around 90 FPS, which is a lower

bound of frame rate, as shown in Figure IV-9. We also further tested the degree to which the

(a) Refinement w/ the same-level neighbor (b) Refinement w/ the child-level neighbor

(c) Coarsening w/ the parent-level neighbor (d) Coarsening w/ the same-level neighbor

38

size of the blocks affects the frame rates with lightweight neighbor precomputation cost. Figure

IV-8 shows that the frame rates remain stable when the number of cells per block is under 524K.

Figure IV-8. The performance results with staged blocks of different sizes

Figure IV-9. The performance results with neighbor computation masks of different sizes

39

4. Immediate Visual Feedback

To minimize wait state between painting and staging threads, we divide the painting task into

the finer grained jobs in the earlier section. Here, we review all steps from painting to rendering

for potential hazards in updating: when a stroke is applied to the CPU-side octree, we

incrementally adjust the octree by one level in the stroke thread (Figures III-2 and IV-4). This

ensures that the CPU-side octree is valid without orphan cells (i.e., cells that are allocated but

not linked to their parents) or balancing violations. In the next step, staging blocks may depend

on each other due to octree connectivity. For example, if the parent cell exists in block 0 and

the child cell exists in block 1, the parent has the index of its first child, but the children do not

exist in 𝐺𝑝 texture. Hence, dependent blocks may be grouped, uploaded to GPU-side staging

buffers, and then copied together in the GPU at the beginning of rendering. However, in our

experiment, the GPU-side staging buffer always yielded greater latency. More importantly, the

dependency chain between staging buffers can be very large, resulting in much higher latency

for accurate rendering results.

Therefore, we experiment with strategies to ignore dependency between staging blocks. As a

result, users can see the strokes at a lower latency at the cost of temporal GPU-side violations.

First, 2:1 balancing can be violated to 3:1 balancing. This can cause minor temporal visual

artifacts in the raycaster that assumes 2:1 balancing. Second, since parent-child referencing is

valid only inside a block, some inter-block parent and child indices may be invalid. This causes

visible artifacts. Thus, we designed two strategies to reduce these artifacts: aggressive staging

and handling invalid parent/child. To experiment with the strategies, we developed a stroke

replay system to render frames with and without corruptions. We then computed the number of

rendered frames that had mismatching pixels.

40

By just ignoring inter-staging buffer dependency, corruption occurs in 33.3% of the total frames

[Fig. IV-11 (a)]. The corruption lasts up to 450ms. Aggressive staging is to use smaller atomic

sections that can temporally break the CPU-side 2:1 balancing to 3:1. However, since

aggressive staging does not lock the CPU-side octree with whole one-level octree adjustment,

aggressive staging guarantees stable and fast staging time (Fig. IV-10) and the corruption goes

away faster [Fig. IV-11 (b)]. The corruption rate falls to 21.7%. Handling invalid parent/child

is simply to check whether parent and child mutually point to each other, and if fails, to ignore

visiting such cells. This way, the corruption rate goes further down to 3.62% [Fig. IV-11 (c)].

Figure IV-10. The CPU-side staging time with/without aggressive staging

41

Figure IV-11. The frames with corruptions for the same stroke

(a) Naively ignoring staging block dependencies

(b) Aggressive staging

(c) Aggressive staging and preventing access to invalid parent/child

42

V. Ray Casting and Color Interpolation

on the GPU-side Octree

Rendering 3D volumetric fields poses challenges in accuracy and performance. One viable

solution for accuracy involves extracting voxel faces and rendering them through a raster

graphics pipeline similar to Minecraft [61]. However, as the number of grids in the non-uniform

size increases, the extracted vertex positions, particularly far from the origin, may not be

accurate due to numerical error. More significantly, geometric extraction requires a substantial

amount of computational time as the number of voxels grows. In this chapter, we explore an

accurate approach of ray casting through an octree volumetric field. The proposed cell-local

coordinate system is accurate and enables faster rendering with 3-neighbor access (Chapter

IV.C); however, we further explore an interpolation-based acceleration technique for stable

frame rates in VR.

A. A Cell-Local Coordinate System

Figure V-1. Example of 24-level painting with color-encoded depth

43

When editing fine detail, users should be able to zoom in to observe the cells that have the

highest depth (i.e., 24, as in Fig. V-I). However, the size of these tree cells may be even smaller

than the single precision floating point granularity except near the origin. For example, in a VR

environment, naively using the floating point for the eye position in a world coordinate will

force the head positions to jump toward nearby floating points, and more significantly, the eye

distance will be erratic. This leads to extreme discomfort. Therefore, we carefully maintain

canvas-to-VR, VR-to-HMD, and HMD-to-eye coordinate transformations to avoid loss of the

eye position precision.

Based on the ideas that (1) floating point numbers are dense near the zero, and (2) the world

coordinate system is only required for extracting volumetric properties of a given cell, not

related to the rendering result, we propose computing the ray starting point in a cell-local

coordinate frame and retain the positioning error of the starting point sufficiently small.

 PL = (𝑖𝑑, 𝑛𝑥, 𝑛𝑦, 𝑛𝑧) (−0.5 ≤ 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 ≤ 0.5) (5.1)

Our cell-local coordinate system represents position PL as the combination of indices of cells

and a barycentric coordinate system that has the origin at the cell center with a size of one, as

in Equation 5.1. The range of coordinates inside the cell is [-0.5, 0.5]. Consequently, the finest

resolution inside a cell is 0.5 × 2−23 in single precision floating point regardless of the size of

the cell. If a ray starts from a leaf cell whose depth is 24, its resolution inside the leaf becomes

extremely high. In addition, using the world coordinate system, we first compute the index of

a cell by traversing based on the position. This can be a long traversal from the root to a leaf in

the worst-case. We then obtain volumetric properties of the cell using the index of the cell. On

the other hand, our cell-local coordinate system holds the index of the cell and does not need to

44

traverse the octree from the top to the bottom. We can directly access volumetric properties

using the index of the cell in a cell-local coordinate system.

1. Ray Traversal with the Cell-Local Coordinate System

As illustrated in Figure V-2, given a ray and its direction d, and a cell-entry point 𝑝𝑖 of the ray

into the ith cell, we compute the cell traversal distance 𝑡𝑖 and the cell-exit point 𝑝𝑖,
′ as well

as a neighboring cell containing 𝑝𝑖
′. Since our volumetric canvas covers a large space and the

cell sizes vary by a large magnitude, using a global coordinate system to calculate 𝑝𝑖
′ and the

ray traversal length t may be inaccurate. In contrast, the cell-local coordinate system can

produce accurate results regardless of the zoom level. We represent 𝑝𝑖 and 𝑝𝑖
′ with respect to

the frame, whose origin is located at the cell center and the size is normalized to one. Using the

intersecting face which contains pi
′ and the neighbor texture described in Chapter IV.C, we

choose the neighbor cell [the (i + 1)th cell] to visit and set pi
′ to pi+1

′ . This process is

repeated until the ray terminates after accumulating full opacity or exits the canvas.

Figure V-2. A 2D illustration of ray casting on adaptive grids

45

2. Accuracy Analysis

As illustrated in Figure V-2, in the ith cell, if the ray hits the top surface, the ray traversal

length 𝑡𝑖 is computed as 𝑡𝑖 = (0.5 − 𝑝𝑦)/𝑑𝑦, where 𝑝𝑦 is the y coordinate of 𝑝𝑖, and 𝑑𝑦

is the y component of d. The error in 𝑡𝑖 will be proportional to 𝑡𝑖. When taking the machine

epsilon ε = 2−23 for single precision, x and y for arbitrarily accurate real numbers, and 𝑓(𝑥)

for a floating-point representation of x, 𝑓(𝑥 + 𝑦) = (𝑥 + 𝑦)(1 + 𝜀+) with some ε+ ≤ ε.

Similarly, the error in ti is computed as:

𝑓(𝑡𝑖) = 𝑓 (
𝑓(0.5 − 𝑝𝑦)

𝑑𝑦
) =

(0.5 − 𝑝𝑦)(1 + 𝜀1)

𝑑𝑦(1 + 𝜀2)

= 𝑡𝑖(1 + 𝜀1 + 𝜀2 + 𝜀1𝜀2) = 𝑡𝑖(1 + 2𝜀𝑡), 𝜀1, 𝜀2 ≤ 𝜀

(5.2)

Note that ignoring ε1ε2, we have εt ≤ ε. We then compute:

𝑓(𝑝𝑖
′) = 𝑓(𝑝𝑖 + 𝑓(𝑡𝑖)) = 𝑓(𝑝𝑖 + 𝑡𝑖(1 + 2𝜀𝑡))

= (𝑝𝑖 + 𝑡𝑖(1 + 2𝜀𝑡))(1 + 𝜀3))

= (𝑝𝑖 + 𝑡𝑖)(1 + 3𝜀𝑝)

(5.3)

for some 𝜀𝑝 ≤ 𝜀 , ignoring ε3εt . Next, we transform the coordinates of 𝑓(𝑝𝑖
′) to the

neighboring (i + 1)th cell where the ray continues. This point is computed as:

𝑝𝑖+1 = 𝑓(𝑓(𝑓(𝑝𝑖
′)𝑠) + 𝑐) = ((𝑝𝑖 + 𝑡𝑖)𝑠 + 𝑐)(1 + 5𝜀𝑖) (5.4)

for some 𝜀𝑖 ≤ 𝜀, where scale s and shift c depend on depth and location. Therefore, 𝑓(𝑝𝑖+1̃) =

 𝑝𝑖+1̃ + 1(1 + 5𝜀), where 𝑝𝑖+1,̃ is the exact value computed from 𝑝𝑖. Thus, the numerical

46

error added during the traversal point is proportional to the coordinate values, the number of

floating-point operations and ε.

Since we are using a cell coordinate system, each coordinate of 𝑝𝑖 is in [-0.5,0.5]. Therefore,

the error is always bounded by 2.5𝜀. In a global coordinate system, the error is bounded by

2.5𝜀𝑤𝑖 , where wi is the size of the 𝑖𝑡ℎ cell along the ray. Let 𝑒0 be the error in the eye

location (i.e., the error introduced to compute 𝑝𝑟𝑖𝑔ℎ𝑡−𝑒𝑦𝑒 in the cell-local coordinate frame).

Starting from this initial error 𝑒0, traversing n cells results in total error:

𝑒0 + ∑ 2.5𝜀𝑤𝑖

𝑛

𝑖=0

 = 𝑒0 + 2.5𝜀 ∑ 𝑤𝑖

𝑛

𝑖=0

≤ 𝑒0 + 2.5 √3𝜀𝐿

< 𝑒0 + 5𝜀𝐿,

(5.5)

where L is the ray length. Note that ∑ 𝑤𝑖 𝑖=0
𝑛 ≤ √3𝐿. Thus, by using the cell coordinate system

for a ray/voxel traversal, we have shown that the error is proportional to L. Moreover, the error

bound in angle 𝑠𝑖𝑛−1 (
𝑒0

𝐿
+ 5𝜀) does not increase as a function of L, and consequently, the

ray does not deviate from the pixel center by more than a small fixed angle regardless the length

of the ray L.

47

Figure V-3. A ray traversal using cell-local coordinate system

Figure V-4. The error in ray angle (degrees)

(a) Test Scene (b) Errors in Ray Angle (c) # of Cells Crossed

(a) Ray length VS Ray angle Error (b) Crossed cells VS Ray Angle error

48

To verify our analysis, we performed an experiment, as demonstrated in Figure V-3. The

maximum level of the octree in our test scene reaches 24. In (b), we visualize the error angle

between the final ray location and the initial ray direction, magnified by 109 for display in

gray. We also visualize the number of cells crossed in gray [(c) in Fig. V-3]. Figure V-4 is the

result of our test scene. We show that the screen space ray-deviation from the pixel center,

formulated as the ray angle error, does not accumulate during ray traversal. In fact, the error is

indeed very small and is relatively larger in the nearby pixels (the maximum ray angle error is

7.5 × 10−9 degrees) due to the initial position error (the position error is 2.5 × 10−7 in 𝐿2

norm). It then slightly decays as L increases. The red line in (a) is the worst-case error bound.

In (b), as the number of cells crossed by the ray increases, the stochastic decay increases. The

experimental result implies that we can perform the ray casting even on mobile GPUs with only

half-precision floats (𝜀 =
1

1024
) using fragment shaders. We compare the results using the world

coordinate and local coordinate in Figure V-5.

Figure V-5. The comparison on distortion with two coordinate systems

(a) World Coordinate (b) Cell-local Coordinate

49

B. Rendering Acceleration Based on Color Interpolation

In ray casting, a ray traverses 3D space while sampling color from the octree. Major cost factors

for ray casting are (1) the number of rays per pixel, (2) the numbers of samples per ray, and (3)

the computational complexity of sampling color. In an earlier section, we introduced techniques

to reduce the computational complexity of sampling color by directly moving from a cell to its

neighbor cell along the ray (Chapters IV.C and V.A.1). We further simply reduce the number

of samples per ray by skipping empty cells. If the sampled cell is empty, we traverse toward the

root of the octree to find the largest empty cell and resume the ray traversal; otherwise, we

traverse to the leaf and move to the next sample position. We can also reduce the number of

rays per pixel; however, discontinuity of color increases due to missing pixel color in screen

space. In the following section, we first describe the color interpolation of a quadtree and an

octree, which generates continuous color vectors. We then propose quadtree-based foveated

rendering, which reduces the number of rays per pixel with color interpolation of a quadtree.

1. GPU-Based Quadtree/Octree Interpolation

As we construct a 2:1 balanced octree on the GPU, we also transplant quadtree/octree

interpolation from the CPU to the GPU based on Kim et al. [10]. A 2:1 balanced quadtree/octree

generates the limited number of local cell connectivity types called stencils [10]. Without

rotational and reflection symmetry, a quadtree has 16 stencils (Fig. V-6), and an octree has 255

stencils. In other words, we have 16 different cases in the quadtree interpolation and 255

different cases in the octree interpolation.

50

Figure V-6. 16 stencils in a 2:1 balanced quadtree

While interpolating samples in a quadtree/octree, samples to be interpolated (vertices of red

dotted boxes and green dotted boxes in Fig. V-7) and their interpolation weights are different

for each stencil. We compactly store local connectivity of the samples and interpolation weights

in a 16-bit float texture 𝑇𝑤 with RG channels and the indices of lookup for 𝑇𝑤 in a 16-bit

integer texture 𝑇𝑖. Based on 𝐺𝑝, 𝐺3, 𝑇𝑤, and 𝑇𝑖, we rapidly interpolate random color samples

in a quadtree on the GPU (Fig. V-7 bottom).

Figure V-7. Stencils in 2D (top) [10] and their quadtree interpolation on the GPU (bottom)

Octree interpolation has only one higher dimension of quadtree interpolation; however, it

degrades the performance on the GPU, especially during ray casting. The reason is that 255

interpolation cases aggravate the divergent branching for the SIMD architecture of the GPU

[59]. Accessing all the cells to be interpolated and reading the interpolation weights are also not

51

inexpensive operations. Multiple texture reads degrade the GPU performance even with the

help of caching. In the worst-case, octree interpolation on empty cells with eight children

significantly lowers the performance, while the resulting color is simply transparent.

Therefore, we accelerate octree interpolation in the following ways. First, we reduced the

number of texture-read operations by using the more compact interpolation weight table that

prevents multiple access on the same cell. Furthermore, to avoid repeated unnecessary

computation, we precompute the stencil type and a flag for the existence of interpolated color

per cell on the GPU. These properties are not changed until the octree changes its topology or

field and can avoid the aforementioned worst-case. Last, we store 𝑇𝑤 and 𝑇𝑖 as uniform

buffer objects [47] that have smaller storage than texture objects, yet, provide faster read

operation. After acceleration, we obtain the result of the octree interpolation 255 stencils with

random colors, as illustrated in Figure V-8.

Figure V-8. The octree interpolation for 255 stencils [10] on the GPU

52

2. Foveated Rendering Based on a Quadtree

Unlike common 2D screens, the position of the eyes is fixed with respect to the screen in a VR

environment. Since the view angles of the eyes have limits, the range of visible area in the

screen is limited in VR, and the rendering cost can be reduced by ignoring the invisible area.

By obtaining further physiological information from the eyes, more cost reduction is also

possible. With the availability of an affordable gaze tracker, we can obtain a gaze point, at

which a user looks in VR. Human eyes perceive sharply near the gaze point and vaguely far

from the gaze point. This degree of perception forms layers from the gaze point, including the

foveal region, the peripheral region, etc. By observing the physiological nature of the eyes, we

reduce rendering computation in the screen space by rendering the focused area at a high

resolution and the rest at a low resolution, a technique known as foveated rendering. Notice the

number of rays (red dots) in the full resolution and in the screen space quadtree for the same

area in Figure V-9. Foveated rendering greatly reduces the rendering cost, while providing the

same rendering quality to users.

Figure V-9. The ray casting in full resolution and quadtree-based foveated rendering

53

The core idea of our foveated rendering method is to generate several layers of a rendered screen

and composite the layers for the final screen, as with Guenter et al. [9] (Fig. V-9). The main

difference, however, is that we represent the screen space using a quadtree (the rightmost figure

in Fig.V-9) and blend layers using quadtree interpolation. Based on the gaze point and the area

ratio of each layer, we first create a heat map, which captures the normalized degree of

perception for a human subject. Note that we can add multiply-focused points in a heat map

and freely add additional regions of interest. Next, we determine the size of each layer and

assign the depth to the layers based on the heat map (the depth of layers in Fig. V-9). We then

refine or coarsen the screen space quadtree and perform ray casting in various resolutions based

on the depth of layers from low to high-resolution, as shown in Figure V-10. Finally, for the

final composite scene, we interpolate the rendering results with various resolutions by

traversing the quadtree using screen space quadtree interpolation, as in Figure V-10.

By adjusting the size of the layers and the maximum depth of the quadtree (i.e., the number of

layers), we can find a balance between the rendering performance and quality. In our

experiment, our quadtree-based foveated rendering is on average 2-4 times faster than full

resolution rendering, without noticeable visual difference inside the VR environment (Fig. V-

11).

54

Figure V-10. The rendering and blending layers in different resolutions

Figure V-11. The full resolution rendering and foveated rendering of the paintings

55

VI. Painting Interfaces and Volumetric Brush Models

In 2D painting, brushes allow users to paint a large number of pixels. Along with the

development of 2D digital painting, a large number of brushing tools have been developed.

Most of these tools can be naturally generalized to 3D in our painting framework, and they can

be immediately understood by 2D users who can paint a very large number of voxels. In this

chapter, we introduce a few examples of such 2D brushes. We also describe volume-specific

brush models and filters, which can provide a resolution control, support other shape

representations, enhance depth perception, and neaten strokes.

A. Painting Interfaces

Our volume painting system supports conventional painting tools for users, such as color

mixing, erasing, recoloring, and color blending. As a choice for painting user interfaces, we use

off-the-shelf VR controllers, such as HTC Vive controllers [35]. When the controller is

triggered, we record the location of the controller and sub-sample the location at a lower

frequency (about 5Hz) to paint. Left-handed and right-handed horizontal touch-swipe changes

the painting transparency and the brush radius for each. The brush radius is scaled by the zoom

level. Thus, to have a larger brush, the user must zoom out. Trigger pressure also affects the

brush radius.

We implemented novel 3D color picking interfaces that allow the user to select a color using a

left-handed controller while drawing (Figures VI-1 and VI-2). Note that existing color pickers

often require a user to use both of their hands, and do not allow changing color during stroking.

Our first color picker displays an RGB color cube, and the user can move the controller inside

56

the cube to change the brush color. As illustrated in Figure VI-1, using only one hand, a user

can choose a yellowish color (left), rotate or translate the cube (middle), and change color while

applying strokes at the same time (right).

Figure VI-1. A one-handed color picker (RGB color cube)

Since the user may have difficulty finding the proper color and its brightness level, our

advanced color picker model is shaped as a cylinder in the HSV color space (Fig. VI-2). A user

can choose the color projected on a disk, which is a horizontal cross section of the cylinder, and

select the brightness of color by moving up or down inside the cylinder. If a user wants to

choose a color from painting, a user may also directly sample the color from the painting by

pointing at the desired color and pushing a grab button on the right-hand HMD controller.

Figure VI-2. A one-handed color picker: HSV color cylinder

57

In addition to color picking, we provide users with several shortcuts for painting modes and

options. A user can quickly choose their paint mode, such as paint, erase, recolor, or color mix

by clicking the left/right side of a touchpad on the right-hand controller. However, as the

number of painting modes increase, this approach takes time to choose the proper paint mode.

Therefore, our system provides a quick menu for paint mode and options using the left-hand

controller (Fig. IV-3). For navigating the canvas, painters use both hand controllers in such a

way that they grab some points in the canvas and move them around.

Figure VI-3. A quick menu for paint modes and options

58

B. Basic Volumetric Brush Models

In 2D painting, users quickly apply brush strokes and react to immediate feedback. Modern

CPUs can handle reasonably large brush sizes of up to a few hundred pixels at interactive rates,

however, for a larger brush, interactivity begins to diminish. This can be quite restrictive to

users because the user must tolerate the delay or switch to a smaller brush to fill in the large

area. In 3D painting, this delay can be felt even at a much smaller brush scale. One solution is

to use adaptive brush strokes, where we refine the grid only up to a resolution that is sufficient

to represent the brush details. For a smaller brush, we further refine the adaptive grid, and for a

larger brush, we stop at a certain resolution, which is roughly ten voxels corresponding to the

brush radius. The sky in Figure VII-7 was painted with a very large brush (spanning about one

kilometer in size), the effective radius of which in the finest resolution is millions of voxels.

In digital painting, pigment deposition from the brush and mixing with the canvas color is a

separate topic and is beyond the scope of this dissertation. Fortunately, color flow, deposition,

and mixing methods developed in 2D digital painting applications are directly applicable to our

3D volumetric painting. Here, we implement the popular per stroke maximum blending mode

(i.e., “paint” mode in Tab. VI-1) found in painting applications [2] to extend 2D digital painting

to 3D (Fig. VI-4). We denote t𝑟 as a certain point in run time and t𝑒 as the time when the

input stroke ends. By exploiting a temporary RGBA buffer on the CPU-side, we update the

color of the cells that intersect with the input stroke in a blank canvas (i.e., temporary RGBA

buffer) and then merge color to the painted color (i.e., RGBA pool). This prevents the repeated

accumulation of alpha at the cells that interest with more than two segments in the input stroke

(black spheres in Fig. VI-5). Note that many other alternatives are available, such as physically-

59

based pigment mixing using the Kubelka-Munk mode [90], RYB mixing [94], or advanced

RGB space color mixing [43].

Figure VI-4. A flow of pigment deposition with color buffers

2D brush stamping methods (another orthogonal topic) can also be directly applied to 3D

painting. We currently support multiple stamp shapes: a sphere, a cylinder, a box, a cone, and

procedural Perlin noise. For spherical stamping, our system supports the sweeping tool,

resulting in tapered capsules. We place these tapered capsules to connect the two consecutive

samples of a stroke path (the swept stroke algorithm in Diverdi [83], Fig. IV-5).

Figure VI-5. An input stroke (top) and its swept stroke (bottom) [83]

Based on Figure IV-4, we provide basic brush models, including paint, erase, recolor, and color

mix. We implement a simple color mix method, another common 2D painting practice, as

follows. At each sampling point, a brush can pick up color from the canvas and blend it with

60

the current brush color. As shown in Figure I-2 (b), surface painting systems like Tilt Brush

[33] do not have color mixing between strokes. In contrast, color mix automatically generates

spatially-varying colors, and this is a popular method used to generate color gradation in a

painting, as shown in Figure I-2 (a).

“Voxel dodge” and “voxel burn”, which can increase or decrease the brightness of voxels, work

like recoloring. For the voxels intersected with a brush stamp, we pick up their original color,

update the color by increasing or decreasing the value in HSV color space, and overwrite the

original color with the updated one. An interesting point observed during our experiments is

that users frequently employ voxel dodge and voxel burn to depict highlight, shadow, and shade,

while both brushes were originally introduced to emphasize photos in 2D.

Figure VI-6. A flow of diffusion with color buffers

Using the same color buffers shown in Figure VI-4, we implement other basic brush models

based on diffusion (Fig. VI-6), such as voxel blur or voxel smudge. Note that copy at the time

𝑡𝑟1, diffuse at the 𝑡𝑟2, and overwrite at the time 𝑡𝑟3 transpire in order. The voxel blur and

smudge brushes spread color using tree adjustment on octrees. The RGBA pool on the CPU-

side preserves painted color as input for the diffusion step. The temporary RGBA buffer stores

61

diffused color of cells. At each diffusion step, the output color in the temporary RGBA buffer

is overwritten to the RGBA pool. When users draw a stroke with a voxel blur brush (Fig. VI-

7), the weighted one-step diffusion is applied to each cell with their nearest six neighbors, as

shown in Equation 6.1. The diffused RGB 𝐶𝑑 and alpha 𝐴𝑑 of a cell can be obtained from

the averaged RGB/alpha value of the cell (𝐶𝑝, 𝐴𝑝) and six neighbors (𝐶𝑛, 𝐴𝑛) along +/- XYZ

direction, where D is the diffusion coefficient.

𝐴𝑑 = 𝐴𝑝 + 𝐷 × 𝛴𝑛=1
6 (𝐴𝑛 − 𝐴𝑝)

𝐶𝑑 =
𝐶𝑝 + 𝐷 × 𝛴𝑛=1

6 (𝐶𝑛 ∗ 𝐴𝑛 − 𝐶𝑝 ∗ 𝐴𝑝)

𝐴𝑑

(6.1)

If we allow only 3-neighbor diffusion in the direction of a stroke, we obtain voxel smudge (Fig.

IV-8). For rendering, our system decides between the color in the RGBA pool and color in the

temporary RGBA buffer (choosing at 𝑡𝑟 in Fig. VI-6). In the middle of drawing a stroke, we

render color in the temporary RGBA buffer if the diffused alpha is not zero; otherwise, we

render color in the RGBA pool.

62

Figure VI-7. The volume strokes before/after applying voxel blur

Figure VI-8. The volume strokes before/after applying voxel smudge

Table VI-1. Color blending operations and color merging methods of basic brush models

63

C. Volume-specific Brush Models and Filters

1. Voxel Resolution Control

In our system, the brush size determines tree depth so that users do not have to choose the size

of an individual voxel (Chapter VI.B). To change the voxel size in painted strokes, users

typically adjust the zoom setting to decrease or increase the brush size and then paint over

strokes. Although this is a natural workflow of controlling voxel size, more advanced resolution

control tools are desired to refine/coarsen voxels or control resolution variations over a large

area. We introduce such tools for 3D painting, including voxel melt, voxel merge, mosaic, and

view-dependent adjustment. We adopt various strategies for increasing/decreasing the size of

voxels based on user behavior. A user develops their artwork from a rough sketch to a detailed

painting and locally retouches their painting to complete the painting; in this case, only a small

number of voxels is required to increase resolution. On the other hand, a user may decrease the

resolution of many voxels at once when the voxel memory reaches its limit. By observing user

behavior, we introduce novel brush models for generating finer voxels, as in Chapter VI.C.1.a,

and filters for merging voxels in Chapter VI.C.1.b.

a. Voxel-Refining Brush Model

Voxel melt is a voxel-refining brush that smooths paintings by splitting large voxels into smaller

voxels and coloring split voxels. Like voxel blur and voxel smudge, voxel melt also exploits

diffusing color. One difference is that voxel melt composes the final color from the original

color based on the alpha validity test, which decides the existence of color. For the alpha

validity test, we preserve the alpha channel of all the cells intersected with the voxel melt brush

64

before color diffusion 𝑡𝑠, in the temporary alpha buffer (Fig. VI-9). We then diffuse the color

using the RGBA pool and the temporary RGBA buffer as with voxel blur and voxel smudge.

Next, we perform the alpha validity test that compares the original alpha and the diffused alpha

reading from the RGBA pool and the temporary alpha buffer. If the diffused alpha of the cells

is less than the user-specified threshold of the original alpha, we erase the color of the cell. If

not, we restore the alpha from the temporary RGBA buffer after finishing a segment (𝑡𝑒).

Figure VI-9. A flow of diffusion and alpha test with color buffers

Simultaneously, our system determines whether the cells may be adjusted by computing the

desired size of the cell in a view-dependent manner. In the tree adjustment step (Fig. VI-9), we

merge the cells if all the siblings of an invalid cell have no color. In case of valid cells, we split

the voxels, which are bigger than the desired size of the voxels. After generating children of

valid cells, we repeat the color diffusion and alpha validity test without further tree adjustment.

In Figure VI-10, we show the example case when a voxel melt brush is desired. A user can

smooth the boxy head of an octopus by applying the voxel melt brush. In a similar way, we can

design a swollen brush model based on the maximum blending for each diffusion step and color

validity test with inverse conditions.

65

Figure VI-10. Before/after applying voxel melt on the octopus head

b. Voxel Merging Filters

One solution for decreasing voxel resolution is to regulate the maximum depth of cells in the

octree from the beginning. Alternatively, we provide small user-defined areas called rooms for

an intended appreciation view of the painting (yellow boxes in Fig. VI-11 left). The detailed

painting inside the rooms corresponds to foreground objects, and the remainder of the scene

serves as a background. When a user defines a room with scale, space, and location, the

maximum voxel resolution of entire cells varies based on the distance or visibility from the

rooms. Multiple rooms can be defined as well by computing the maximum voxel resolution

from the closest room. By defining rooms, users can roughly make a memory plan for their

painting and navigate quickly in a large 3D painting. In addition, rooms support a fast startup

of 3D painting, thanks to lightweight tree adjustment. A user already hints where they make

painting details, therefore, the difference between the size of pre-refined voxels in the rooms

and the desired voxels to be painted is small.

66

Figure VI-11. Example of a painting with two rooms © 2019 Jisu Kim

Figure VI-12. An application of voxel mosaic to a painting example

(b) Level=20

Memory=28.95%

(a) Level=24

Memory=100%

(c) Level=18

Memory=14.67%

A painting example © 2018 Jini Kwon

67

Another filter used to restrict the maximum depth of the cell during painting is called voxel

mosaic. Voxel mosaic merges voxels in a painting (Fig. VI-12 top) with a preview at different

viewpoints (Fig. VI-12 bottom). Thanks to octree mipmapping, the expected results of voxel

mosaic are interactively rendered by limiting the maximum depth in tree traversal on the GPU.

Once a user specifies the smallest size (or the maximum depth) of voxels in a region of interest,

as well as a blending mode (the maximum alpha/the average alpha blending), voxels smaller

than the user-specified size are merged with the blending mode. Voxel mosaic saves multiple

and expensive topological changes in the octree when voxel merge is expensive and irreversible.

As illustrated in Figure VI-12, a user can also make sure that the intended details of the painting

do not disappear after applying the voxel mosaic. While preserving a similar appearance, a user

can reduce 71.05% of memory consumption within minutes [Fig. VI-12 (a) and (b)].

Figure VI-13. The color-encoded cross section of a volumetric stroke

However, simply restricting the depth is not enough to merge voxels efficiently in some cases.

In Figure VI-13, we visualize the cross section of a volumetric stroke, coloring the area with

opaque color as blue and the area without color as red. Like red voxels in the middle of the blue

voxels, the swept stroke algorithm (Fig. VI-5) may produce refined voxels inside a stroke. Some

cells can be inside one segment but outside another. While adjusting the octree, the intersection

68

status of these cells is overwritten and the cells are refined as outside. Or while elaborating

artwork, small and opaque voxels become an inner part of the painting, or residual voxels

remain after being erased. These types of voxels are undetectable to the naked eye or voxel

merging filters above and may gradually increase over time. We address the problem by

filtering voxels with a user-specified iso-value, such as 3D erosion or dilation (Fig. VI-14).

Based on the distance field generated from the painting, we classify voxels whether they are

inside (blue in Fig. VI-14) or outside (red in Fig. VI-14) of the painting with respect to the iso-

values. If the outside voxels have colorless siblings or the inside voxels have siblings with the

same color, such voxels are merged. With different iso-values, users can decide how much

detail they preserve in the painting (yellow circles in Fig. VI-15) and save memory.

Figure VI-14. The cross section of “Floating Island” and its color-encoded distance field

with different iso-values

Figure VI-15. Results and memory ratio after merging voxels with different iso-values

(a) RGBA Color (b) iso-value = 0.2 (c) iso-value = 0 (d) iso-value = -0.2

(a) iso-value = 0.2

Memory = 25.15%
(b) iso-value = 0

Memory = 55.26%
(c) iso-value = 0.2

Memory = 80.11%

69

2. Hybrid 3D Painting and Brush Models

In 3D painting, each painting method has its own advantage or disadvantage over the creation

process, painting material, shape support, and user-customizable resource control. If different

choices on painting methods are available to users, they cannot only express various styles but

also manage the achievability of their design plan. For example, depending on memory budget

or desired painting quality, a user may choose to either paint various materials on a volumetric

canvas or paint a volumetric hulls stroke with texture maps. Another example is that users can

provide an interesting view to their spectators with a semi-transparent volumetric brush (e.g.,

looking outward from inside smoke) or want to restrict viewpoints, in some cases, to save

memory (e.g., looking outward from inside a rock). For these reasons, we provide a hybrid 3D

painting that combines both surface and volumetric paintings for general 3D painting. With a

hybrid system, a user can paint both volumetric and surface strokes in one scene (Fig. VI-16).

Figure VI-16. Example of strokes using hybrid 3D painting

Painting and rendering engines are independent for two different methods in hybrid 3D painting.

One application of hybrid 3D painting is to use a surface painting engine for fast sketching and

use volumetric painting for color painting (Fig. VI-17). Thanks to inexpensive mesh

70

generations and shading in the surface painting engine, a user may quickly sketch with depth

perception. During the painting phase, a user can paint color in the 3D space without occlusion

or z-fighting. Since rendering engines are separate, a user can exploit two painting engines like

two different layers.

Figure VI-17. Fast sketching with surface painting

and color painting with volumetric painting

To take advantage of the interaction between the two painting methods, we invent a smooth

volume brush, which postpones the creation of a volume stroke like a 3D printing pen (Fig. VI-

18). In volumetric painting, a user experiences difficulty in drawing a straight line or a smooth

curve, as the volumetric brush can easily create squiggles due to imprecise hand control and

unstable controller tracking (Fig. VI-20 left and Fig. VI-20 left). Moreover, the position change

in volume segments during painting may lower the performance due to frequent modification

on octrees. We address this problem by using the smooth volume brush.

71

Figure VI-18. A modeling of a smooth volume brush

A smooth volume brush first generates 3D cylindrical shell segments from the user input to

visualize the positions of segments using a surface painting engine (unset 3D cylinder shell in

Fig. VI-18). In this stage, a user may modify the position of the 3D shell segments by

meticulously moving the input controller. 3D shell segments are linearly interpolated by

translation between the starting point of the first segment and the end point of the last segment.

Similar to the solidification progress, the ratio of the delayed movement to the interpolated

position is inversely proportional to the elapsed time from generation. That is, the older

segments move shorter than the new ones. After a user-specified period passes, all the 3D shell

segments are completely solidified into 3D volume segments using the volume painting engine

(set 3D volume in Fig. VI-18). Thus, a user can control the solidification progress by specifying

the scale of the movement and the time to complete solidification.

72

Figure VI-19. The actual use of a smooth volume brush

Figure VI-20. The comparison on paintings without/with a smooth volume brush

Figure VI-21. The zoomed comparison on paintings without/with a smooth volume brush

73

As illustrated in Figure VI-20 right and Figure VI-21 right, the smooth volume brush model

aids quick painting with straight/curved lines for users. A smooth volume brush model is simple

enough for novice users in that it provides a "squeezing paint" interface and an automatic stroke

revision with simple 3D geometric shells. This reduces squiggles due to imprecise hand control

and unstable controller tracking (circle in Fig. VI-21 left) and increases the painting quality

(Fig. VI-21 right). In 3D painting, stroke alignment (e.g., two crossed lines meeting at a point

or two parallel lines) is more difficult than in 2D painting due to the lack of depth perception.

With a smooth volume brush, users would rather align their strokes using a preview of the 3D

cylinder shell than repeatedly draw lines at similar locations multiple times. As a result, users

can easily match radial lines and spiral lines of the spider web at the intersection points in Figure

VI-21.

74

VII. Results and Discussion

We use C++ programming language with Visual Studio 2017, OpenGL 4.3, OpenVR, and the

Grizzly library [10] under Windows 10 OS to implement our system. Our hardware setup

includes Nvidia GTX Titan Xp GPU and an Intel Core i7-4790 CPU with 16GB RAM for

rendering computation and HTC Vive for interfacing immersive and personal VR environments.

A. Painting Results

We invited digital painting users and novice users to produce volumetric paintings. The “Island”

(Fig. VII-3) represents a good example of an extension of 2D painting to 3D. The user painted

the scene with three distinct locations and a large sky background. Semi-transparent objects,

such as clouds and smoke, and other detailed objects like wires and lamb, also show the benefits

of our system. The user uses a recolor mode and a color mix mode for adding rough shades on

buildings and on the island. Similar to Island, the user explores a much larger painting space in

“Flying Dragons” (Fig. VII-7). Rougher and more colorful shades on the dragon’s body-surface

were used, however, fine details on the eyes, teeth, and horns were maintained.

Our system also shows development possibilities for serious 3D digital painting tools. Each

image of “A Sneaker” (Fig. VII-1) seems like the results of a 2D digital painting, except that

the painting can be appreciated from any viewpoint. Another example with various sizes of

objects is Figure 14. In “Spring Concert” (Fig. VII-2), the user not only produced a digital

painting, but also developed a story with a full 3D scene, including retouched chipmunks, tiny

bees with a detailed score, and a translucent spring haze. From this aspect, we anticipate that

many 2D digital users may extend their existing techniques to 3D. As with Spring Concert, the

75

user creates a funny story with a twist exploiting 3D space in “A Detective Dog and A Turtle

Killer” (Fig. VII-4).

Novice users who do not have any experience with 3D modeling can rapidly create their 3D

artwork using our volumetric brush models (Table VII-1). Novice users have difficulty finding

proper colors to express brightness or shadow because they typically do not have training

experience that strengthens their color sensibility. Using voxel dodge/voxel burn brushes,

novice users can easily paint highlights, shading, or shadows without picking colors in “An Eye”

(Fig. VII-10). “A Spider” (Fig.VII-11) only took a total of 15 minutes to finish using the smooth

volume brush without requiring heavy training on the tools. Painting times vary according to

an individual’s painting style, the fineness and scale of the artwork, and interval times for

changes in the painting plan. However, most of the users update 29𝐾 − 287𝐾 of voxels per

minute.

Table VII-1. Memory usage, the number of voxels, and painting time of artwork

76

Interestingly, the users remarked that they needed to change the way they had previously

perceived painting and that they needed to step away from the familiarity of perspectives on the

2D canvas. The second part of the remark is very interesting, as it appears to be the result of

being able to paint on a very large 3D canvas. We believe future explorations with users will

reveal how perspectives can be painted on 3D canvases. For example, recoloring remote

mountains from a foreground location would be an interesting approach.

77

Figure VII-1. "A Sneaker" from various viewpoints © 2018 Daichi Ito

Figure VII-2. "Spring Concert" from various viewpoints © 2018 Jini Kwon

78

Figure VII-3. "Island" from various viewpoints © 2018 Daichi Ito

Figure VII-4. "A Turtle Killer" from various viewpoints © 2019 Jini Kwon

79

Figure VII-5. "Nature" from various viewpoints © 2018 Jini Kwon

Figure VII-6. "Floating Island" from various viewpoints © 2017 Jaehyun Kim

80

Figure VII-7. "Flying Dragons" from various viewpoints © 2017 Yunhyeong Kim

Figure VII-8. "Snow Mountain" from various viewpoints © 2017 Daeun Song

81

Figure VII-9. "Cupcake Monsters" from various viewpoints © 2019 Daeun Song

Figure VII-10. "An Eye" from various viewpoints © 2019 Yunhyeong Kim

Figure VII-11. "A Spider" from various viewpoints © 2019 Yunhyeong Kim

82

B. Qualitative Comparisons of Using Dynamic Octree

For volumetric painting, we must locate parent cells that contain a brush, and from these parents

(not from roots) we then refine, coarsen, or compute blending. For rendering, we visit cells

from a child to its neighbor using our novel memory-efficient neighbor representation and

dynamic and incremental tree update strategy. Thus, volumetric painting application does not

require traversal from a root, and shallow tree benefits [4], [48] are minimal. In addition,

shallow N-trees would require selecting the depth and the tile size N (per level or cell) at an

early stage. This priority requirement is difficult for users to understand and modify at a later

stage. We claim that the simple octree, which has uniform adaptivity and painting quality in the

canvas regardless of zoom levels, is a more viable approach to volume painting.

Incremental dynamic update, while maintaining high rendering frame rates, is essential for

volume painting, yet, not a key requirement in existing dynamic tree update techniques. In

simulation problems [79], [81], trees are updated globally as they are often adjusted based on

velocity, smoke, proximity to the liquid surface, or details on the liquid surface. Moreover,

rendering is not required, and the frame rate is less demanding than the VR painting applications.

In other studies [4], [14], heavy updating was allowed in a GPU-only dynamic tree, where the

CPU cannot be involved in painting. Because Octomap [5] does not require immediate visual

feedback, a low latency visualization method has not been studied, thus, Octomap cannot be

used for volume painting.

83

C. Limitations and Future Work

While painting a large stroke over a detailed complex area, a large number of octree cells should

be deleted. In this case, while the frame rate is still constant, the delay can be quite large. An

indicator would notify the users of a heavy-weight operation. Our system may also eventually

suffer from out-of-memory. Although the memory size available in modern GPUs is increasing

over time, users can indeed consume all the GPU memory. This can be greatly relieved by using

the topology cleaning operations introduced in Chapter VI.C.1.b., however, more memory plan-

ahead interfaces would be required. Because users spend a long time wearing a VR headset, the

weight of the headset is currently a dominating discomfort factor. One way to reduce such

discomfort is to move some tasks, such as recoloring, from the VR to a conventional 2D monitor.

Error analysis suggests that ray casting can be performed in the half-float precision of 𝜀 =
1

1024
.

Therefore, we plan to examine the performance and accuracy implications of using half-

precision for ray casting and tracing applications. In color blending, the distance of the ray

inside the cell and the alpha value are used to compute the opacity of a color. Currently, color

blending formulas with two independent variables show sudden changes in opacity near 0 and

1. By analyzing the independent variable patterns, in the future, we can model more accurate

color blending formulas at a high resolution.

In digital painting, having multiple layers is indispensable to avoid an unintended touch to

finished parts and apply various effects per layer. The support for multiple volumetric layers

will be a challenging topic for future research. Currently, a user must begin painting on an

empty canvas. Constructing 3D adaptive volumes from uniform 3D volumes, voxelization with

polygonal models [15], [21], [62], [63], [72], or 3D reconstruction and voxelization with

84

multiple 2D images [64], [69] can reduce user workload and support a fast start-up of 3D

painting. Editing functionality, like undo/redo, copy/paste, select, and history look-up, is also

essential for users to reduce work time. For undo/redo operations, one possible solution is to

first provide the rendering results of the editing tools and update octree after users confirm the

operation. For example, if we store texture blocks before/after applying strokes, we can show

the rendering results of an undo/redo without changing the octree on the CPU. For selection

tools, choosing voxels based on various criteria in addition to color expands user’s options [47],

[80]. In this case, we can support volume segmentation by storing each segmented volume to

different layers or allocating a new scalar field pool for labels of segmentation.

Our system is equipped with several basic brush models: volume-specific brush models, filters,

and brush models in hybrid 3D painting. To increase the quality of painting and support various

styles, more volumetric brush models and filters should be further explored. Typically, many

brushes and filters in 2D painting are easily extended to 3D without significant changes in

modeling designs. However, some tools can be computationally expensive in 3D painting if we

directly reuse their 2D modeling designs, due to heavy tree adjustment. Therefore, in the future

work, we would like to study lightweight 3D brushes and filters for such tools. Similar to

proposed approaches in Chapter IV and Chapter VI, we can adopt incremental or ‘rendering

first/update later’ strategies for lightweight 3D tools; for example, a color-fill operation with

3D contouring exploits distance fields to decide the interior and exterior of the painting, and

incrementally update the color of voxels near the cursor. As with updating color, various

physical properties, such as gravity, viscosity, or heat, locally simulated brushes and advanced

brush models for the complex design of physical properties [67] might result in interesting

painting styles. More diverse volumetric brush models, such as stylized brush models, including

watercolor [17] and Impasto [90], and sculpting brush models, including 3D warp brush [93]

and procedural brushes [68], will be interesting ways to create various styles of 3D digital art.

85

Various styles of rendering [20], including isosurface rendering based on our GPU-side octree

interpolation, will be part of our future work as well.

Finally, we discussed a volumetric painting system and its brush models in the scope of a new

medium for 3D painting. Other than 3D painting, many research areas (e.g. modeling [5], [60],

[88], film and game design [19], [23], [85], simulation [30], [48], [79], robot navigation [5],

scientific visualization [12], [13], [27], [36], 3D printing [79], and medical imaging [27], to

name a few) employ 3D volumes for representing data. Our system provides both authoring

and visualizing tools for 3D volumes, therefore applying volumetric painting system to those

areas would be interesting.

86

VIII. Conclusions

In this dissertation, we proposed the first volumetric painting system that can paint volumetric

strokes, mix colors, recolor existing strokes, erase, and depict semi-transparency at a very large

scale and with high details in VR. To achieve this goal, we used octree with high-depth and

performed ray casting to render the volume. We used the CPU to implement dynamic tree

adjustment and proposed low latency update methods that keep the rendering frame rate highly

interactive. We showed that small staged blocks and neighbor computation masks maintain the

system performance, while the latency and artifacts were well suppressed. To reduce the

memory footprint, we showed that three neighbors per cell are sufficient for efficient neighbor

access in an octree. For rendering, we provided a ray traversal error bound using posterior error

analysis and verified the bound with experiments. To accelerate rendering, we extended the

CPU-side quadtree/octree interpolation to the GPU and devised quadtree-based foveated

rendering.

For 3D painting for non-expert individuals with various style support, we extended common

2D brushes to 3D, such as paint, erase, recolor, color mix, blur, smudge, dodge, and burn. We

also proposed volume-specific brushes and filters, which reduces repetitive painting works:

voxel melt, room, voxel mosaic, and voxel merge based on iso-values to control the resolution

of many voxels and user-driven memory management. We proposed other volume-specific

brush models based on the hybrid 3D painting system, which is a combination of surface

painting and volumetric painting. Hybrid brush models solve problems of depth perception [37]

and stroke neatening in volumetric painting.

87

Bibliography

[1] A. Andre, S. Saito, “Single-view Sketch Based Modeling,” In Proceedings

of the Eighth Eurographics Symposium on Sketch-Based Interfaces and

Modeling (SBIM’11), pp. 133–140, 2011.

[2] Adobe Systems Incorporated, “Adobe photoshop user guide,”

http://www.photoshop.com/, 2016.

[3] A. D. Gregory, S. A. Ehmann, M. C. Lin, “intouch: Interactive multi-

resolution modeling and 3d painting with a haptic interface,” Proceedings

IEEE Virtual Reality 2000, pp. 45–52, 2000.

[4] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, J. D. Owens, “Glift:

Generic, efficient, random-access GPU data structures,” ACM Transactions

on Graphics (TOG), vol. 25, no. 1, pp. 60–99, 2006.

[5] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard,

“Octomap: An efficient probabilistic 3d mapping framework based on

octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.

[6] A. Shtof, A. Agathos, Y. Gingold, A. Shamir, D. Cohen-Or, “Geosemantic

Snapping for Sketch-Based Modeling,” Computer Graphics Forum, vol. 32,

no. 2pt2 , pp. 245–253, 2013.

[7] B. Adams, M. Wicke, P. Dutré, M. H. Gross, M. Pauly, M. Teschner,

“Interactive 3D Painting on Point-Sampled Objects,” Symposium on Point

Based Graphics(SPBG), pp. 57–66, 2004.

[8] B. Dado, T. R. Kol, P. Bauszat, J.-M. Thiery, E. Eisemann, “Geometry and

attribute compression for voxel scenes,” Computer Graphics Forum, vol.

35, no. 2, pp. 397–407, 2016.

88

[9] B. Guenter, M. Finch, S. Drucker, D. Tan, J. Snyder, “Foveated 3D

graphics,” ACM Transactions on Graphics (TOG), vol. 31, no. 6, pp. 164,

2012.

[10] B. Kim, P. Tsiotras, J. Hong, O. Song, “Interpolation and parallel adjustment

of center-sampled trees with new balancing constraints,” The Visual

Computer, vol. 31, no. 10, pp. 1351–1363, 2015.

[11] B. Lévy, S. Petitjean, N. Ray, J. Maillot, “Least squares conformal maps for

automatic texture atlas generation,” ACM transactions on graphics (TOG),

vol. 21, pp. 362–371, 2002.

[12] B. Johanna, H. Markus, P. Hanspeter, “State-of-the-art GPU-based large-

scale volume visualization,” Computer Graphics Forum, vol. 34, no. 8, pp.

13–37, 2015.

[13] C. Crassin, F. Neyret, S. Lefebvre, E. Eisemann, “Gigavoxels : Ray-guided

streaming for efficient and detailed voxel rendering,” ACM SIGGRAPH

Symposium on Interactive 3D Graphics and Games (I3D), 2009.

[14] C. Crassin, F. Neyret, M. Sainz, S. Green, E. Eisemann, “Interactive indirect

illumination using voxel cone tracing,” Computer Graphics Forum

(Proceedings of Pacific Graphics 2011), vol. 30, no. 7, 2011.

[15] C. Crassin, S. Green , “Octree-based sparse voxelization using the GPU

hardware rasterizer,” OpenGL Insights, pp. 303-318, 2012.

[16] Chen Wei, “Volumetric cloud generation using a Chinese brush calligraphy

style,” Ph.D. Dissertation, University of Cape Town, 2014.

[17] C. J. Curtis, S. E. Anderson, J. E. Seims, K. W. Fleischer, D. H. Salesin,

“Computer-generated watercolor,” Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, pp. 421–430,

1997.

89

[18] C. Regan, “An investigation into nausea and other side-effects of head-

coupled immersive virtual reality” Virtual Reality, vol. 1, no. 1, pp. 17–31,

1995.

[19] D. Benson, J. Davis, “Octree textures,” ACM Transactions on Graphics

(TOG), vol. 21, no. 3, pp. 785–790, 2002.

[20] D. Coeurjolly, P. Gueth, J. Lachaud, “Regularization of voxel art,”

SIGGRAPH Talk 2018, 2018.

[21] D. Cohen-Or, A. Kaufman, “Fundamentals of surface voxelization,”

Graphical models and image processing, vol. 57, no. 6, pp. 453-461, 1995.

[22] D. Dolonius, E. Sintorn, V. Kämpe, U. Assarsson, “Compressing color data

for voxelized surface geometry,” IEEE Transactions on Visualization and

Computer Graphics (TVCG), 2018.

[23] D. G. Debry, J. Gibbs, D. D. Petty, N. Robins, “Painting and rendering

textures on unparameterized models”, ACM Transactions on Graphics

(TOG), vol. 21, no. 3, pp. 763–768, 2002.

[24] D. Kataoka, “Art and virtual reality, new tools, new horizons,” Silicon Valley

VR Expo., 2017.

[25] D. F. Keefe, D. A. Feliz, T. Moscovich, D. H. Laidlaw, J. J. LaViola, Jr.

“CavePainting: A Fully Immersive 3D Artistic Medium and Interactive

Experience,” Proceedings of the 2001 Symposium on Interactive 3D

Graphics (I3D), pp. 85–93, 2001.

[26] D. Keefe, R. Zeleznik, D. Laidlaw, “Drawing on Air: Input Techniques for

Controlled 3D Line Illustration,” IEEE Transactions on Visualization and

Computer Graphics (TVCG), vol. 13, no. 5, pp. 1067–1081, 2007.

[27] E. Gobbetti, F. Marton, J. A. I. Guitián, “A single-pass GPU ray casting

framework for interactive out-of-core rendering of massive volumetric

90

datasets,” The Visual Computer, vol. 24, no. 7-9, pp. 797–806, 2008.

[28] Ephtracy, “MagicaVoxel,” https://ephtracy.github.io, 2013.

[29] E. Rosales, J. Rodriguez, A. Sheffer, “SurfaceBrush: From Virtual Reality

Drawings to Manifold Surfaces,” arXiv e-prints, Article arXiv:1904.12297,

2019.

[30] F. Losasso, F. Gibou, R. Fedkiw, “Simulating water and smoke with an

octree data structure,” ACM Transactions on Graphics (TOG), vol. 23, no.

3, pp. 457–462, 2004.

[31] F. Reichl, M. Treib, R. Westermann, “Visualization of big SPH simulations

via compressed octree grids,” 2013 IEEE International Conference on Big

Data, pp. 71–78, 2013.

[32] Guillaumechereau, “Goxel” http://guillaumechereau.github.io/goxel/, 2015.

[33] Google, “Tilt brush by google,” https://www.tiltbrush.com/, 2015.

[34] H. Samet, “Implementing ray tracing with octrees and neighbor finding,”

Computers & Graphics, vol. 13, no. 4, pp. 445–460, 1989.

[35] HTC Corporation, “HTC Vive,” https://www.vive.com/, 2011.

[36] I. Boada, I. Navazo, R. Scopigno, “Multiresolution volume visualization

with a texture-based octree,” The Visual Computer, vol. 17, no. 3, pp. 185–

197, 2001.

[37] I. P. Howard, “Depth perception,” Stevens’ handbook of experimental

psychology, 2002.

[38] J. Chen, D. Bautembach, S. Izadi, “Scalable real-time volumetric surface

reconstruction,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, 2013.

[39] J. D. Macdonald, K. S. Booth, “Heuristics for ray tracing using space

subdivision,” The Visual Computer, vol. 6, no. 3, pp. 153–166, 1990.

[40] J. Hakkinen, T. Vuori, M. Paakka, “Postural stability and sickness symptoms

91

after HMD use,” IEEE International Conference on Systems, Man and

Cybernetics, vol. 1, pp. 147–152. 2002.

[41] J. Kniss, A. Lefohn, R. Strzodka, S. Sengupta, J. D. Owens, “Octree textures

on graphics hardware,” ACM SIGGRAPH 2005 Sketches, 2005.

[42] J. Kruger, R. Westermann, “Acceleration techniques for GPU-based volume

rendering,” Proceedings of the 14th IEEE Visualization 2003 (VIS), IEEE

Computer Society, p. 38, 2003.

[43] J. Lu, S. Diverdi, W. Chen, C. Barnes, A. Finkelstein, “RealPigment: Paint

compositing by example,” Proceedings of the 12th International Symposium

on Non-photorealistic Animation and Rendering (NPAR), 2014.

[44] J. Schmid, M. S. Senn, M. Gross, R. W. Sumner, “OverCoat: An Implicit

Canvas for 3D Painting,” ACM SIGGRAPH 2011 Papers, Article no. 28,

2011.

[45] K. Bürger, J. Krüger, R. Westermann, “Direct volume editing,” IEEE

Transactions on Visualization and Computer Graphics (TVCG), vol. 14, no.

6, pp. 1388–1395, 2008.

[46] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-salama, D. Weiskopf, “Real-

time volume graphics”, CRC Press, 2006.

[47] Khronos Group, “Uniform Buffer Object- OpenGL,”

https://www.khronos.org/opengl/wiki/Uniform_Buffer_Object, 2017.

[48] K. Museth, “VDB: High-resolution sparse volumes with dynamic topology,”

ACM Transactions on Graphics (TOG), vol. 32, no. 3, 2013.

[49] K. Zhou, M. Gong, X. Huang, B. Guo “Data-parallel octrees for surface

reconstruction,” IEEE Transactions on Visualization and Computer

Graphics (TVCG), vol. 17, no. 5, pp. 669–681, 2011.

[50] L. Olsen, F. F. Samavati, M. C. Sousa, J. A. Jorge, “Sketch-based modeling:

92

A survey,” Computers & Graphics, vol. 33, no. 1, pp. 85–103, 2009.

[51] L. P. Kobbelt, M. Botsch, U. Schwanecke, H.-P. Seidel, “Feature sensitive

surface extraction from volume data,” Proceedings of the 28th Annual

Conference on Computer Graphics and Interactive Techniques, pp. 57–66,

2001.

[52] L. Siemon, “VoxelShop,” https://blackflux.com/, 2013.

[53] M. Agrawala, A. C. Beers, and M. Levoy, “3D painting on scanned

surfaces,” Proceedings of the 1995 symposium on Interactive 3D graphics

(I3D), pp. 145–ff, 1995.

[54] M. F. Deering, “HoloSketch: A Virtual Reality Sketching/Animation Tool,”

ACM Transations Computer-Human Interaction, vol. 2, no. 3, 1995.

[55] M. Hadwiger, P. Ljung, C. R. Salama, T. Ropinski, “Advanced illumination

techniques for GPU-based volume raycasting,” ACM SIGGRAPH 2009

Courses, pp. 2:1–2:166, 2009.

[56] M. Hadwiger, J. Beyer, W. Jeong, H. Pfister, “Interactive volume exploration

of petascale microscopy data streams using a visualization-driven virtual

memory approach,” IEEE Transactions on Visualization and Computer

Graphics (TVCG), vol. 18, no. 12, 2012.

[57] Minddesk Software GMBH., “Qubicle,” https://www.minddesk.com/, 2005.

[58] M. Foskey, M. A. Otaduy, M. C. Lin, “ArtNova: touch-enabled 3D model

design,” Proceedings IEEE Virtual Reality 2002, pp. 119–126, 2002.

[59] M. Harris, I. Buck , “GPU flow control idioms,” GPU gems, vol. 2, pp. 547-

555, 2005.

[60] M. Kazhdan, H. Hoppe, “Screened poisson surface reconstruction,” ACM

Transactions on Graphics (TOG), vol. 32, no. 3, 2013.

[61] Mojang, “Official site|minecraft,” https://minecraft.net/en-us/?ref=m, 2009.

93

[62] M. Pätzold, A. Kolb, “Grid-free out-of-core voxelization to sparse voxel

octrees on GPU,” Proceedings of the 7th conference on high-performance

graphics (HPG), pp. 95-103, 2015.

[63] M. Schwarz, H. P. Seidel , “Fast parallel surface and solid voxelization on

GPUs,” ACM Transactions on Graphics (TOG), vol. 29, no. 6, pp. 179,

2010.

[64] M. Zollhöfer, P. Stotko, A. Görlitz, C. Theobalt, M. Nießner, R. Klein, A.

Kolb, “State of the Art on 3D Reconstruction with RGB‐D Cameras.”

Computer Graphics Forum, vol. 37, no. 2, pp. 625-652, 2018.

[65] M. Zwicker, M. Pauly, O. Knoll, M. Gross, “Pointshop 3D:An Interactive

System for Point-based Surface Editing,” Proceedings of the 29th Annual

Conference on Computer Graphics and Interactive Techniques, pp. 322–

329, 2002.

[66] Oculus, “Quill by story studio,” https://storystudio.oculus.com/en-us/, 2016.

[67] O. Klehm, I. Ihrke, H. Seidel, E. Eisemann, “Property and lighting

manipulations for static volume stylization using a painting metaphor,”

IEEE Transactions on Visualization and Computer Graphics (TVCG), vol.

20, no. 7, pp. 983–995, 2014.

[68] S. Longay, A. Runions, F. Boudon, P. Prusinkiewicz, “Treesketch:

interactive procedural modeling of trees on a tablet,” Proceedings of the

international symposium on sketch-based interfaces and modeling, pp. 107–

120, 2012.

[69] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski, “A comparison

and evaluation of multi-view stereo reconstruction algorithms,” IEEE

Conference on Computer Vision and Pattern Recognition, pp. 519–528,

2006.

94

[70] S. Popov, J. Günther, H.-P. Seidel, P. Slusallek, “Stackless kd-tree traversal

for high performance GPU ray tracing,” Computer Graphics Forum, vol. 26,

no. 3, pp. 415–424, 2007.

[71] S. Schkolne, M. Pruett, P. Schröder, “Surface Drawing: Creating Organic 3D

Shapes with the Hand and Tangible Tools,” Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (CHI), pp. 261–268,

2001.

[72] S. W. Wang, A. E. Kaufman, “Volume sampled voxelization of geometric

primitives,” Proceedings of the 4th conference on Visualization'93, pp. 78-

84, 1993.

[73] S. Tsang, R. Balakrishnan, K. Singh, A. Ranjan, “A Suggestive Interface for

Image Guided 3D Sketching,” Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (CHI), pp. 591–598, 2004.

[74] T. Igarashi, D. Cosgrove, “Adaptive unwrapping for interactive texture

painting,” Proceedings of the 2001 symposium on Interactive 3D graphics,

pp. 209–216, 2001.

[75] T. Igarashi, S. Matsuoka, H. Tanaka, “Teddy: a sketching interface for 3D

freeform design,” ACM SIGGRAPH 2007 courses, 2007.

[76] P. Hanrahan, P. Haeberli, “Direct WYSIWYG Painting and Texturing on 3D

Shapes,” ACM SIGGRAPH Computer Graphics, vol. 24, no. 4, pp. 215–223,

1990.

[77] R. Brucks, “Content-Driven Multipass Rendering in UE4,”

https://youtu.be/QGIKrD7uHu8 GDC, 2017.

[78] R. D. Kalnins, L. Markosian, B. J. Meier, M. A. Kowalski, J. C. Lee, P. L.

Davidson, M. Webb, J. F. Hughes, A. Finkelstein, “WYSIWYG NPR:

Drawing strokes directly on 3D models,” ACM Transactions on Graphics

95

(TOG), vol. 21, pp. 755–762, 2002.

[79] R. K. Hoetzlein, “GVDB: Raytracing sparse voxel database structures on the

GPU,” Proceedings of High Performance Graphics (HPG), pp. 109–117,

2016.

[80] R. Patterson, M. D. Winterbottom, B. J. Pierce, “Perceptual issues in the use

of head-mounted visual displays,” Human factors, vol. 48, no. 3, pp. 555–

573, 2006.

[81] R. Setaluri, M. Aanjaneya, S. Bauer, E. Sifakis, “SPGrid: A sparse paged

grid structure applied to adaptive smoke simulation,” ACM Transactions on

Graphics (TOG), vol. 33, no. 6, pp.205, 2014.

[82] S. Bruckner, M. E. Groller, “Volumeshop: An interactive system for direct

volume illustration,” IEEE Visualization (VIS), 2005

[83] S. Diverdi, “A brush stroke synthesis toolbox,” Springer London, pp. 23–44,

2013.

[84] S. F. Frisken, R. N. Perry, A. P. Rockwood, T. R. Jones, “Adaptively sampled

distance fields: A general representation of shape for computer graphics,”

Proceedings of the 27th Annual Conference on Computer Graphics and

Interactive Techniques, pp. 249–254. 2000.

[85] S. Lefebvre, S. Hornus, F. Neyret, “Octree textures on the GPU,” GPU Gems

2, Pharr M., (Ed.). Addison-Wesley, pp. 595–613, 2005.

[86] S. Laine, T. Karras, “Efficient sparse voxel octrees,” Proceedings of the 2010

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp.

55–63, 2010.

[87] T. Ize, “Robust BVH ray traversal-revised,” Journal of Computer Graphics

Techniques (JCGT), vol. 2, no. 2, pp. 12–27, 2013.

[88] T. Ju, F. Losasso, S. Schaefer, J. Warren, “Dual contouring of hermite data,”

96

ACM Transactions on Graphics (TOG), vol. 21, no. 3, pp. 339–346, 2002.

[89] V. Havran, J. Bittner, J. Žára, “Ray tracing with rope trees,” 14th Spring

Conference on Computer Graphics, pp. 130–140, 1998.

[90] W. V. Baxter, J. Wendt, M. C. Lin, “IMPaSTo: A realistic, interactive model

for paint,” In Proceedings of the International Symposium on Non-

Photorealistic Animation and Rendering (NPAR), pp. 45–56. 10, 2004.

[91] Y. Kim, B. Kim, Y. J. Kim, “Dynamic Deep Octree for High‐resolution

Volumetric Painting in Virtual Reality,” Computer Graphics Forum, vol. 37,

no. 7, pp. 179-190, 2018.

[92] Y. Gingold, T. Igarashi, D. Zorin, “Structured Annotations for 2D-to-3D

Modeling,” ACM SIGGRAPH Asia 2009 Papers (SIGGRAPH Asia), No.

148, p. 9, 2009.

[93] Y. J. Kil, P. Renzulli, O. Kreylos, B. Hamann, G. Monno, O. G Staadt, “3D

warp brush modeling,” Computers & Graphics, vol. 30, no. 4, pp. 610–618,

2006.

[94] Z. Chen, B. Kim, D. Ito, H. Wang, “Wetbrush: GPU-based 3D painting

simulation at the bristle level,” ACM Transactions on Graphics (TOG), vol.

34, no. 6, 2015.

97

국문초록

가상현실 기반 고해상도 3차원 페인팅과 볼륨 브러시 모델 연구

김여진

컴퓨터공학과

이화여자대학교 대학원

최근 들어 가상현실(VR) 기술이 발전함에 따라 2차원 디지털 페인팅이 3차원 공

간으로 확장되고 있다. VR기반의 3차원 페인팅 시스템들이 잇따라 등장하면서, 아티

스트들이 점차 VR 페인팅을 하나의 예술 장르로 받아들이고 있는 추세이다. 그러나

현재의 VR 페인팅 시스템은 모두 표면기반 페인팅 시스템으로, 사용자가 3차원 공간

에 그린 경로를 따라 3차원 볼륨이 아닌 2차원 평면 기하만을 생성한다. 표면기반 페

인팅 시스템에서는 그려진 스트로크들은 서로 합치기가 힘들며, 사용자가 실제 페인

팅을 하듯이 색상을 칠하거나, 재색칠 하거나, 색상을 섞거나, 혹은 불투명한 색상을

칠하는 것이 매우 어렵다. 뿐만 아니라 3차원 디지털 아트라는 거시적인 관점에서도

이 문제를 조명해보자면, 오랫동안 다양한 종류의 3차원 저작 도구들이 연구되어 왔

음에도 불구하고 3차원 공간 자체에 디지털 페인팅을 할 수 있는 프로그램은 부재한

상황이다. 물론 기존의 3차원 저작 도구를 이용하면 복셀 도트 디자인, 복잡한 3차원

모델 디자인 등과 같은 특정한 스타일의 3차원 디지털 아트 작품을 만들 수 있다. 특

히 3차원 모델링 분야에서, 사용자가 저작 도구를 이용하여 정교하고 사실적인 3차원

아트 작품도 만드는 것도 가능하다. 하지만 기존 3차원 저작 도구들은 여러 단계의

워크플로우를 거치는 전문적인 기술을 요구하거나, 팀 단위의 저작 활동을 필요로 하

거나, 혹은 모양, 표현, 규모, 사용자 인터페이스 측면에서의 한계점 때문에 3차원 디

지털 아트의 확장성을 떨어뜨린다.

98

 본 학위 논문에서는 새로운 3차원 디지털 아트의 한 장르로써, 2차원 디지털 페인

팅을 3차원 디지털 페인팅으로 확장하는 가상현실 기반의 고해상도 볼륨 페인팅 시스

템을 제안한다. 제안하는 시스템은 동적 팔진 트리 기반의 페인팅 및 렌더링 시스템

으로, 각 프로세서의 하드웨어적 특성을 반영하여 CPU 기반 팔진 트리는 팔진 트리

모델링을, GPU 기반 팔진 트리에서는 볼륨 렌더링을 위해 사용한다. 입력한 스트로크

에 대해 CPU 상에서 팔진 트리는 동적으로 노드를 생성/삭제하며, CPU 상 팔진 트

리 구조의 변화를 GPU 상 팔진 트리 구조에 점진적으로 업데이트 한다. GPU 상 팔

진 트리에서 광선투사 시 상수시간의 이웃 노드 접근을 보장하기위해, 형식적으로 간

결하면서도 효율적으로 메모리를 사용하는 3-이웃 연결성을 새롭게 제시한다. 나아

가 GPU 상에서의 3-이웃 계산량을 줄일 수 있는 컬링 마스크를 CPU상에서 계산하

여 GPU쪽으로 업로드하는 기법에 대해서도 기술한다. 이 과정에서 렌더링 프레임 률

과 저 지연 업데이트를 절충하는 업데이트 성능을 실험적으로 검증하며, 업데이트가

지연될 시 일어날 수 있는 잘못된 시각적 피드백을 줄이는 기법을 제시한다. 렌더링

측면에서는, 고해상도 팔진 트리에서 광선 투사시 발생하는 수치 오차 문제를 해결하

기 위해 셀 국부 좌표계 기법을 제시하였다. 또한 광선 투사 시 수치 오차가 전파되

는 과정을 분석하여 제시한 기법이 이론적인 오차범위에서 정밀함을 보였으며, 실험

적으로도 이를 입증하였다. 추가적으로 렌더링 속도를 가속화하기 위하여 CPU기반의

사진 트리/팔진 트리의 보간을 GPU기반의 보간으로 확장하고, 사진 트리 기반의 포

비티드 렌더링(Foveated rendering)기법을 기술하였다.

 또한 본 논문에서는 3차원 디지털 페인팅 측면에서, 많은 복셀을 동시에 다루는 3

차원 페인트 브러시 모델을 제안한다. 우선, 2차원 디지털 페인팅에서 주로 사용되는

칠하기, 지우기, 재색칠, 색 섞기, 블러, 스머지 등과 같은 2차원 브러시 모델을 고해

상도 팔진트리에서 사용할 수 있는 브러시 모델로 재구성하였다. 두 번째로, 3차원 디

지털 페인팅에서 발생하는 고유한 문제들을 다루는 볼륨 특이적 브러시 모델을 제안

하였다. 3차원 볼륨 페인팅에서 자주 일어나는 작업 중 하나인 생성된 복셀의 해상

도를 조절하는 반복작업을 줄이기 위해, 페인팅 디테일을 조정하면서도 메모리 관리

를 할 수 있도록 돕는 복셀 해상도 조절 도구들을 모델링한다. 복셀 해상도를 증가시

99

키는 모델로는, 색상과 복셀 해상도의 확산을 기반으로 하는 복셀 멜트 브러시를 모

델링한다. 복셀 멜트는 페인팅의 디테일을 유지하면서도, 급격한 복셀 해상도 변화를

완만하게 한다. 또한, 사용자가 복잡한 공학지식이 없어도 사용할 수 있는 룸, 복셀

모자이크, 등위값 기반 복셀 머지와 같은 복셀 해상도를 낮추는 필터들을 모델링한다.

마지막으로, 서피스 기반의 페인팅 엔진과 볼륨 기반의 페인팅 엔진 결합을 처음으로

시도하여, 볼륨 페인팅에서의 깊이 감각 문제를 해결하고 불안정한 입력에 대해 직선/

곡선을 그릴 수 있도록 하는 하이브리드 브러시 모델들을 제안한다.

