
Scalable Collision Detection Using pp-Partition
Fronts on Many-Core Processors

Xinyu Zhang, Member, IEEE, and Young J. Kim, Member, IEEE

Abstract—We present a new parallel algorithm for collision detection using many-core computing platforms of CPUs or GPUs.

Based on the notion of a p-partition front, our algorithm is able to evenly partition and distribute the workload of BVH traversal

among multiple processing cores without the need for dynamic balancing, while minimizing the memory overhead inherent to the

state-of-the-art parallel collision detection algorithms. We demonstrate the scalability of our algorithm on different benchmarking

scenarios with and without using temporal coherence, including dynamic simulation of rigid bodies, cloth simulation, and random

collision courses. In these experiments, we observe nearly linear performance improvement in terms of the number of processing

cores on the CPUs and GPUs.

Index Terms—Collision detection, p-partition, static workload balancing

Ç

1 INTRODUCTION

RECENT advances in parallel processors such as multicore
CPUs and many-core GPUs have made parallel

computing ubiquitous, and such trends are expected to
continue in the future. However, to fully benefit from the
development of modern computing hardware, many exist-
ing collision detection algorithms such as [1], [2], [3], [4],
designed mainly for a single processor, have to be
redesigned for parallel processors, due to the high data
dependence in the sequential algorithms and data access
latency from the memory architecture.

Recently, a few algorithms have been proposed for
parallel collision detection [5], [6], [7], [8], [9], [10], [11].
Most of them use sophisticated dynamic workload balan-
cing algorithms, for instance, work stealing, to provide the
scalability of collision detection in terms of the number of
processing cores. Even though the dynamic balancing
mechanisms employed by these approaches show some
promising results, their successful implementation heavily
depends on the underlying hardware architecture such as
memory hierarchy or caching, and processor communica-
tion channel [12], since the centralized/decentralized
scheduler utilizes these architectures to synchronize the
global coordination among processors. As a result, different
collision detection algorithms have to be redesigned
depending on the underlying computing platform (e.g.,
CPUs, GPUs, their hybrid, or distributed processors).
Moreover, on some platform such as GPUs, it is known

that dynamic balancing mechanism for collision detection is
very inefficient due to the lack of sophisticated caching
mechanism and data latency among computing cores [13].

On the other hand, static workload balancing can eliminate
such synchronization and communication overhead. How-
ever, in some sense, static balancing can be even more
challenging to devise than dynamic ones since the workload
must be determined prior to execution.

Meanwhile, bounding volume hierarchies (BVHs) are the
most popular data structure adopted by many researchers
to accelerate collision queries [14]. For a pair of geometric
objects, BVHs are used to efficiently localize the potentially
colliding substructure of geometries by recursively bound-
ing each object with a set of bounding volumes (BVs).
Notably, Tang et al. [9] used the bounding volume test tree
(BVTT) front and its decomposition for workload distribu-
tion among multiple processing cores. However, maintain-
ing such a BVTT front can lead to a significant overhead on
memory footprint. Since the size of a BVTT front grows
rapidly with respect to the model complexity, especially
when the models are in close proximity, the system memory
can quickly run out even for medium-size models; for
instance, a small model consisting of 4K triangles requires
about 17M system memory (Oðm2Þ memory complexity) [9]
and a model consisting of 1.6M triangles requires over 3G
system memory [10] to maintain its BVTT front. Moreover,
computing a BVTT in a parallel-friendly fashion is not
obvious and also subject to load balancing.

Thus, despite the exciting recent progress in the field of
parallel collision detection, designing a scalable algorithm
with low-memory footprint, applicable to both multicore
CPUs or many-core GPUs, remains a challenging problem.

Main results. In this paper, we present a new scalable
collision detection algorithm for many-core computing
platforms (CPUs and GPUs). Our algorithm utilizes a novel
workload partitioning representation of BVTT, called a p-
partition front, which enables static and even partitioning of
the workload of parallel BVH traversals, and thus,
complicated dynamic load balancing can be avoided at

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXXXX 2014 1

. X. Zhang is with the Department of Computer Science and Engineering,
Ewha Womans University, Seoul, South Korea, and also with the Software
Engineering Institute, East China Normal University, China.
E-mail: zhangxy@ewha.ac.kr.

. Y.J. Kim is with the Department of Computer Science and Engineering,
Ewha Womans University, Seoul, South Korea.
E-mail: kimy@ewha.ac.kr.

Manuscript received 4 Sept. 2012; revised 14 Feb. 2013; accepted 20 Sept.
2013; published online 3 Oct. 2013.
Recommended for acceptance by J. Keyser.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2012-09-0181.
Digital Object Identifier no. 10.1109/TVCG.2013.239.

1077-2626/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

runtime. Because of this, our algorithm is amenable to an
efficient and scalable implementation of parallel collision
detection on different computing platforms. Moreover, our
algorithm requires a small memory footprint compared to
other existing BVH-based algorithms. In our experiments,
our algorithm shows nearly linear scalability in terms of
computing cores and is able to achieve up to 11 times
performance speedup using two Intel hexacore CPUs and
30-45 times speedups using NVIDIA GPUs, compared to
the CPU-based, sequential algorithm.

2 PRELIMINARIES

In this section, we provide some preliminary concepts to
describe our algorithm.

2.1 BVH and BVTT

In BVH-based collision detection, before invoking the
expensive primitive-level intersection tests between objects,
tests based on simple volumes (e.g., AABB) that bound the
objects are executed to prune away redundant primitive-
level tests. These algorithms perform the BVH traversal
either in depth first, breadth first, or hybrid manner. The
BVH traversal starts with a pair of root BVH nodes and is
recurrently applied to their child nodes. If the recursive
traversal reaches leaf nodes, the two corresponding
primitives are tested for intersection; otherwise, the recur-
sion continues for their child nodes.

A BVTT represents a snapshot of BVH traversal [15].
Each node in the BVTT corresponds to a single-overlap test
between a pair of BV primitives or between a pair of
triangle primitives. The root node of a BVTT is a BV test
between the roots of BVHs. The size of a BVTT means the
number of nodes contained in the BVTT. Fig. 1 illustrates
two BVHs and their BVTT.

The front of a BVTT is a boundary of the BVTT at
runtime. The maximal front of a BVTT refers to the leaves of
the BVTT, corresponding to either a test between two BVH
leaf nodes or between a pair of nonoverlapping, internal
BVH nodes. Typically, the number of the nodes of a
maximal front is about a half of that of the entire BVTT. An
intermediate front of BVTT appears at an intermediate state
of a BVTT during BVH traversal. An intermediate front of

BVTT consists of a set of BVTT internal nodes, which

evolves from the BVTT root and gradually reaches the

BVTT maximal front. Each of these nodes in the inter-

mediate front is the ancestor of a node of the maximal front.

2.2 Notation

Let F denote a front of a BVTT. Then, let F I be an

intermediate front of a BVTT, and FM be the maximal

front of a BVTT. Let n be a node of a BVTT. We use jnj to

denote the cost of traversing the BVH substructure

corresponding to the node n, which can be approximated

by the number of BV-level primitive tests and triangle-

level primitive tests that need to be executed. Since both of

the primitive tests can be regarded as a constant, if a

triangle test is k times expensive than a BV test, then we

can denote jnj ¼ ðm1 þ k �m2Þ, where m1 and m2 are the

number of a BV test and the number of a triangle test,

respectively. We denote jF j ¼
P
jnj for all n 2 F .

2.3 Static versus Dynamic Workload Balancing

Regarding workload balancing on GPUs and many-core

systems, it is generally believed that static workload

balancing is preferred when the process workloads, hard-

ware speed, network bandwidth, and application behavior

are known a priori and they do not change over time or

change only slightly. In this case, static workload balancing

is superior to dynamic one due to the implementation

simplicity and minimal runtime synchronization overhead.
Dynamic workload balancing becomes effective when

the workloads among processors and application behavior

tend to shift dramatically during the lifetime of computa-

tion. Runtime monitoring and redistribution of workload

can improve the efficiency of workload balancing mechan-

ism. However, the benefits of using dynamic workload

balancing can be reduced by the overheads associated

with monitoring/detecting workloads, workload redistri-

bution, and potential undesirable balancing disturbances

(“oscillation” phenomenon) induced by the rebalancing

algorithm itself. Such overheads can vary widely with

different hardware and workload states. Finally, it is quite

nontrivial to implement a good and efficient dynamic

workload balancing algorithm.
Regarding performing parallel BVH traversal for collision

detection, it is tempting to use dynamic load balancing

because 1) the collision workload is not known a priori; 2) the

initial workload is very low and has one task to execute at the

root node; and 3) the workload of each node in BVTT is

typically unbalanced. Furthermore, successful implementa-

tions of dynamic load balancing heavily depend on the

underlying hardware architecture such as memory hierar-

chy, caching, and processor communication channel. On

some many-core platform such as GPUs, it is known that

dynamic balancing mechanism (particularly for collision

detection) is very inefficient due to the lack of sophisticated

caching mechanism and/or data latency among computing

cores [13]. As analyzed by Lauterbach et al. [16], none of the

known dynamic load balancing algorithms have been

successfully immigrated to many-core GPU architectures.

Please refer to [13], [16] for more details.

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXXXX 2014

Fig. 1. BVH and BVTT. Top: BVHs of two objects A and B. Bottom:
BVTT is denoted by the gray nodes representing a snapshot of BVH
traversal. One traversal path is highlighted in blue. The nonoverlapping,
internal BVH nodes are marked by a circle at bottom-right corner and the
nodes testing between two primitive nodes are marked by a black solid
dot. The maximal front of a BVTT consists of all these marked nodes.

3 STATIC WORKLOAD PARTITION

Using the maximal front of a BVTT, a perfect workload
balancing can be achieved for parallel BVH traversals
since the workload can be fully identified, as well as fine
grained. However, this requires keeping track of the
maximal front, which can incur huge memory overhead
[7], [17]. Moreover, when objects move or deform, the
corresponding maximal front changes, and thus needs to
be updated accordingly [15].

As a matter of fact, as long as effective load balancing
can be obtained from some intermediate front of a BVTT,
we do not need the maximal front for parallel BVH
traversals, not to mention the high computational and
memory overhead to maintain the maximal front. Thus,
we introduce a new type of a front, called a p-partition
front that can greatly simplify the workload distribution
during BVH traversals, while having little overhead on
memory footprint. Intuitively speaking, a p-partition front
corresponds to any front whose workload can be evenly
distributed to p parallel processors.

3.1 The pp-Partition Front

We first give the definition of p-partition, which our
algorithm builds upon. Given a finite set � of positive
integers, its partition is a finite collection of subsets
� ¼ ð�1; �2; . . .; �pÞ, where �1; �2; . . .; �p are pairwise disjoint
and nonempty sets whose union is �. p is the size of � and
�1; �2; . . .; �p are the partitions of �. If the element sum of
each partition j�ij in � is equal for all partitions, we call � a
perfect p-partition of � and � is a p-partition set. However,
a perfect p-partition may not exist and, even if it does exist,
computing it may be computationally infeasible [18].
Therefore, it is more practical to find the best p-partition.
Finding the best p-partition is a problem of optimization:
given a set � and an integer p, find a partition � so to
minimize max�(j�1j; j�2j; . . . ; j�pj), where j�ij is the sum of
elements in �i (i ¼ 1; 2; . . .; p). However, even the problem
of finding the best p-partition is NP-hard and the solutions
to the problem are generally derived using heuristics and
approximation [19]. Moreover, the hardness of finding the
best p-partition increases as the size of � decreases or the
element value increases or p increases [20].

Now, we define the p-partition front for parallel BVTT
traversals.
p-Partition front. Given a front F of a BVTT and p

processors, if the nodes of F can be separated into p disjoint
subsets ð. . .;F i; . . .Þ such that F ¼ [F i and jF ij ¼ jFjp
(i ¼ 1; . . .; p), F is said to be a (perfect) p-partition front
and ð. . .;F i; . . .Þ is a (perfect) p-partition of F . We denote a
p-partition front by F p.

For a BVTT, there may exist many p-partition fronts. We
also define:

Minimal p-partition front. Is the p-partition front which
has the minimum number of nodes. We denote the minimal
p-partition front by Fmin

p .
Maximal p-partition front. Is the p-partition front which

has the maximal number of nodes. We denote the maximal
p-partition front by Fmax

p .
As shown in Fig. 2, the green and black solid curves

illustrate the minimal and the maximal p-partition fronts,

respectively. Between these two p-partition fronts, there

exist other intermediate p-partition fronts (dotted curve).

These intermediate p-partition fronts can be generated by

dropping the nodes from the minimal p-partition front or

raising the nodes from the maximal p-partition front.

Typically, the size of the minimal p-partition front is

significantly smaller than that of the maximal p-partition

front. The maximal front of BVTT is equivalent to the

maximal p-partition front and the partition of the maximal

front is a partition of the finest grained front.
Our goal is to find the front of a minimal size (i.e., the

minimal p-partition) whose workload can be evenly dis-

tributed to p parallel processors. This can avoid generating a

large intermediate p-partition front, especially avoiding

generating the maximal p-partition front (i.e., the maximal

front of a BVTT). Although a large intermediate p-partition

front or the maximal p-partition front has many nodes

which can be partitioned in such a way to have very evenly

balanced workloads, its memory and computational cost

preclude realizing this theoretical benefit in practice. An

ideal approach to generating the minimal p-partition front is

first described in Section 3.2. Then, we propose a more

practical solution to approximate the minimal p-partition

front by utilizing temporal coherence (see Section 3.2.1) and

without using temporal coherence (see Section 3.2.2).

3.2 Generating a pp-Partition Front

To generate the minimal p-partition front, one may start BVH

traversal from the root of BVTT and advancing the front of

BVTT gradually to the minimal p-partition front. During each

step of BVH traversal, we add a node n to front F and check

whether F is a p-partition front (be p-partitioned) based on

the costs of its nodes. If F is not a p-partition front, we

continue the BVH traversal by visiting the children of n. The

BVH traversal terminates whenF is found to be a p-partition

front. The pseudocode of this algorithm is given in Algorithm

1. However, this algorithm assumes that the cost of any node

n is known, which, however, cannot be precisely determined

until actually finishing the BVH traversal. Moreover,

performing p-partition checking at each step of traversal

slows down the algorithm considerably. Therefore, we

propose an algorithm to approximate these values in the

following sections. And we propose two sets of algorithms to

approximate the minimal p-partition front, by utilizing

temporal coherence and without relying on such coherence.

ZHANG AND KIM: SCALABLE COLLISION DETECTION USING pp-PARTITION FRONTS ON MANY-CORE PROCESSORS 3

Fig. 2. A BVTT and A p-Partition Front. The minimal p-partition front has
the minimum number of nodes and the maximal p-partition front has the
maximal number of nodes.

Algorithm 1. traverse(BVH a, BVH b).
aa; b [input]: two BVH nodes

F [output]: the minimal p-partition front

1: if (a \ b ¼¼ ;) then

2: return

3: end if

4: push ½nða; bÞ; jnða; bÞj� onto F
5: check whether F is a p-partition front

6: if F is a p-partition front then

7: terminate

8: return F as the minimal p-partition front

9: else

10: for all children ai and bj do

11: traverse(ai, bj)

12: end for

13: end if

3.2.1 Using Temporal Coherence

Many applications such as physically based animation or
sampling-based motion planning exhibit temporal coherence
between successive time steps. In this case, the costs of BVH
traversals from the previous frame can be used for estimating
the costs for the next frame. However, maintaining the costs
for all the nodes in a BVTT or even part of a BVTT is still
memory intensive. Moreover, as discussed before, frequent
testing of p-partition during the BVH traversal makes the
algorithm inefficient. Therefore, we present a new algorithm
to approximate the minimal p-partition front. The algorithm
includes three steps: 1) initializing the starting BVTT front
that stores the cost of a BVH traversal based on temporal
coherence; 2) generating a front of a BVTT in which the costs
of all the nodes are bounded; and 3) finding the best p-
partitions from the resulting front of a BVTT. We elaborate
this algorithm as follows:

Algorithm 2. p_partition_front(BVH a, BVH b).
F s [input]: a starting front cached as preprocessing

Fp [output]: an approximation of the minimal

p-partition front

1: for each node n in F s do

2: if jnt�1
s j <

jF t�1
s j
g�p then

3: push ½ns; jnt�1
s j� onto F p

4: else

5: push ½ns; jnt�1
s j� onto Q

6: while Q is not empty do

7: pop a node ½n; jnj� off Q
8: for each n0s child nij ¼ ðai; biÞ do

9: if overlap(ai; bj) then

10: calculate the overlap volume Vij
11: else

12: Vij ¼ 0

13: end if

14: end for

15: for each n0s overlap child nij do

16: jnijj ¼ VijP
Vij
� ðjnj � 1Þ

17: if jnijj < jF t�1
s j
g�p then

18: push ½nij; jnijj� onto F p

19: end if

20: end for

21: end while

22: end if

23: end for

24: return F p as an approximation of the minimal

p-partition front

First of all, rather than starting the BVH traversal from its

root node, we predetermine a starting front F s as pre-

processing. Then, at runtime, for each node ns 2 F s, we

save its cost jnt�1
s j at time frame t� 1. The total cost of F s is

jF t�1
s j ¼

P
jnt�1
s j. As illustrated in Fig. 3, the nodes of

starting front F s are shown as the green shading circles.

Here, a darker circle indicates a higher cost node; for

example, jn5j > jn2j > jn0j.
Then, we examine each ns 2 F s by checking whether its

cost is less than the average cost of p-partition front, that is

jnt�1j <
��F t�1

s

��
g � p : ð1Þ

Here, a user-specified threshold g is used to adjust the

workload grains in the resulting p-partition front. In our

implementation, we choose g ¼ 2.
If a node satisfies (1), we immediately add it to the p-

partition front (F p); otherwise, we expand it by visiting its

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXXXX 2014

Fig. 3. Approximating the minimal p-partition front. (a) From a starting
front F s, we approximate the minimal p-partition front Fmin

p (green solid
curve) by examining each node of F s using (1). (b) Since jn2j > jF t�1

s j
g�p , it

needs to be traversed until its children satisfy (1). (c) jn5j is much greater
than jn2j, so n5 needs more traversals than n2. (d) A p-partition front is
obtained after finishing the execution.

children. As shown in Fig. 3, both n2 and n5 do not satisfy (1)
and need to traverse the BVTT further until their children
satisfy (1). While traversing n2 and n5, we need to know the
children’s costs to examine whether any of them will satisfy
(1). And if any of them satisfies (1), its cost will be eventually
used to determine the best p-partition of the front.

Based on our experiments and also the approach
suggested by Klein and Zachmann [21] for AABBs, the
costs of the four children nodes (i.e., the number of BV
tests and triangle tests) are linear to the relative size of their
overlap volumes. Note that the precise number of BV tests
and triangle tests may be very hard to estimate merely
using the size of their overlap volume [21], [9] for all the
levels of a BVTT. However, since we know the cost of a
node, the costs of its children nodes can be more accurately
estimated using the sizes of their overlap volumes. If we let
the cost function be jnijj ¼ �ij � Vij, where Vij is the size
of the overlap volume of n, and �ij is a function for
capturing the other geometric aspect of the cost such as
geometric shape or relative configurations [22], the cost of a
child node nij ¼ nðai; bjÞ can be formulated as

jnijj ¼
�ij � VijP
�ij � Vij

� ðjnj � 1Þ; ði; j ¼ 1; 2Þ: ð2Þ

If we assume that �ij ¼ �(constant), then we obtain

jnijj ¼
VijP
Vij
� ðjnj � 1Þ; ði; j ¼ 1; 2Þ: ð3Þ

Alternatively, the size of an overlap volume can be replaced
by a penetration depth [8] to estimate jnijj, which can be
used for OBB.

In addition, for each node n 2 F p, we store the back-
ward index to its associated starting node from which the
node n sprouts. For example, all the p-partition front nodes
generated from n5 have an index 5 to indicate that they
sprouted from n5. Later, this index is used to update the
costs of F s, which can be used for the next time frame. We
execute these expansions and evaluations of generating a
p-partition front in parallel.

3.2.2 Using Overlap Volume Only

When motion coherence is not present, we use another
approach to estimate the cost of BVH traversal. Though there
are some algorithms [21] to estimate the expected cost of BVH
traversal, predicting the exact cost can be very difficult and
inaccurate. Moreover, we do not need absolute costs, but
relative ones serve our purpose. As we discussed earlier, the
cost of BVH traversal largely depends on the overlap volume.
Similarly, we let cost function be jnij ¼ �i � Vi, where Vi is the
size of overlap volume of node ni 2 F s. If we assume that the
function �i remains constant for the given two objects, then
we have the following condition:

Vi <

P
Vi

g � p ; ð4Þ

to determine whether a node is to be added to the p-partition
front.

In the case of nontemporal coherence, we first compute
the overlap volume for all nodes in F s in parallel. Then,
we use (3) and (4) to expand the nodes and approximate
the p-partition front. Note that the overlapping volume

heuristic is used both in our temporal and nontemporal
coherence solutions.

3.3 Executing pp-Partitioning

After obtaining a p-partition front, we need to determine the
best p-partition of the front and each partition of the front
will be assigned to a separate processing core. However,
since determining the best p-partitioning is an NP-hard
problem, we use a greedy algorithm to approximate it.
More specifically, we first sort the p-partition front with
respect to the node cost in descending order. Then, as we go
through all these nodes, we take p largest nodes and assign
each of them to the partition subset. For the rest of nodes,
we add them successively to which set is the smallest. This
greedy algorithm gives a pþ2

pþ1 approximation [23].

3.4 Parallel BVH Traversal

In case of the simulation with temporal coherence, at the
beginning (the first frame) of simulation, we assume that all
the nodes of the starting front F s have the same cost, and
thus initialize jnsj ¼ 1 (ns 2 F s). Considering that the size of
F s is much greater than the number of processing cores p,
this assumption easily makes F s be a p-partition front
without further BVH traversal. Then, we evenly divide F s

into p-partitions. Each processing core independently
processes one of these partitions. Note that, in general, the
workload will not be well balanced for the first frame due to
this assumption.

During the parallel BVH traversal, we record the costs of
BVH traversal and save them back to the starting front F s,
which will be used for the next frame. After the first frame,
the workload will be well balanced. In Fig. 4, the workload
distribution among eight processing cores is shown for a
sequence of worm-gear simulation (refer to Fig. 6a for the
simulation). The percentage of workload (the number of BV
tests and triangle tests) for each core is displayed in
different colors. The figure also shows the evolution of
workload percentages that each computing core consumes
over the course of simulation. This figure nicely illustrates
that the workload has been evenly distributed among eight
processing cores using our algorithm.

For the case without using temporal coherence, it is not
necessary to record the history of BV tests and triangles
tests. Once a p-partition front is generated, it can be readily

ZHANG AND KIM: SCALABLE COLLISION DETECTION USING pp-PARTITION FRONTS ON MANY-CORE PROCESSORS 5

Fig. 4. Workload distribution among eight cores for the worm-gear
simulation and different colors denote different workloads. Top:
percentages of triangle primitive tests for each thread. Bottom:
percentages of BV tests for each thread.

divided into p-partitions and assigned to individual proces-
sing cores. Our experiments show that the scenarios with
temporal coherence tend to have better workload balancing
than those without temporal coherence.

Our approach is also applicable to the scenarios that consist
of multiple objects. In this case, we individually maintain a
starting front for each pair of objects. To generate a global p-
partition front for all object pairs, we examine whether the cost
of each node from all the starting fronts or their children is less
than some global upper bound as follows:

jnt�1j <
P
jF t�1

s j
g � p : ð5Þ

Fig. 6b shows an example of multiple objects. This implies
that our algorithm is also applicable to the scenarios with
topological changes, for instance, when an object breaks
into multiple pieces.

4 THE DEPTH-BOUNDED pp-PARTITION FRONT ON

GPUs

Compared to multicore CPUs, many-core GPUs have
more processing cores and are able to launch significantly
more concurrent threads for parallel BVH traversals. As
we discussed earlier, finding the best p-partition front
gets harder as the number of cores p increases, which
makes it very challenging for many-core GPUs to
generate a p-partition front.

Here, we propose a new algorithm to address this issue.
The main idea of our algorithm for GPUs is based on the fact
that finding a best p-partition gets easier as the size of the
target set increases or the cost of nodes decreases; thus, we

make a larger starting front and constrain the cost of a node by
limiting its depth of BVH traversal. The latter constraint
makes the high-cost nodes terminate their BVH traversal
earlier when reaching the depth bound. Another benefit is
that the workload will be fine grained. For example, if we
limit the depth bound to 2, the cost of any node during BVH
traversal will be less than 42 ¼ 16 (BV tests). For the nodes that
have not completed traversing the BVH even after reaching
the depth bound, we leave them to the next stage. More
precisely, our depth-bounded algorithm generally takes a
few passes to complete the entire BVH traversal; a smaller
depth bound incurs more passes of BVH traversal. Moreover,
since a triangle-level primitive test is generally more
expensive than the BV-level primitive test, it is likely to
introduce unbalanced workload on GPUs if the BV-level and
triangle-level primitive tests are performed all together. Thus,
during the BVH traversal, if a leaf node corresponding to a
pair of triangles is found, we save it and defer the triangle
overlap test to the final step.

In addition, unlike the case of multicore CPUs, we do not
actually partition the resulting p-partition front, because its
time complexity can be as high as Oðp2N2

p Þ using the greedy
algorithm [23], where N is the size of p-partition front; note
that on GPUs, bothpandN can be large. Instead, we utilize the
transparent scalability offered by the modern GPU computing
architecture such as CUDA [24] to partition and distribute the
workload. In detail, we simply collect all the nodes from the p-
partition front, uniformly map each of them to thread blocks,
and let CUDA automatically decide how many threads
should be allocated to finish the job. Our experiment shows
that this approach is very efficient for HW-supported work-
load balancing since the workload is fine grained.

An example is given in Fig. 5 to show the time spent on
each stage of our GPU-based collision detection algorithm,
including depth-bounded p-partition front generation,
parallel BVH traversal, and triangle-level overlap tests
displayed in different colors. The parallel BVH traversal
generally needs a few passes to complete. The series of
gradient color (blue) are used to differentiate these passes.

5 RESULTS AND ANALYSIS

We will now explain some implementation details of our
algorithms and show our experimental results.

5.1 Implementation

We have implemented our parallel collision detection
algorithm using C++ and CUDA under Visual Studio 2008
and Windows 7. We used the public-domain collision

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXXXX 2014

Fig. 5. Cloth Simulation. The times spent on depth-bounded p-partition
front generation (green), parallel BVH traversal (gradient blue), and
triangle overlap tests (orange). The individual pass of parallel BVH
traversal is displayed in gradient blue.

Fig. 6. Dynamic simulation using temporal coherence. (a) A worm-gear system consisting of 64K triangles. (b) A epicyclic gears system consisting of
17 gears and 149K triangles in total.

detection software, OPCode [25] for rigid bodies and used
DeformCD [26] for cloth simulation. The CPU algorithms
were implemented with OpenMP and the GPU algorithm was
implemented with NVIDIA CUDA 4.2. The algorithms were
tested on a workstation with two 3.47-GHz Intel Xeon X5690
hexacore CPUs and NVIDIA Tesla C2070/GeForce GTX 680
GPUs.

The BVH traversal and triangle-level overlap tests
require random access to GPU global memory, which may
affect the performance. To handle this issue, in our
algorithm, we utilize GPU textures to maintain BVHs and
triangle vertices and indices, as GPU texture memory offers
efficient addressing and fetching modes and also provides
memory caching capability.

5.2 Experimental Results

5.2.1 Dynamic Simulation

We applied our CPU-based parallel algorithm to the
mechanical dynamic simulation using temporal coherence.
The worm-gear benchmark (see Fig. 6a) consists of 64K
triangles and the epicyclic gears system (see Fig. 6b) consists
of 17 gears and 149K triangles in total. Our algorithm is able to
achieve 7.5 times speedup for eight cores. However, when the
number of cores is greater than eight, the performance does
not improve significantly though the CPU utilization is still
observed as 100 percent. The main reason is because the
OpenMP overhead becomes non-negligible when the colli-
sion detection time falls 1 ms per frame as shown in Fig. 6. Fig.
6b also demonstrates that our algorithm is applicable to the
scenario consisting of many objects.

5.2.2 Collision Sequence between Complex Models

We generated a sequence of motions for a pair of complex
models (the Buddha models). The model complexity varies
from 500K to 3M triangles. During the motion, the red
Buddha penetrates the green one from left to right. We
applied our temporal coherence solution to this experiment.
As shown in Fig. 7, the result shows a near-linear
performance improvement.

5.2.3 Cloth Simulation

We tested our algorithms on UNC Cloth Benchmarks1 using
temporal coherence, and measured its performance on
multicore CPUs and many-core GPUs. The cloth consists of
92K triangles and self-collision detection is performed. We
have observed nearly linear performance improvement
with respect to the number of CPU cores (see Fig. 8), and
30 and 45 times performance improvement NVIDIA Tesla

C2070 GPUs and GeForce GTX 680 GPUs over the
sequential CPU version.

5.2.4 Random Collision Courses

In this experiment, we randomly generated collision
configurations for two bunny models (see Fig. 9), consisting
of 58K triangles each. We applied our nontemporal
coherence solution to this experiment. As shown in Fig. 9,
the result shows nearly linear performance improvement
before the time falls 1 ms per frame.

5.3 Discussions

Generating a p-partition front is performed in a parallel
manner and the time spent on it is typically less than
1 percent in our experiments.

We use a threshold g for controlling the size of workload
grains in the p-partition front. In all benchmarks, we choose
g ¼ 2. With an increment of g, the size of workload grains
can be reduced, which can increase the possibility of having
a good partition. However, a high g may cause overhead
because deep BVH traversals are required.

In our implementation, the size of a starting front varies
from 43 to 45 for the CPU algorithm. For the GPU algorithm,
the starting front ranges from 46 to 47. Generally, the size of
a starting front can be determined based on the model
complexity and the overlap volume of the BVTT root. For a

ZHANG AND KIM: SCALABLE COLLISION DETECTION USING pp-PARTITION FRONTS ON MANY-CORE PROCESSORS 7

1. http://gamma.cs.unc.edu/DYNAMICB.

Fig. 8. Cloth simulation: performance speedup with respect to the
number of CPU cores.

Fig. 9. Random collision courses for two Bunny models. Update rates
(FPS) with respect to the number of CPU cores.

Fig. 7. A sequence of motion for two Buddha models. Each Buddha is composed of more than 500K, 1M, and 3M triangles, respectively.

less (more) complex model, we need a smaller (larger)
starting front. When the overlap volume changes at
runtime, we slightly adjust the size of the starting front.

The performance scalability of our algorithm is sensitive
to the pattern of BVH traversal, but is less sensitive to
model complexity (except simple models). In general, a
parallel algorithm tends to exhibit a higher scalability as the
problem size increases [27]. In our case, it is more likely to
find an optimal p-partition front if the benchmarks consist
of complex models and exhibit complex collision scenarios.
In contrast, if the problem size is relatively small, it is not
easy to devise a scalable algorithm [27]. If the BVTT lacks
parallelism, for instance, the BVTT is skewed, our approach
is not very scalable in this case. However, our approach can
still help to identify the optimal number of cores for the
efficient parallel BVH traversal. For instance, whenever a
node n was found to have a much higher cost than others
after a few iterations of traversals, it can be considered as a
dominating path. In this case, the optimal number of
processing cores can be estimated as

poptimal ¼
��F t�1

s

��
jnt�1j

& ’
: ð6Þ

The space complexity of our algorithm is OðNs þNp þ
p � ðlogm� dsÞÞ in the worst case, where Ns is the size of the
starting front and Np is the size of the resulting p-partition
front, m is the number of triangles, logm is the depth of the
BVH, and ds is the depth of starting front F s. For a given
pair of models, OðNs þNpÞ corresponds to generating a p-
partition front and Oðpðlogm� dsÞÞ is for the runtime
parallel BVH traversal on multicore CPUs. For a pair of
models, Ns is a constant (4ds) and Np can be bounded by
Np < Ns (g ¼ 2). Note that the nonoverlapping nodes are
not included in the resulting p-partition front. The depth-
bounded p-partition front on GPUs requires OðNs þNp þ
p � dbÞ space, where db is the depth bound (e.g., 2). It is clear
that the space requirement can be reduced by choosing a
smaller depth bound (db), which corresponds to a higher
number of passes to complete the parallel BVH traversal.
Fig. 10 shows the memory usage profile (i.e., OðNs þNpÞ) to
generate the p-partition fronts in the benchmark of two
Buddha models for a certain number of CPU cores (p ¼ 4).
Fig. 11 shows the average memory usage of generating the
p-partition fronts (i.e., OðNs þNpÞ) on multicore CPUs for
the same benchmark of two Buddha models with complex-
ities from 500K to 3M triangles. In summary, generating a p-

partition front shows a linear growth of memory usage in
terms of model complexities. For a given number of
processor cores (p), the space complexity of runtime BVH
traversal is logarithmic with respect to the model complex-
ity and the corresponding space scalability with respect to p
is linear in the worst case.

5.4 Comparisons

In this section, we make some qualitative comparisons of
our algorithm against the state-of-the-art collision works in
terms of the scalability of parallelism on CPUs and GPUs.
First of all, it is very nontrivial to quantitatively compare the
performance of our method over prior parallel collision
detection methods, mainly because different algorithms
utilize different computing platforms and some of them are
far outdated or poorly scalable in modern parallel proces-
sors [27]. Thus, in this section, we merely compared the
performance of our algorithms against what were reported
in the original work.

For CPU-based algorithms, [6] can achieve seven times
speedup using eight-core CPUs (two Intel 2.83-GHz quad-
core CPUs and OpenMP) using dynamic balancing on the
cloth benchmark, which is a little bit worse than ours.
Moreover, ours show further scalability for even a higher
number of cores. In other dynamic balancing work, Tang
et al. [9] show 6.7 and 10.5 times performance improvement
using 8 and 16 cores (two Intel 2.93-GHz octacore, 16GKB
memory, and OpenMP) based on BVTT front tracking.
Combined with deferred front tracking [10], the perfor-
mance can be slightly improved (20 percent improvement
in their experiments), but its memory footprint is still
significantly high compared to ours (NVIDIA GeForce GTX
480 and CUDA). Lee and Kim [8] show up to five times
improvement using eight cores, both of which are worse
than ours. Other prior CPU-based parallel algorithms such
as [28] (12 MIPS1000 processors, 250 MHz, 4GBK memory)
and [29] (unknown hardware) suffered from poor parallel
scalability. In summary, without relying on sophisticated
dynamic workload balancing mechanism, our parallel
algorithm based on static workload balancing is able to
achieve the scalability comparable to or better than
dynamic ones (e.g., work stealing) in our benchmarks.
Thus, our algorithm is useful for parallel computing
platforms with or without communication/data delays
among cores or sophisticated memory hierarchy. Also, note

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXXXX 2014

Fig. 10. The memory usage profile of p-partition front OðNs þNpÞ for the
sequence of motion of two Buddha models (when m ¼ 500K and p ¼ 4).

Fig. 11. The average memory usage of p-partition front: OðNs þNpÞ w.r.t
the number of CPU cores and w.r.t the model complexity for the
benchmark of two Buddha models whose complexities vary from 500K
to 3M triangles.

that some of the earlier algorithms such as [6] and [9] use
continuous collision detection (CCD) unlike our discrete
collision detection algorithm; however, in this case, our p-
partitioning could be more effective since the BVTT front
size for CCD is generally larger than that for discrete
collision detection.

On the GPU side, the algorithm in [7] (CUDA 4.0,
NVIDIA GTX285 GPUs) achieves 7-12 times performance
improvement using a central workload distribution scheme,
compared to the state-of-the-art CPU algorithm, whereas
our algorithm shows 30-45 times improvement on the same
benchmark on slightly better GPUs.

6 CONCLUSION

We have introduced a new approach to parallel collision
detection using multicore CPUs and many-core GPUs. Our
approach simplifies the workload balancing for the BVH
traversal using p-partition front, which is statically deter-
mined before parallel BVH traversal is performed. The
computational overhead for approximating the minimal p-
partition front turned out to be negligible. The good
performance of our algorithm is attributed to the static and
even workload partitioning that can be locally processed by
individual processors. Our workload balancing scheme
considerably eliminates the need for synchronization and
communication overhead. Reducing the memory footprint
size has a significantly positive impact on the performance
and scalability of our algorithm as the model complexity
increases. Thus, our algorithm was able to achieve nearly
linear performance speedup with respect to the number of
computing cores.

There are a few limitations in our algorithm. The scalability
of our algorithm is output sensitive. Thus, if the collision
detection result requires a small amount of computations
(e.g., simple model and/or shallow overlap), our algorithm
becomes less efficient. In case that the BVTT lacks in obvious
parallelism, dynamic workload balancing such as work
stealing is a better option than our technique. Our algorithm
to find the best p-partition front is greedy such that there is no
guarantee to find an optimal one. For a very high number of
CPU cores (i.e., high p), the time spent on finding the best p-
partition will be non-negligible, which may affect the
performance of our algorithm. Our algorithm requires a few
problem-dependent parameters such as g and �.

For future work, we would like to further investigate the
extensions of our algorithm to other proximity queries such
as distance computation and penetration depth. In addition,
our algorithm is able to benefit dynamic workload
balancing algorithms such as work stealing since the even
workload distribution at the initial stage can significantly
reduce the runtime communication and synchronization
overhead between processing cores for dynamic balancing.
We would like to extend our collision framework work to
heterogeneous computing platforms such as hybrid CPUs
and GPUs. We also would like to apply our techniques to
continuous collision detection.

ACKNOWLEDGMENTS

This work was supported in part by NRF in Korea (nos.
2012R1A2A2A01046246, 2012R1A2A2A06047007). Y.J. Kim
is the corresponding author.

REFERENCES

[1] S. Gottschalk, M.C. Lin, and D. Manocha, “OBB-Tree: A
Hierarchical Structure for Rapid Interference Detection,” Proc.
ACM SIGGRAPH, pp. 171-180, 1996.

[2] G. van den Bergen, “Efficient Collision Detection of Complex
Deformable Models Using AABB Trees,” Graphics Tools, vol. 2,
no. 4, pp. 1-13, 1997.

[3] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, K. Zikan,
“Efficient Collision Detection Using Bounding Volume Hierar-
chies of k-DOPs,” IEEE Trans. Visualization and Computer Graphics,
vol. 4, no. 1, pp. 21-36, Jan. 1998.

[4] S.A. Ehmann and M.C. Lin, “Accurate and Fast Proximity Queries
between Polyhedra Using Surface Decomposition,” Computer
Graphics Forum, vol. 20, no. 3, pp. 500-510, 2001.

[5] C.J. Hughes, R. Grzeszczuk, E. Sifakis, D. Kim, S. Kumar, A.P.
Selle, J. Chhugani, M. Holliman, and Y. kuang Chen, “Physical
Simulation for Animation Visual Effects: Parallelization Charac-
terization for Chip MultiProcessors,” Proc. 34th Ann. Int’l Symp.
Computer Architecture (ISCA ’07), 2007.

[6] D. Kim, J.-P. Heo, and S.-E. Yoon, “PCCD: Parallel Continuous
Collision Detection,” Proc. ACM SIGGRAPH, article 50, 2009.

[7] C. Lauterbach, Q. Mo, and D. Manocha, “gProximity: Hierarchical
GPU-Based Operations for Collision and Distance Queries,”
Computer Graphics Forum, vol. 29, no. 2, pp. 419-428, 2010.

[8] Y. Lee and Y.J. Kim, “Simple and Parallel Proximity Algorithms
for General Polygonal Models,” Computer Animation and Virtual
Worlds, vol. 21, pp. 365-374, 2010.

[9] M. Tang, D. Manocha, and R. Tong, “MCCD: Multi-Core Collision
Detection between Deformable Models Using Front-Based De-
composition,” Graphical Models, vol. 72, no. 2, pp. 7-23, 2010.

[10] M. Tang, D. Manocha, J. Lin, and R. Tong, “Collision-Streams: Fast
GPU-Based Collision Detection for Deformable Models,” Proc.
Symp. Interactive 3D Graphics and Games, pp. 63-70, 2011.

[11] J. Pan and D. Manocha, “GPU-Based Parallel Collision Detection
for Fast Motion Planning,” Int’l J. Robotics Research, vol. 31, no. 2,
pp. 187-200, 2012.

[12] D. Neill and A. Wierman, “On the Benefits of Work Stealing in
Shared-Memory Multiprocessors,” technical report, Carnegie
Mellon Univ., 2009.

[13] D. Cederman and P. Tsigas, “Dynamic Load Balancing Using
Work-Stealing,” GPU Computing Gems, Elsevier, 2012.

[14] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D.
Manocha, “Fast BVH Construction on GPUs,” Computer Graphics
Forum, vol. 28, pp. 375-384, 2009.

[15] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha, “Fast
Proximity Queries with Swept Sphere Volumes,” Proc. Int’l Conf.
Robotics and Automation, pp. 3719-3726, 2000.

[16] C. Lauterbach, Q. Mo, and D. Manocha, “Work Distribution
Methods on GPUs,” technical report, Univ. of North Carolina at
Chapel Hill, 2009.

[17] M. Tang, D. Manocha, and R. Tong, “Multi-Core Collision
Detection between Deformable Models,” Proc. SIAM/ACM Joint
Conf. Geometric and Physical Modeling, pp. 355-360, 2009.

[18] S. Mertens, “Phase Transition in the Number Partitioning
Problem,” Physical Rev. Letters, vol. 81, pp. 4281-4284, 1998.

[19] R.E. Korf, “A Complete Anytime Algorithm for Number
Partitioning,” Artificial Intelligence, vol. 106, no. 2, pp. 181-203,
1998.

[20] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems.
Springer, 2004.

[21] J. Klein and G. Zachmann, “The Expected Running Time of
Hierarchical Collision Detection,” Proc. ACM SIGGRAPH, 2005.

[22] Y. Zhou and S. Suri, “Analysis of a Bounding Box Heuristic for
Object Intersection,” Proc. ACM-SIAM Symp. Discrete Algorithms,
pp. 830-839, 1999.

[23] S. Mertens, “Computational Complexity and Statistical Physics,”
The Easiest Hard Problem: Number Partitioning, Oxford Univ. Press,
2006.

[24] NVIDIA, NVIDIA CUDA C Programming Guide, 2011.
[25] Pierre Terdiman, http://www.codercorner.com/opcode.htm,

2000.
[26] M. Tang and D. Manocha, “DeformCD: Collision Detection for

Deformable Models [version 1.0],” http://gamma.cs.unc.edu/
DEFORMCD, 2007.

[27] V. Kumar and A. Gupta, “Analyzing Scalability of Parallel
Algorithms and Architectures,” J. Parallel and Distributed Comput-
ing, vol. 22, no. 3, pp. 379-391, 1994.

ZHANG AND KIM: SCALABLE COLLISION DETECTION USING pp-PARTITION FRONTS ON MANY-CORE PROCESSORS 9

[28] M. Figueiredo and T. Fernando, “An Efficient Parallel Collision
Detection Algorithm for Virtual Prototype Environments,” Proc.
Int’l Conf. Parallel and Distributed Systems, 2004.

[29] I. Grinberg and Y. Wiseman, “Scalable Parallel Collision Detection
Simulation,” Proc. Ninth IASTED Int’l Conf. Signal and Image
Processing, pp. 380-385, 2007.

Xinyu Zhang received the BS and MS degrees
in material science, and the PhD degree in
computer science from Zhejiang University in
1997, 2000, and 2004, respectively. He was a
research professor from 2010 to 2012, a full-time
lecturer from 2007 to 2008 and a postdoctoral
research fellow from 2005 to 2007 in the
Department of Computer Science and Engineer-
ing at Ewha Womans University. He is a
researcher in the Department of Computer

Science and Engineering at Ewha Womans University and a research
scientist in the Department of Computer Science at the University of
North Carolina at Chapel Hill. His research interests include computer
graphics, geometric modeling, and collision detection. He is a member
of the IEEE.

Young J. Kim received the PhD degree in
computer science from Purdue University in
2000. He was a postdoctoral research fellow
in the Department of Computer Science at the
University of North Carolina at Chapel Hill. He
is an associate professor of computer science
and engineering at Ewha Womans University.
His research interests include interactive com-
puter graphics, computer games, robotics,
haptics, and geometric modeling. He has

published more than 50 papers in leading conferences and journals
in these fields. He also received the Best Paper Awards at the ACM
Solid Modeling Conference in 2003 and the International CAD
Conference in 2008, and the best poster award at the Geometric
Modeling and Processing conference in 2006. He was selected as
best research faculty of Ewha in 2008, and received the Outstanding
Research Cases Award from the Korean Research Foundation in
2008. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. X, XXXXXXX 2014

Queries to the Author

Q1. Fig. 1 is not cited in the text. Please cite it at appropriate place.
Q2. We have used caligraphic font instead of mathscript font throughout the article. Please check.
Q3. Figure 2 has been changed to figure 3. Please verify for correctness.

