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Figure 1: Sweeping a Rotor. (a) a rotor blade in gray (generator, 4736 tris) under helical sweep to be docked into another mechanical part in dark orange (left) and its SV (806K
tris) using our new SV approximation using adaptive sampling (right); (b) Zoomed-in views of our SV approximation (1.7M samples); (c) Zoomed-in views of SV approximation
using Kim et al. [2003] and uniform sampling (2M samples). Notice the aliasing effect along the sharp edge (region A) and the missing holes (region B) in (c) compared to those in
(b), even though the number of used samples in (c) is higher than in (b).

Abstract

We present a simple algorithm to generate a topology-preserving,
error-bounded approximation of the outer boundary of the volume
swept by a polyhedron along a parametric trajectory. Our approach
uses a volumetric method that generates an adaptive volumetric
grid, computes signed distance on the grid points, and extracts an
isosurface from the distance field. In order to guarantee geomet-
ric and topological bounds, we present a novel sampling and front
propagation algorithm for adaptive grid generation. We highlight
the performance of our algorithm on many complex benchmarks
that arise in geometric and solid modeling, motion planning and
CNC milling applications. To the best of our knowledge, this is the
first practical algorithm that can generate swept volume approxima-
tions with geometric and topological guarantees on complex poly-
hedral models swept along any parametric trajectory.

1 Introduction

The problem of computing the swept volume (SV) of an object
swept along a smooth trajectory frequently arises in geometric and
solid modeling, robot motion planning and collision detection. The
object may correspond to a solid or a collection of boundary sur-
faces and the goal is to compute an accurate representation of the
outer boundary swept by these primitives along a parametric trajec-
tory. The area of SV computation has been extensively studied in
the literature and the mathematical formulation of SV computation
is well-understood [Abdel-Malek et al. 2004].

The problem of exactly computing the outer boundary of the SV
has high combinatorial and algebraic complexity. As a result, most
prior algorithms have focused on computing an approximation of
the SV. Different approximation algorithms can be characterized
based on whether they are limited to 2D objects, or perform an
image-space projection or visualization of the SVs, or use relatively
coarse discretization of the boundary primitives. These algorithms
are either slow for practical applications, or suffer from accuracy
problems, or may compute a rather coarse approximation of the
SV.

A key issue in approximating the boundary of the SV is provid-
ing tight geometric and topological guarantees. Specifically, it is
important that the approximate SV should have the same genus and
no additional holes or handles are created due to the approximation.
For example, SVs are frequently used to perform continuous colli-
sion detection and the presence of extra holes can result in missed
collisions. Furthermore, it is important to faithfully reconstruct the
sharp features on the boundary of SV for CAD/CAM applications.

2 Related Work

2.1 Swept Volume Computation

Many researchers have formulated the mathematical formulation of
SV computation using Singularity theory [Abdel-Malek and Oth-
man 1999; Abdel-Malek and Yeh 1997], Sweep differential equa-
tion [Blackmore et al. 1997; Blackmore and Leu 1990; Wang et al.
2000], Minkowski sums [Elber and Kim 1999], Envelope theory
[Martin and Stephenson 1990; Weld and Leu 1990; Peternell et al.
2005], implicit modeling [Schroeder et al. 1994], and kinematics
[Jüttler and Wagner 1996]. In particular, Weld and Leu [Weld and
Leu 1990] presented a geometric representation of SV for compact
n-manifolds with an application to polyhedral objects. We refer the
reader to [Abdel-Malek et al. 2004] for an extensive survey.

Due to the high complexity of computing the exact SV, many poly-
hedral approximation algorithms have been proposed. These in-
clude approximate 2D sweep [Lee et al. 2002; Ahn et al. 1993],
isosurface reconstruction-based sweep [Schroeder et al. 1994; Kim
et al. 2003; Himmelstein et al. 2007; Xu et al. 2007], and coarse



approximation of the arrangement of swept polyhedral surfaces
[Abrams and Allen 1995; Raab 1999; Rossignac et al. 2007; Erdim
and Ilieş 2008]. However, these algorithms may not be able to re-
construct the final SV in a geometrically- and topologically-correct
manner or may require too many voxel grids (with high memory
overhead) for accurate reconstruction.

2.2 Isosurface Reconstruction

Grid-based isosurface reconstruction has been extensively studied,
starting from the seminal Marching Cubes algorithm [Lorensen
and Cline 1987]. Many extensions and variants of the basic al-
gorithm have also been proposed, including Enhanced Marching
Cubes [Kobbelt et al. 2001], dual contouring [Ju et al. 2002], dual
marching cubes [Nielson 2004; Schaefer and Warren 2004]. Wood
et al. [2000] use surface wavefront propagation techniques to ex-
tract semi-regular meshes from volumes.

In order to address the problem of reconstructing a topologically
reliable isosurface, Chernyaev presents a topological validation al-
gorithm of Marching Cubes [1995]. Varadhan et al. [2004] propose
a simple conservative test in terms of sampling and reconstruct-
ing geometrically- and topologically-correct isosurface, though it
is limited to closed primitives. Zhang et al. [2004] present a
topology-preserving approach for isosurface simplification using an
enhanced cell representation. Boissonnat et al. [2004] propose a
criterion to guarantee an isotopic mesh reconstruction to polygo-
nize an implicit surface. Bremer et al. [2004] present a hierarchical
data structure on functions defined over a 2D domain and extract a
topology-valid approximation with multi-resolution support. Other
surface reconstruction methods that provide topological guarantees
for known topology types include [Mangin et al. 1995; Aktouf et al.
1996; Bischoff and Kobbelt 2002]. For non-genus-zero surface re-
construction, Sharf et al. [2007] present a user-guided, topology-
aware reconstruction algorithm for scan data and Paiva et al. [2006]
propose an Octree subdivision method to adapt to the topology of
implicit surfaces. However, none of these approaches can recon-
struct an arrangement of open, complex surfaces with geometric
and topological guarantees on the approximation, so that they are
not directly applicable to computing SV.

3 Overview

In this section, we formulate the problem of computing the swept
volume, SV, of a closed, non-convex polyhedral model mathemat-
ically. We also describe some of the issues in approximate com-
putation of the swept volume. Finally, we give an overview of our
topology-preserving algorithm.

3.1 Mathematical Formulation

Let Γ, also known as a generator, be a closed, non-convex poly-
hedron in ℝ3. Let the sweep trajectory �(t) be a tuple of (Ψ(t),
R(t)), where Ψ(t) is a time-varying, differentiable point in ℝ3 and
R(t) is a time-varying matrix in SO(3). Here, both Ψ(t) and R(t)
depend on a single variable, the time t ∈ [0, 1]. Furthermore, Ψ(0)
corresponds to the origin, and R(0) is the identity matrix. Consider
the following sweep equation of Γ(t):

Γ(t) = Ψ(t) + R(t)Γ (1)

In the rest of the paper, the SV of the generator Γ along the trajec-
tory �(t) is defined as:

SV(Γ) =
∪

t∈[0,1]

Γ(t) (2)

Our goal is to compute S, the outer boundary of SV(Γ). It cor-
responds to computing the outer boundary1 of the arrangement in-
duced by the surface elements in SV(Γ). In other words, we do not
compute the internal voids in the swept volume or give any guaran-
tees related to them. Our primary focus is reliably computing the
outer boundary.

Weld and Leu [1990] prove that the boundary of SV is obtained by
computing the SV of individual faces in Γ, and their union. More-
over, they also prove that, besides the trivial surfaces of Γ at initial
and final positions during sweep (i.e., Γ(0) and Γ(1) in Eq. 1),
there are only two types of surfaces that belong to the SV of individ-
ual faces (or individual polygons): ruled and developable surfaces.
Thus, computing the exact SV boils down to explicitly comput-
ing ruled and developable surface primitives, and finally computing
their arrangement.

3.2 Our Approach

Our approach builds upon the prior formulation by Kim et al. [Kim
et al. 2003]. However, in [Kim et al. 2003] no guarantees are given
on the topological accuracy of the iso-surface or whether it can in-
deed reconstruct the sharp features.

Instead of a uniform 3D grid, we use novel adaptive grid subdivi-
sion and front propagation algorithms that are based on three cri-
teria: geometric deviation error, extended complex-cell tests and
extended star-shaped tests. Intuitively, the complex cell criterion
ensures that the surface intersects the grid cell in a simple manner
in most cases. The star-shaped test combined with the complex
cell test ensures that the surface inside each grid cell is homeomor-
phic to a topological disk [Varadhan et al. 2004]. We use Marching
Cubes or any of its variants to extract the isosurface from the re-
sulting grid. The extracted surface is an isotopic approximation of
the given surfaces ℰ . We extend these two fundamental geometric
tests from [Varadhan et al. 2004] to apply to open surface primitives
such as ruled or developable surfaces. These two tests are described
below.

Extended Complex Cell Test A cell is complex if it has a com-
plex voxel, face, edge, or an ambiguous sign configuration [Varad-
han et al. 2004; Varadhan and Manocha 2006]. We define a voxel
(face) of a grid cell to be complex if it intersects ℰ and the grid ver-
tices belonging to the voxel (face) do not exhibit a sign change. The
sign of a vertex is positive if it lies within ℰ , negative otherwise. An
edge of the grid cell is said to be complex if ℰ intersects the edge
more than once. In order to perform the complex cell test on a given
cell, we require signs at the vertices of the cell and an intersection
test for the voxel/faces/edges of the cell. In Sec. 4.3, we show how
to compute the signs at the cell vertices using front propagation.

Extended Star-shaped Test This test ensures that the surface
ℰ restricted to a cell is star-shaped within that cell. Let S be a
nonempty subset of ℝd. The set Kernel(S) consists of all s ∈ S
such that for any x ∈ S, we have s + �(x− s) ∈ S,∀� ∈ [0, 1]. S
is star-shaped if Kernel(S) ∕= ∅. Intuitively, a star-shaped primitive
has a representative point (called the origin) such that all the points
in the primitive are visible from the origin. The star-shaped test is
applicable to the case where the surface ℰ is defined over a set of
primitives {Pi}. We can check whether ℰ is star-shaped by testing
whether there exists a point o such that Pi is star-shaped w.r.t. o
for ∀ i. This is a conservative condition for star-shapedness of ℰ .
Formally, we test if ∩iKernel(Pi) ∕= ∅.

1Throughout the paper, we interchangeably use the outer boundary of
the arrangement and the outer boundary of SV(Γ) to describe S.



As mentioned earlier, in case of SV computation, the surface prim-
itives (ruled and developable surfaces) are not closed. We assume
that these primitive surfaces are orientable. As a result, the ker-
nel of a surface primitive can have two separate components, one
for each orientation of the surface (see Fig. 2). We take this fact
into account while performing the star-shaped test for S. When we
compute ∩iKernel(Pi) where {Pi} is the set of primitives con-
tributing to S, it is possible that we may obtain two disjoint re-
gions. One of them will lie inside and the other will lie outside S
(see Fig. 2). As a result, the star-shapedness of S can be defined in
two ways: one from inside and the other from outside. We require
that S is star-shaped from outside. We use this property later dur-
ing front propagation (in Sec. 4.3). We test if S is star-shaped from
the outside by checking if the kernel component that lies outside is
non-empty.

Figure 2: Extended Star-shaped Test for an Open Surface: an open surface S

may have two kernels, K1, K2. Since the origin p1 of K1 can see a front point r,
K1 is outside while K2 is inside. Thus, S is star-shaped from outside.

Let K1 and K2 be the two kernel components. To determine which
of them lies outside, we require computing a reference point (r).
We choose two points pi ∈ Ki, i = 1, 2 and check whether pi can
see the reference point r. Only one of them can see the reference
point and the corresponding kernel component lies outside.

During adaptive grid generation, we perform the star-shaped test on
different grid cells. Each time we perform the star-shaped test on a
cell, we need to compute a reference point in that cell. In Sec. 4.3,
we present an algorithm to compute this reference point using front
propagation.

Time Complexity Analysis Assume that there are N tessellated
surface primitives intersected with a cell. The extended complex
cell test requires two types of sub-tests: distance field computation
and sign query. Determining the sign of each vertex in a cell takes
O(N) time, and the distance field computation requiresO(N) time
using the max-norm distance computation. For a polyhedral prim-
itive, the extended star-shaped test reduces to linear programming
[Varadhan et al. 2004; Varadhan and Manocha 2006]. Thus, this
step takes O(N) expected time.

4 Adaptive Sampling and Front Propagation

In this section, we present our swept volume approximation algo-
rithm based on the approach outlined in Sec. 3.2. Our novel algo-
rithm consists of two steps: (1) adaptive sampling assisted by front
propagation and (2) reconstruction from the distance field.

4.1 Notation

We first introduce some notations. As before, the exact swept vol-
ume boundary is denoted as S. Our swept volume approximation
is denoted as A. ℱ denotes the outermost cells in the arrangement
of the surfaces enumerated in Sec. 3.1 that contribute to S. We call
ℱ the free space. S corresponds to the boundary of ℱ . A point in
ℱ is referred to as a free point. We call a grid cell that contains a
point in ℱ a free cell. Similarly, a grid vertex that belongs to ℱ is

referred to as a free vertex. The letter C denotes a grid cell used
for sampling. A grid cell consists of a cube-shaped voxel, six faces,
twelve edges, and eight vertices. In our case, C is a closed set.

4.2 Adaptive Grid Generation

We generate an adaptive volumetric grid such that every grid cell
satisfies the star-shaped and complex cell tests. The basic approach
is to start with a single cell that bounds S and apply the extended
star-shaped and complex cell tests recursively. If a grid cell does
not satisfy either of the two tests, the grid cell is subdivided and the
algorithm is applied to the children cells.

Our goal is to reconstruct just the outer boundary of the swept vol-
ume. Therefore it suffices to consider only the free cells during
adaptive grid generation. The basic steps of the algorithm are:

1. Initialize the grid to be an axis-aligned cell that bounds S.
2. Detect free cells in the grid.
3. For each unmarked free cell C do

∙ Mark C
∙ Check whether C satisfies the star-shaped and complex

cell tests.
∙ If either of the two tests fails, subdivide C.

4. If any grid cell has been subdivided in Step 3, jump to Step 2.

In order to apply the above algorithm, we need to identify the free
cells in the grid. We use front propagation for that computation.

4.3 Front Propagation

Front propagation is a technique that is conceptually similar to
propagating a wavefront through a medium in space, i.e. such as
level set computation [Sethian 1996]. In our context, the medium
is the free space ℱ . The front is initialized to a free point and al-
lowed to propagate in all directions. Front propagation stops only
when the front arrives at the swept volume boundary. As a result,
the front visits all the free points.

We use a discrete representation for the front. The front is a finite
set of free points(e.g. the black solid boxes shown in Fig. 3). Let Ω
denote the front. We refer to a point in Ω as a front point. We refer
to a cell that has been visited by the front as a front cell. Given a
cell C, the front set ΩC of cell C refers to the set of front points
contained in cell C, i.e., ΩC = Ω∩C. The front points in ΩC need
not necessarily be the vertices of C.

We use front propagation to detect the free cells during adaptive
grid generation. We initialize Ω to be a free vertex of the initial grid
(an axis aligned bounding box that encloses S). Once the front is
initialized, we allow it to propagate through the grid. A front can
propagate in three ways, including propagation within a grid cell
(Cell Propagation), from a grid cell to its neighboring cells (Vertex
Propagation), or from a grid cell to its children cells when the cell
is subdivided (Downward Propagation). In this manner, the front
visits all the free cells in the grid.

We keep track of free cells in a queue (Q). When the front en-
counters a free cell, it is added to Q. The grid generation algorithm
processes a free cell by extracting it from Q and checking whether
a given cell satisfies the complex cell and star-shaped tests. If either
of the tests fails, the grid generation algorithm subdivides the cell.
The front continues to propagate on the refined grid and visits the
children of the free cells.

We now elaborate each of these three types of front propagation.
These include:



(a) Initialization (b) Cell Prop. (c) Vertex Prop. (d) Downward Prop. (e) Cell Prop. (f) Reconstruction

Figure 3: Front Propagation: The front is initialized to be a vertex (point v0) of an axis aligned bounding box that encloses S (Fig. (a)). Figs. (b) and (c) illustrate cell and vertex
propagation respectively. In Fig. (b), the front propagates within a cell to all its free vertices (points v0,v1,v2,v3). Fig. (c) shows front propagation from a vertex (point v2) to
all its neighboring cells. Fig. (d) illustrates downward propagation. The front propagates from cell v1v4v5v2 to its children cells. The front propagates to only those children cells
that have a front point. Fig. (e) shows cell propagation in cells v1v6v7v9 and v9v7v8v2. Fig. (f) shows the final adaptive grid. The front has visited all the free cells i.e., cells
that contain a point in ℱ . An isosurface is extracted from this grid to obtain a topologically correct approximation to the outer boundary of swept volume (shown in orange).

∙ Vertex Propagation: Vertex propagation refers to propaga-
tion of the front from a free vertex to all the neighboring cells
that contain the vertex. If a vertex v of the grid is a front point
then the front propagates to every neighboring grid cell that
contains v. If a cell C contains v then C is classified as a
front cell and we update the front, i.e., ΩC = ΩC ∪ {v}. If
C is not already a front cell then it is yet to be processed. We
add C to Q and thereby ensure that it is eventually processed.
Fig. 3(c) illustrates vertex propagation.

∙ Cell Propagation: Cell propagation refers to propagation of
the front within a cell. We determine the cell vertices that are
in ℱ and add them to the front. We perform cell propagation
only on the cells that satisfy the star-shaped test. We use the
star-shaped test to detect free vertices in the cell. By definition
of star-shapedness, given a cellC that satisfies the star-shaped
property, there exists a point o ∈ C (the origin) that can see
every free point in C. In particular, all the free vertices of C
are visible from o. We test if a cell vertex v is a free vertex by
testing if the distance to the nearest surface primitives along
the direction of −→ov is greater than the magnitude of ∣−→ov∣. If
v satisfies this test, then the front propagates to v, i.e., ΩC =
ΩC ∪ {v}. Figs. 3(b) and 3(e) illustrate cell propagation.

∙ Downward Propagation: If a cell C does not satisfy either
the star-shaped or the complex cell test then we subdivide C
into children cells Ci. The front propagates from C into its
children Ci. We refer to this type of propagation as down-
ward propagation. The front propagates from C to only those
children cells that contain a front point, i.e., front propagates
to Ci only if ΩCi = Ci ∩ Ω ∕= ∅. Fig. 3(d) illustrates down-
ward propagation.

In this manner, front propagation detects the free cells in the
grid. During grid generation, the front may not reach or propagate
through all the free cells in the grid. This is due to the presence
of intermediate cells that do not satisfy the complex cell and star-
shaped tests. These intermediate cells act as a barrier and may pre-
vent the front from propagating to some of the free cells. However,
as the grid is refined, eventually we will obtain a final adaptive vol-
umetric grid G such that all the free cells in G satisfy both complex
cell and star-shaped tests.

As we mentioned in Sec. 3.2, the star-shaped test requires a ref-
erence point that serves as the kernel. We perform the star-shaped
test on a cell C only after it has been visited by the front. This im-
plies that its front is nonempty, i.e. ΩC ∕= ∅. We choose one of the
front points as a reference point for the star-shaped test. In order to
perform the complex cell test, we need to know the signs of the cell
vertices, i.e. whether or not they are free vertices. The complex cell
test is performed on a cell C only after we perform cell propagation
on C. As a result, a vertex v of C is a free vertex if and only if it is

a point on the front.

4.4 Distance Fields and Reconstruction

All the free cells in the final adaptive volumetric grid G satisfy the
complex cell and star-shaped tests. Moreover, for each grid point in
G, we compute signed, directional distance along six axis-aligned
directions using a variant of max norm computation [Varadhan et al.
2004]. We determine the signs of grid points during front propaga-
tion. Finally, we apply Marching Cubes or its variant such as dual
contouring [Ju et al. 2002] to G to obtain a topology-preserving ap-
proximation A of the exact swept volume boundary S. Dual con-
touring also preserves sharp features in the SV boundary.

5 Analysis

In this section, we show how our algorithm can guarantee geometric
and topological error bounds.

5.1 Topological Guarantees

We can prove that the front visits every free cell in the final adaptive
volumetric grid generated by our algorithm. Moreover, it can be
also shown that a cell in final adaptive volumetric grid is a free
cell if and only if it is a front cell. Thus, since all the free cells
satisfy the complex cell test and star-shaped tests, the approximated
SV has the same topology as the exact SV. More details on this
proof is given in [Zhang et al. 2009].

5.2 Geometric Guarantees

We can extend our swept volume approximation algorithm to ob-
tain arbitrarily tight two-sided Hausdorff error bounds on our swept
volume approximation. Let � denote the set of swept surfaces enu-
merated in Sec. 3.1 that contribute to the boundary of the swept
volume. We make use of the fact that the swept volume bound-
ary S is a subset of the boundaries of the swept surfaces in �.
Given an error tolerance � > 0, we augment the grid genera-
tion algorithm with an additional criterion. Consider a grid cell
C. Let �C denote the set of swept surfaces that intersect C. Let
AC denote the output of isosurface extraction applied to cell C.
We subdivide a cell if the Hausdorff distance between AC and any
swept surface in �C is greater than �. More precisely, we calculate
d = max{Hausdorff Distance(AC , �i) ∣ �i ∈ �C} and subdivide
C if d > �. This ensures that the two-sided Hausdorff distance be-
tween our approximation A and the exact swept volume S is less
than �.



6 Implementation and Results

In this section, we describe the implementation of our SV compu-
tation algorithm and highlight its performance on different bench-
marks. We have implemented our SV algorithm using C++ lan-
guage under Windows XP. We use the public domain computational
geometry library, CGAL2, to maintain the mesh data structures for
swept volume approximation. We also use the public-domain linear
programming solver, QSopt3, to find a kernel point in the extended
star-shaped test. We have applied our new SV algorithm to the fol-
lowing benchmarks:

Solid Modeling (Fig. 4): a sphere under hypotrochoid sweep (left),
a torus under helical sweep (middle) and a torusknot under heli-
cal sweep(right). For these models, we also show a green rod that
indicates the translational direction of the helical motion.

Robot Motion Planning (Fig. 5): The SV of a Puma robot is gen-
erated as a result of motion planning. One may perform collision
detection of the SV against an obstacle (the green car) to validate
the correctness of motion planning, i.e. whether the computed path
is collision-free.

CNC Milling (Fig. 6): A milling tool (modeled as a cylinder with
a flat end) is driven by G-code4 instructions to cut the underly-
ing workpiece. The final workpiece is obtained by performing a
Boolean operation between the initial workpiece and the SV of the
milling tool. The driving G-code consists of more than 4.3K in-
structions, including linear and circular interpolations.

In Table 1, we show the geometric complexities of the benchmark-
ing models as well the runtime performance statistics of our SV
algorithm on these models. The timing was measured on a PC with
dual AMD Athlon 64 FX-60 processor and 2G of memory. We
have observed that our algorithm generates 20∼70 times fewer grid
cells than [Kim et al. 2003] while guaranteeing the topology and
error-bounds on the result.

Figure 4: Hypotrochoid Sweep of a Sphere.

Figure 5: Sweeping a Puma Robot.

Comparisons In contrast to the earlier work on SV including the
work [Kim et al. 2003] and [Varadhan et al. 2004], our new al-
gorithm provides the following benefits (also see Fig.1). Our new
sampling method provides a bounded-error approximation with the
same topology as the exact SV. However, [Kim et al. 2003] does

2http://www.cgal.org/
3http://www2.isye.gatech.edu/˜wcook/qsopt/
4A programming language that controls CNC machine tools.

(a) Swept Volume (b) Final Workpiece

Figure 6: CNC Milling.

not provide any guarantees on the final topology or the sharp fea-
tures of the swept volume. Since our algorithm uses an adaptive
grid for sampling, the memory requirement for our new algorithm
is considerably lower than that of [Kim et al. 2003], while comput-
ing a more accurate representation of the boundary. Moreover,[Kim
et al. 2003] uses a rather adhoc and overly conservative method for
generating a uniform grid. Since the field grid is uniform, it may
require high memory overhead. Our novel, front marching algo-
rithm efficiently works on adaptive grids in terms of computing the
signed distance field for an arrangement of open surface primitives.
The earlier method by Varadhan et al. [Varadhan et al. 2004] is
only able to handle primitives corresponding to closed surfaces (or
solids) and their Boolean combination. Their results and formula-
tion are not applicable to envelopes of surfaces, as the surface prim-
itives are not closed. In fact, our proof for open surface primitives
is very different from that used in [Varadhan et al. 2004], which
is limited to Boolean combinations of closed primitives. Finally,
our sign computation algorithm is also quite different from [Varad-
han et al. 2004], since their algorithm assumes closed surface (or
solids) as input and thus signs can be easily determined from this
assumption.

Limitations Our SV algorithm may not be able to handle all de-
generate inputs such as tangential contact between surface primi-
tives or arbitrarily close surface primitives. In fact, these problems
are inherent to the underlying sampling and reconstruction algo-
rithm [Varadhan et al. 2004] that our SV approximation algorithm
is also based on. For these degenerate inputs, the algorithm may
require an excessive amount of subdivisions to accurately approx-
imate the outer boundary of SV. In practice, this behavior may be
controllable at the expense of the accuracy of the result. Our sub-
division scheme can be conservative and can generate more cells
than are necessary. Finally, our approach is limited to only the outer
boundary computation and not the internal voids.

7 Conclusions and Future Work

We have presented a simple algorithm to generate a error-bounded,
topology-preserving approximation of the outer boundary of swept
volume of a polyhedron swept along a given trajectory.

There are many avenues for future work. Swept volume has many
applications as pointed out by [Abdel-Malek et al. 2004]. We would
like to further explore how to utilize our SV approximation in these
applications, e.g. four dimensional collision detection and shape
modeling. In our current implementation, we do not perform any
extra pre-processing; however, some preprocessing can accelerate
the entire computation. For example, to find surface primitives that
intersect with a cell, currently we perform a simple linear search
and do not implement any sophisticated optimizations such as range
query data structures. As a result, the runtime performance of our
algorithm can be considerably improved. Finally, we are also in-
terested in approximating the envelope of curved surfaces for other
applications such as Minkowski sums and developing practical al-
gorithms for a wide class of arrangement problems that arise in
various geometric applications.



Combinatorial Complexity Computational Performance (seconds) Grid Resolution(# of cells)
Model

Γ # of Tris ∂SV (Γ) Surf Gen Sampling Iso-Surf Total Ours [Kim et al. 2003]

Sphere 840 294K 143K 0.49 1.4K 2.56 1.4K 0.363M 16.7M
Torus 576 59K 142K 0.28 366 1.06 367 0.336M 16.7M

Torus-Deform 576 59K 142K 0.28 373 0.73 374 0.205M 16.7M
Torusknot 640 59K 366K 0.32 897 2.04 899 0.845M 16.7M

Rotor 4736 27K 806K 0.20 1.6K 3.45 1.6K 1.72M 134M
PUMA 708 48K 324K 0.30 874 2.18 876 0.774M 16.7M
Milling 120 1.32M 191K 0.83 856 5.96 862 0.774M 16.7M

Table 1: Model Complexities of SV Benchmarks and Timing Statistics. From the second to the fourth column, each column respectively shows the triangle count of a generator
Γ, the total number of triangles in the tessellated ruled and developable surfaces, and the triangle count of the boundary of swept volume computed by our algorithm ∂SV (Γ). From
the fifth to the seventh column, each column respectively shows a breakdown of the timing for surface primitive generation, adaptive sampling and isosurface extraction. The eighth
column is the total time. The ninth and tenth columns list the grid resolutions required by our algorithm and by Kim et al. [2003] to achieve similar results.
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