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Abstract

In this paper, we highlight our past experiences on fast penetration
depth computation and its applications in different areas such as
physically-based animation, 6DOF haptic rendering and robot mo-
tion planning.
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1 Introduction

The problem of computing a distance measure between geometric
objects arises in robotics, dynamic simulation, computer gaming,
virtual environments, etc. It includes computation of minimal Eu-
clidean or separation distance between disjoint geometric objects
as well as a measure of penetration or intersection between two
overlapping objects. The separation distance computation problem
has been well-studied in the literature and a number of efficient and
practical algorithms are known for polyhedral models. On the other
hand, there is relatively less work on penetration depth computation
between two intersecting objects

Given two inter-penetrating rigid polyhedral models, the pene-
tration measure between them can be defined using different for-
mulations. One of the widely used measures for quantifying the
amount of intersection ispenetration depth(PD). The translational
penetration depth (PDt ) between two overlapping models is defined
as the minimum translational distance required to separate two in-
tersecting rigid models [Cameron 1997; Cameron and Culley 1986;
Dobkin et al. 1993]. However, translational PD is not sufficient
in many applications as it does not take into account the rotational
motion. We can take into account the translational and rotational
motion to describe the extent of two intersecting objects and re-
fer to that extent of inter-penetration as thegeneralized penetration
depth(PDg).

PD computation is important in a number of applications. In
rigid body dynamics, inter-penetration between simulated objects
is often unavoidable due to the nature of discrete, numerical simu-
lation. As a result, several response algorithms like penalty-based
simulation methods need the PD information to compute the non-
penetration constraint force [Mirtich 2000; Stewart and Trinkle
1996]. The PD is also used to estimate the time of contact to ap-
ply impulsive forces in impulse-based methods [Kim et al. 2002a].
Sampling-based motion planning techniques perform PD compu-
tation between the robot and the obstacles to generate samples in
narrow passage in configuration space [Hsu et al. 1998]. Many
6-DOF haptic rendering algorithms use penalty-based methods to
compute a collision response and need to compute the PD at haptic
update rates [Kim et al. 2003]. Other applications include tolerance
verification, where PD could be used to estimate the extent of inter-
ference between the parts of a machine structure [Requicha 1993].

In this paper, we highlight our past experiences on developing
and implementing different PD algorithms and their applications
including the following:

• A highly interactive algorithm to estimate PDt between con-
vex polytopes in 3D, known as DEEP [Kim et al. 2004].

• A fast algorithm to estimate PDt between two polyhedral
models, utilizing a combination of discretized computations
and hierarchical refinement [Kim et al. 2002a].

• A fast algorithm to estimate PDg between two polyhedral
models [Zhang et al. 2006c].

• Applications of PDt to 6DOF haptic rendering [Kim et al.
2003], physically-based animation [Kim et al. 2002b], and
tolerance verification [Kim et al. 2002a].

• Applications of PDg to robot motion planning [Zhang et al.
2006b; Zhang et al. 2006a].

2 Translational Penetration Depth
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Figure 1: PD Computation. (a) shows the situation before two ob-
jects come into contact. (b) shows intersections after the objects
are intersected. (c) shows the Minkowski sum of the two objects
in (b). The minimum distance from the origin to the surface of the
Minkowski sum corresponds to the global PD.

2.1 Definition

The natural extension of Euclidean separation distance to overlap-
ping objects is PDt . The PDt of two inter-penetrating objectsA and
B is defined as the minimum translation distance that one object un-
dergoes to make the interiors ofA andB disjoint. Formally, letP
andQ be two intersecting polyhedra. Then, the PD of polyhedraP
andQ, PDt(P,Q), is defined as:

min{‖ d ‖ | interior(P+d) ∩ Q = /0} (1)

One of the commonly used metrics for representing and com-
puting PD’s is in terms of Minkowski sums of two objects. The
Minkowski sums ofA⊕B are defined as a set of pairwise sums of
vectors fromA andB; i.e.,

A⊕B = {p+q| p∈ A,q∈ B} (2)
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Figure 2: Iterative Optimization: (a) The current (V,V) pair isv1v′1 and a shaded region represents edges and faces incident tov1v′1. (b) shows
local Gauss maps and their overlay forv1v′1. (c) shows the result of the overlay after central projection onto a plane. Here,f1, e1, f2 ande2
comprise vertices (candidate PD features) of the overlay. (d) illustrates how to compute the PD for the candidate PD features in object space.
(e) f2 is chosen as the next PD feature, thusv2v′2 is determined as the next vertex hub pair.

If we define−B of B as reflectingB with respect to the origin,
i.e.,−B = {−q|q∈ B}, then the Minkowski sums ofA⊕−B, also
known as Configuration Space Obstacles (CSO), are defined as

A⊕−B = {p−q| p∈ A,q∈ B} (3)

Without loss of generality, let us assume that polyhedraA andB are
defined with respect to the global origino. Then, if two polyhedraP
andQ intersect, then the origino is inside ofP⊕−Q, andPD(P,Q)
corresponds to the minimum distance fromo to the surface of the
Minkowski sums ofP⊕−Q [Cameron 1997] (see Fig. 1). Thus, the
main ingredient of our PDt algorithms explained in the following
boils down to how to compute the Minkowski sums (or CSO) of
two intersecting objects in an implicit or approximate manner.

2.2 Algorithm for Convex Polytopes

Our algorithm uses a number of techniques to initialize some fea-
tures on the surface of the CSO, which are presumably very close to
the features that realize the optimum PD. Then, the algorithm incre-
mentally marches towards a “locally optimal” solution by walking
on the surface of the CSO. We define the locally optimal PD using
the features on the CSO as follows. Letf be a feature on the CSO
that corresponds to the locally optimal PD. Then, the distance from
the origin to f is always smaller than the distance from the origin
to any neighboring feature off on the CSO.

We implicitly compute the surface of the CSO by constructing a
local Gauss map and performing a local walk on the polytopes. Our
algorithm performs incremental computations and exploits spatial
and temporal coherence between successive frames. Our approach
for locally computing the Gauss map is based on an earlier algo-
rithm for width computation between convex polytopes [Kim et al.
2004].

In our incremental PD computation algorithm, we do not com-
pute the entire Gauss map for each polytope or their entire
Minkowski sums. Rather we compute them in a lazy and incre-
mental manner, based on local optimization. Starting from some
feature on the surface of the Minkowski sums, the algorithm finds
the direction in which it can decrease the PD value and proceeds
towards that direction by extending the surface of the Minkowski
sums.

At each iteration of the algorithm a vertex is chosen from each
polytope to form a pair. We label it as avertex hub pairand use it

as a hub of the expansion of the local Minkowski sums. The vertex
hub pair is chosen in such a way that there exists a plane supporting
each polytope, and it is incident on each vertex. It turns out that the
vertex hub pair corresponds to two intersected convex regions on
the Gauss map, which later become intersecting convex polygons
on the plane aftercentral projection. The intersection of convex
polygons correspond to the VF or EE antipodal pairs from which
one can reconstruct the local surface of the Minkowski sums around
the vertex hub pair. Given these pairs, we choose the one that cor-
responds to the shortest distance from the origin of the Minkowski
sums to their surface. If this pair decreases the estimated PD value,
we update the current vertex hub pair to an appropriate one which
is adjacent to the chosen antipodal pair. We iterate this procedure
until we can not decrease the current PD value and converge to a
local minima; see Fig. 2. This algorithm has been implemented
and can be downloaded fromhttp://gamma.cs.unc.edu/DEEP. In
our experiments, the algorithm is able to estimate the penetration
depth in about a milli-second on an 1 GHz Pentium PC. Moreover,
its performance is almost independent of model complexity in en-
vironments with high coherence between successive instances.

2.3 Algorithm for General Polyhedra

It is relatively easier to compute Minkowski sums of convex poly-
topes as compared to general polyhedral models. One possible
approach for computing Minkowski sums for general polyhedra
is based ondecomposition. It uses the following property of
Minkowski computation. IfP = P1∪P2, thenP⊕Q = (P1⊕Q) ∪
(P2⊕Q). The resulting algorithm combines this property with con-
vex decomposition for general polyhedral models:

1. Compute a convex decomposition for each polyhedron

2. Compute the pairwise convex Minkowski sums between all
possible pairs of convex pieces in each polyhedron

3. Compute the union of pairwise Minkowski sums.

After the second step, there can beO(n2) pairwise Minkowski sums
and their union can haveO(n6) complexity [Aronov et al. 1997].
This approach provides an algorithmic framework to compute the
Minkowski sum.



Figure 3: PDg example. The left column shows the placements of
the ‘spoon’ in the ‘cup’, when t=0.0, t=0.5, and t=1.0, respectively.
At all of these placements, the ‘spoon’ collides with the ‘cup’. The
right column of this figure shows the collision-free configurations
that are computed based onUB1(PDg) for each t.

Our algorithm to estimate the PD is also based on a decomposi-
tion approach. In order to overcome its combinatorial and computa-
tional complexity, we use asurface-basedconvex decomposition of
the boundary and perform discretized computations and local walk-
ing to estimate the PD. We do not explicitly compute the boundary
of the union or any approximation to it. Rather, we perform the
closest point queryusing hardware-assisted massive ray shooting
that estimates the closest point from the origin to the boundary of
the union of pairwise Minkowski sums. The resulting maximum
depth fragment at each pixel computes an approximation to the PD,
up to the pixel resolution used for this computation. Given this
PD estimate, we further refine it using an incremental algorithm
that performs a local walk on the Minkowski sum. Each step of
our approach is relatively simple to implement. However, its worst
case complexity can be as high asO(n4) because of the number of
pairwise Minkowski sums and the computational complexity of the
closest point query.

We improve the performance of the algorithm using a number
of acceleration techniques. These include hierarchical representa-
tion based on convex bounding volumes, use of model simplifica-
tion algorithms, and geometry culling approaches applied to both
Minkowski sum computation and hardware assisted ray-shooting
[Kim et al. 2002a]. This algorithm has been implemented and
tested on different benchmarks. Depending on the combinatorial
complexity of polyhedra and their relative configuration, its perfor-
mance varies from a fraction of a second to a few seconds on a
1.6GHz PC with an NVIDIA GeForce 3 graphics card.

3 Generalized Penetration Depth

In this section, we define a generalized PD, PDg by taking into
account translational as well as rotational motion to separate the
overlapping objects. We present fast algorithms to estimate a lower
bound and an upper bound for PDg.

Figure 4: An example of PDg < PDt between convexA and non-
convexB. The trajectory length thatA travels is much shorter when
both translation and rotation transformation are allowed (b) than the
length when only translation is allowed (a).

3.1 Definition

In order to define PDg, we first introduce a distance metricDg de-
fined in configuration space (or C-space). We use this metric to
measure the distance of an objectA placed at two different config-
urations.

Let l be a curve in C-space, which connects two configurations
q0 andq1 and is parameterized int. When the configuration ofA
changes along the curvel , any pointp on A will trace out a tra-
jectory in 3D Euclidean space We denote the arc-length of this tra-
jectory astrajectory lengthµ(p, l) . There can be multiple curves
connecting two configurationsq0 and q1. WhenA moves along
any such curve, some point onA corresponds to the longest trajec-
tory length as compared all other points onA. For each C-space
curve connectingq0 andq1, we consider the corresponding longest
trajectory length. We define the distance metricDg(q0,q1) as the
minimum over all longest trajectory lengths.

Dg(q0,q1) = min({max({µ(p, l)|p ∈ A})|l ∈ L}), (4)

whereL is a set of all the curves connectingq0 andq1. UsingDg
metric, we define our generalized PD, PDg as:

PDg(A,B) = min({Dg(q0,q)|interior(A(q))∩B = /0}) (5)

whereq0 is the initial configuration ofA, andq is in C-space.
The translational PD PDt defined by Eq. (1) is essentially a spe-

cial case of PDg. When an objectA can only translate, all the points
on A traverse the same distance. As a result, the distance metric
D(q0,q1) is equal to the Euclidean distance‖ q0−q1 ‖. In this
case, Eq. (5) can be simplified to Eq. (1).

3.2 Algorithms

In terms of handling general non-convex polyhedra, it is difficult
to compute PDg. This is due to the high combinational complex-
ity of C-Space arrangement computation, which can be as high as
O(n12). However, reducing the problem to only dealing with con-
vex primitives can significantly simplify the problem. In [Zhang
et al. 2006c], we prove the following theorem:

THEOREM 1 Given two convex objects A and B, we have

PDg(A,B) = PDt(A,B)

Furthermore, if the complement of one of the polyhedra is con-
vex, we reduce PDg to a variant of a convex containment problem
[Zhang et al. 2006c]. In case of general non-convex polyhedra, we
treat them as a combination of above two cases to compute a lower
bound and an upper bound on PDg.



Figure 5: Application of PDt to Virtual Exploration of a Digestive System Model (25K triangles). Figures show the forces computed at
clustered contacts, for both disjoint (D, green arrows) and penetrating (P, red arrow) situations.

3.2.1 Lower Bound on PDg

Our algorithm to compute a lower bound on PDg is based on Thm.
1. We compute a lower bound of PDg by first decomposing each
input models into convex pieces [Milenkovic 1998]. Next, we take
the maximum value of PDti ’s between all pairwise combinations of
convex pieces. The overall algorithm is stated in Alg. 1.

Algorithm 1 Lower bound ofPDg computation
Input: The robotA, the obstacleB and the configurationq
Output: The lower bound ofPDg betweenA(q) andB.

1: {During preprocessing}
2: DecomposeA andB into m andn convex pieces; i.e.,A = ∪Ai

andB = ∪B j .
3: {During run-time query}
4: for each pair of(Ai(q),B j ) do
5: k = (i−1)n+ j
6: if Ai(q) collides withB j then
7: PDg

k = PDt((Ai(q),B j )
8: else
9: PDg

k = 0
10: end if
11: end for
12: return max(PDg

k) for all k.

Our lower bound to PDg computation can be accelerated by em-
ploying a standard bounding volume hierarchy. For two disjoint
convex pieces, their PDt corresponds to zero. Typically there are
many disjoint pairwise combinations of convex pieces (Ai ,B j ). We
detect such disjoint pairs using an oriented bounding box (OBB)
[Gottschalk et al. 1996] hierarchy and prune them away.

3.2.2 Upper Bound on PDg

One simple way to compute an upper bound to PDg for general
non-convex polyhedra is to compute the PDt between their convex
hulls, thanks to Thm. 1. Though this upper bound is relatively
simple to compute, it could be overly conservative for non-convex
models, as shown in Fig. 4. PDt(A,B) can be also an upper bound
on PDg(A,B). However, this can result in an overly conservative
upper bound too. Since the computational complexity of exact com-
putation of PDt(A,B) for non-convex models can be high, current

approaches typically compute an upper bound of PDt(A,B) [Kim
et al. 2002a].

In order to compute a tighter upper bound on PDg for non-convex
polyhedra, we first investigate a special case that the movable object
A and the complement of a fixed object B (i.ēB) are both convex.
For this special case, we can compute an upper bound on PDg us-
ing a two-level containment optimization algorithm based on linear
programming [Zhang et al. 2006c].

Now for general non-convex polyhedra, our upper bound
PDg(A,B) algorithm can be stated as follows. During the pre-
processing phase, we enumerate all possible convex separators by
analyzing the convexity of the boundary ofB. Here the separa-
tor is defined as a simple piece-wise linear surface that divides the
space into two half-spaces. A separatorS is convex if and only
S⊂ ∂ (CH(S)). During the query phase, for each convex separator
S, we compute an upper bound onDg distance whenA is separated
from B with respect toS. In fact, this computation is equivalent
to an upper boundPDg computation for the special case discussed
above, which can be efficiently optimized by using linear program-
ming. The minimum over these upper bounds for all convex sepa-
rator together with the PDt yields a tighter upper bound on PDg.

4 Applications

Now we demonstrate various applications of PDt and PDg algo-
rithms.

4.1 6DOF Haptic Rendering

A novel six-degree-of-freedom haptic rendering algorithm has been
proposed based on incremental and localized contact computations.
It uses an incremental approach for contact and force computations
and takes advantage of spatial and temporal coherence between suc-
cessive frames. As part of a preprocess, we decompose the surface
of each polyhedron into convex pieces and construct bounding vol-
ume hierarchies to perform fast proximity queries. Once the ob-
jects have intersected, we compute PDt in the neighborhood of the
contact between each pair of decomposed convex pieces using the
DEEP algorithm. Moreover, we cluster different contacts based on
their spatial proximity to speed up the force computation. We have
implemented this algorithm and applied it to complex contact sce-
narios consisting of multiple contacts, as shown in Fig. 5.



Figure 6: Application of PDt to Rigid-Body Dynamic Simulation. Our algorithm is used to perform smarter time stepping in a dynamic
simulation. A sequence of snapshots are taken from a rigid-body simulation of 200 models of letters and numerical digits falling onto a
structure consisting of multiple ramps and funnels.

4.2 Physically-based Animation

PD computation is often needed for dynamic simulation of rigid
body systems. In the physical world, objects do not occupy the
same spatial extent. However, this is often unavoidable in numerical
simulations. For applications involving articulated joints, stacking
objects and parts assembly, bodies are nearly in contact or actually
touching each other all the time. Our PDt computation algorithm
for non-convex polyhedra provides a consistent and accurate mea-
sure of PD.

For example, in penalty-based methods, the forces between
rigid bodies are proportional to the amount of inter-penetration.
We use PDt to quantify such an amount of inter-penetration. In
constrained-based dynamics, we utilize the knowledge about PDt

features and direction and use a cubic interpolation scheme to esti-
mate the time of collision; see Fig. 6.

4.3 Robot Motion Planning

PDg computation can be utilized for complete motion planning
of polygonal robots undergoing translational and rotational mo-
tion. The complete motion planning checks for the existence of
a collision-free path or reports that no such path exists. It is differ-
ent from motion planning algorithms based on random sampling,
which can not check for path non-existence.

We mainly use our lower bound on PDg computation algorithm
to perform theC-obstacle query. This query for a given C-space is
formally defined as checking whether the following predicateP is
always true [Zhang et al. 2006b]:

P(A,B,Q) : ∀q ∈ Q, A(q)∩B 6= /0 (6)

Here,A is a robot,B represents obstacles andQ is a C-space prim-
itive or a cell;A(q) represents the placement ofA at the configura-
tion q. Q may be a line segment, a cell or a contact surface that is
generated from the boundary features of the robot and the obstacles.

In order to efficiently performC-obstacle queryfor any cell in C-
space, we compute the PDg by setting its configuration as the center
of the cell. Then we compare it with the maximal motion that the
robot can undergo when its configuration is confined within a cell
[Schwarzer et al. 2002]. If the lower bound of PDg is larger than
the upper bound of the maximal motion, we conclude that the cell
(i.e. Q) fully lies in C-obstacle space [Zhang et al. 2006b].

TheC-obstacle queryis useful for cell decomposition based al-
gorithms for motion planning [Latombe 1991] and sampling based
approaches such star-shaped roadmaps. Fig. 7 illustratesPDg based
C-obstacle queryalgorithm is utilized to speed up a complete mo-
tion planner - star-shaped roadmaps.

Another benefit of theC-obstacle queryis to determine non-
existence of any collision-free path. The methods in [Zhang et al.
2006a; Varadhan and Manocha 2005] conclude that no path exists

Figure 7: This figure illustrates an application of ourPDg based
C-obstacle query algorithm to speedup a complete motion planner
- the star-shaped roadmap algorithm. In this example, the object
Gear needs to move from initial configurationA to goal configu-
rationA′ by translating and rotating within the shaded rectangular
2D region. We show the robot’s intermediate configurations for the
found path. Using our C-obstacle query, we can achieve about 2.4
times speed up for the star-shaped roadmap algorithm for this ex-
ample.

between the initial and goal configurations if they are separated by
C-obstacle space, as shown in Fig 8. These methods can be per-
formed using theC-obstacle queryto identify these regions which
lie in C-obstacle space.

5 Conclusion and Future Work

We have presented efficient algorithms for computing PDt for con-
vex polytopes, PDt for general polyhedra and PDg for general poly-
hedra. We also have demonstrated their applications to 6DOF hap-
tic rendering, physically-based animation and robot motion plan-
ning. For future work, there are a few directions that we will like to
further pursue. The main bottle neck in PDt for general polyhedral
lies in the closest point query based on rasterization hardware. This
process can be substantially improved by exploiting programmabil-
ity of modern graphics hardware. The current method of estimating
PDg for general polyhedra is rather loose. It will be quite useful to
find a tighter bound of PDg and apply the PDg algorithm to other
applications such as physically-based animation.
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liding with the obstaclesB1 andB2. (b) is a modified version of
(a) with the obstacleB1 enlarged. A collision-free path through
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are also displayed.
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