
Scanning Bot: Efficient Scan Planning using Panoramic Cameras

Euijeong Lee∗, Kyung Min Han∗, and Young J. Kim

Abstract— Panoramic RGB-D cameras enable high-quality
3D scene reconstruction but require manual viewpoint selec-
tion and physical camera transportation, making the process
time-consuming and tedious—especially for novice users. Key
challenges include ensuring sufficient feature overlap between
camera views and planning collision-free paths. We propose
a fully autonomous scan planner that generates efficient and
collision-free tours with adequate viewpoint overlap to address
these issues. Experiments in both synthetic and real-world
environments show that our method achieves up to 99% scan
coverage and is up to three times faster than state-of-the-art
view planning approaches.

I. INTRODUCTION

The increasing advancements in mobile robotics research
have enhanced robots’ ability to improve the efficiency and
completeness of outcomes in various active trajectory plan-
ning tasks. As a result, modern mobile robots can navigate
large-scale environments with minimal human intervention
to complete their missions. These applications include au-
tonomous mapping of unknown terrain [1], search and res-
cue missions [2], building information modeling (BIM) [3],
plant phenotyping [4], and post-disaster analysis [5], among
others. In particular, view planning is critical in efficiently
achieving reliable results. Indeed, there has been a long
history of extensive research regarding how to plan agents’
view paths to effectively gather essential information to
reconstruct maps or scenes of the environment they navigate.

Although many state-of-the-art view planning systems
have been developed over the past few decades, it is dif-
ficult to consider view planning a solved problem due to
the diversity of applications and problem conditions in the
context of mobile robot navigation. Consequently, it remains
an active research topic within the robotics community. For
example, in applications such as space exploration or search-
and-rescue missions, the quality of the reconstructed model
may be less critical than the scanning efficiency. In contrast,
for applications such as BIM and digital twins, precise and
thorough modeling of the environment is a key component
of the problem. In these scenarios, not only is efficient view
planning essential, but ensuring sufficient feature overlap
between sensor viewpoints is also critical to guarantee a
complete reconstruction of the scanned environment.

This paper focuses on the latter challenge, addressing
the problem of best-view planning for a panoramic RGB-
D camera. Although this camera offers superior reconstruc-
tion quality compared to low-end RGB-D cameras, it also

∗Equal contributions. The authors are with the Department of Computer
Science and Engineering at Ewha Womans University in South Korea
{euijeonglee|hankm|kimy}@ewha.ac.kr .

introduces constraints that must be satisfied to solve the
underlying reconstruction problem, as outlined below.

1) The selected viewpoints should ensure complete scene
coverage across the entire space.

2) The number of viewpoints must be minimized, and the
planned trajectory must ensure collision-free navigation.

3) Two neighboring viewpoints in the viewpoint sequence
must lie within a certain distance to ensure reliable
feature matching and construct a high-quality 3D model.

The first and second constraints are standard, as similar
rules are often applied in most view planning systems. How-
ever, the third constraint is unique to our problem of using a
panoramic camera, such as Matterport Pro2, and introduces
additional complexity. Unfortunately, this constraint hinders
us from directly applying previous view planning systems to
our problem, as most of these approaches prioritize minimiz-
ing trajectory length without accounting for the interactions
among viewpoints.

Furthermore, in the absence of an automated method, a
human expert must manually operate the panoramic RGB-
D camera, typically selecting viewpoints based on a grid
pattern or a similar approach. In addition, the camera must
be physically transported to each location and fixed in
place, making the process tedious and time-consuming. The
challenge becomes even more daunting when large scene
models need to be produced to scale up datasets [6] for deep
learning-related research.

To address these challenges, this research aims to develop
a fully autonomous indoor mobile planner, called a scanning
bot, that is equipped with a panoramic RGB-D camera. The
robot can explore an unknown environment to construct a
2D map using our previous work, Autoexplorer [7]. Once the
map is completed, our novel view planner selects the optimal
viewpoints and determines their visiting order. Finally, the
scanning bot stitches image data from each viewpoint to
reconstruct a 3D model of the observed scenes. To achieve
these goals, we propose a novel view planner with the
following contributions:

• Fully autonomous mobile scan planning system, scan-
ning bot, for reconstructing 3D models of scenes using
a panoramic RGB-D camera.

• A fast and efficient greedy coverage planner that guar-
antees comprehensive scanning coverage. Our approach
minimizes the number of selected viewpoints while po-
sitioning them as closely as possible to ensure sufficient
feature overlap among camera views.

• A new collision-free and visibility-aware path planner
that maintains sufficient feature overlap between neigh-

boring viewpoints, ensuring an optimal tour plan for a
high-quality reconstruction.

• Extensive comparisons of our method against state-of-
the-art view planning approaches. The results demon-
strate that our method substantially outperforms existing
approaches in terms of efficiency in most scenarios
while maintaining over 99% coverage rate.

II. RELATED WORK

A. Coverage Path Planning (CPP)

Coverage path planning (CPP) focuses on generating
an optimal coverage trajectory that is both shortest and
collision-free. Given its significance in real-world applica-
tions, research in this area remains highly active. It continues
to evolve due to its wide range of modern applications,
including home cleaning robots, farm-land robots, and mine
detection tasks.

Boustrophedon cellular decomposition (BCD) [8] is one
of the fundamental methods that has served as a foundation
for many subsequent CPP studies. As such, one significant
challenge in improving trajectory efficiency is minimizing
the number of turns when the robot generates a zigzag pattern
[9]. Additionally, differential-wheeled robots often waste
considerable time finding paths in cluttered environments or
navigating through tight spaces, such as narrow passages.
To address these issues, [10] and [11] explored CPP with
reconfigurable robots, enhancing coverage efficiency in such
scenarios.

Moreover, map changes frequently occur during naviga-
tion due to human intervention or previously undetected
static objects. To handle partially unknown maps, [12] pro-
posed an efficient replanning method based on an integer
programming formulation. Notably, CPP tasks can be com-
pleted more efficiently when multiple robots collaborate, as
demonstrated in [13].

B. Informative Path Planning (IPP)

While the primary objective of CPP is to ensure complete
coverage and trajectory efficiency, IPP focuses on maxi-
mizing information gain or minimizing uncertainty within
the exploration area. Consequently, IPP solvers are partic-
ularly suited for tasks such as search and rescue missions
[14], change detection [15], and large-scale surveillance and
monitoring [16]. Gaussian process regression (GPR) has
traditionally been the most widely used approach for IPP
problems [17], owing to its probabilistic nature. Research
has recently explored deep learning-based IPP solvers, in-
cluding an attention-based neural network trained using a
reinforcement learning (RL) framework [18].

C. Active SLAM

Note that an IPP solver can utilize a map configuration
as prior knowledge. In such cases, the solver can generate
a non-myopic path plan. However, if the exploration space
is unknown, the planning must be adaptive, relying on
previous observations. IPP solvers designed for unknown
space mapping are also known as active SLAM [19]. In

recent years, numerous new approaches have emerged in
active SLAM, particularly driven by advancements in the
DARPA Subterranean Challenge [20].

D. Autonomous Scene Reconstruction

Scene reconstruction using an RGB-D camera sensor has
been a significant research topic in robotics. Among the
proposed methods, [21] introduced an approach that recon-
structs scenes by leveraging time-varying tensor fields. More
recently, 3D model reconstruction has regained attention
due to the success of 3D Gaussian Splatting (3DGS) [22].
One notable application of 3DGS is demonstrated by [23],
who presented an efficient room-scale reconstruction using
multiple indoor robots.

III. PROBLEM FORMULATION

The main objective of our problem is determining the
collision-free optimal view trajectory T ∗ that covers the
entire scene. To achieve this, we decompose the problem
into two phases: (1) optimal viewpoint V∗ selection and (2)
generating T ∗ from V∗.

A. Optimal Viewpoint Selection

A 2D grid map M consists of two types of grid cell x
classes: (i) occupied cells O corresponding to obstacles and
(ii) unoccupied or free cells F corresponding to the collision-
free space. Such a map can be given or autonomously
constructed [7]. xi is said to be visible to xj , xi 7→ xj (or
xj 7→ xi) if

Λ = txi + (1− t)xj ∈ F , 0 ≤ ∀t ≤ 1 and ||Λ|| ≤ r, (1a)

where r is a sensor-range constant. A cell xi ∈ F sees
a set of free cells Si ∈ F , denoted as xi 7→ Si, when
∀x ∈ Si, xi 7→ x. Our first goal is to find a minimal set
of “viewpoint” cells, V∗ = {xi ∈ F} such that F ⊂⋃
xi 7→Si

Si. This optimization problem can be formulated as

a set covering problem:

min
∑
∀i

αi · x̄i, x̄i ∈ {0, 1}, αi ∈ R+ (2a)

s.t.
∑
i

x̄i ≥ 1, 1 ≤ ∀i ≤ |F| (2b)

x̄i −
∑
j ̸=i

x̄j ≤ 0 for ρ(xi, xj) ≤ r, ∀i, (2c)

where x̄i corresponds to a viewpoint xi ∈ F , αi refers to
the significance of xi, and ρ is a distance function between
two viewpoints, xi 7→ xj . Eq. 2a and 2b form a typical set
covering problem, but Eq. 2c complicates the combinatorial
optimization problem with geometric constraints. Finally,
V∗ = {∀xi|x̄i ̸= 0} is given from the solution of Eq. 2a.

B. Optimal Scan Ordering

This subsection formulates our second goal: to generate
an optimal scan tour plan from V∗. Formally, our tour
optimization problem is:

Viewpoint Selection Scan Order Planning

Grid map

generation

Optimal

viewpoints

Autonomous

scanning

Reconstructed

3D mesh
TSP solver

Detour

planning

Scan

ordering

Greedy

optimization

Viewpoint

Visibility

Contour

viewpoint

robot path

Fig. 1: Scanning Bot Pipeline. The set-covering procedure first identifies the optimal viewpoints. This is followed by
TSP-based, collision-free view planning to autonomously scan a scene.

min
∑
i

∑
j ̸=i

βij ēij (3a)

s.t.
n∑

j ̸=i

ēij = 1 and
n∑

i ̸=j

ēij = 1 (3b)

∀i, ∃j < i, ρ(xi, xj) ≤ r (3c)

Here, ēij ∈ {0, 1} represents a tour sequence from xi ∈ V∗

to xj ∈ V∗, and βij represents the cost for choosing eij .
For instance, βij = ∞ if xi is not visible from xj . We
call such an edge eij with βij = ∞ infeasible. Eq. 3a and
3b constitute a typical TSP problem, respectively, but our
problem requires the additional precedence constraint (Eq.
3c) where each viewpoint in the final tour plan must have a
visible viewpoint among its predecessors. A solution to Eq.
3a is the final tour T ∗ = {ē12, · · · , ēn−1,n},∀ēi,i+1 ̸= 0.

IV. AUTONOMOUS VIEW PLANNING

Fig. 1 shows the full pipeline of our method, consisting of
viewpoint selection and scan order planning to be described
in the following Section IV-A and IV-B, respectively.

A. Viewpoint Selection

Due to the additional complexity introduced by Eq. 2c,
the standard set-cover formulation is unsuitable for our
problem. Furthermore, the size of F in our problem also
hinders efficient optimization. To address these challenges,
we propose a greedy set covering-based approach to compute
V∗ as explained below (also illustrated in Fig. 2):

1) Initially, using [24], we compute a universe of free cell
sets U = {Si|∀xi ∈ F , xi 7→ Si}. Pick x0 where S0 is
the largest in U , and set V∗ = {x0}.

2) Identify the contour cells ∂Si of Si utilizing DFFP [25].
3) For each x in ∂Si, evaluate ϕ(·), which depends on the

size of the set and the distance to the nearby obstacles:

ϕ(x) = |Si|/max
i

|Si| − e−∥x−o∥2 , (4)

where o represents the position of the obstacle cell
closest to x. Choose xj = argmaxx ϕ(x) as the next
best viewpoint xj and add xj to V∗.

4) We repeat 2)∼4) until F ⊂ {Si|∀xi ∈ V∗}.

𝑥𝑖 𝑥𝑗
𝑟

𝑆𝑖’s
Contour

ℱ

𝑆𝑖

𝑆𝑗

Fig. 2: Greedy set-covering. xi covers the map with Si. The
green cells represent Si’s contour cells. The next viewpoint
xj is selected from these contour cells based on ϕ(·).

B. Scan Order Planning

𝒢𝑣 1

2

3 4

5

6

7
8

(a) Visibility graph Gv

1

2

3 4

5

6

7
8

(b) T including an in-
feasible path ẽ12

𝜏𝑣
1

2

3 4

5

6

7
8

(c) τv (blue detour)

𝒢𝑟 1

2

3 4

5

6

7
8

(d) Roadmap Gr

𝜏𝑟
1

2

3 4

5

6

7
8

9

(e) τr (blue) with the
Steiner node (x9)

1

2

3 4

5

6

7
8

9

(f) The final path T ∗

Fig. 3: Detour plan using the roadmap. (a) Gv (b) a TSP
plan T with an infeasible edge between x1 and x2. (c)
presents the τv found in Gv . (d) and (e) show the roadmap
Gr and τr found on Gr, respectively. τr has a new Steiner
node x9. (f) shows the final path T ∗.

We use a TSP solver [26] to initialize the scan planning
T with V∗ as input. However, T may violate the constraints
in Eq. 3c, yielding infeasible paths. To address this issue,
our approach searches for a detour plan τ to replace any

infeasible edge ẽ ∈ T . For instance, Fig. 3(a) and 3(b) show
an instance of Gv and the initial plan T = {e12, · · · , e78}
from the TSP solver starting from x1. The edge ẽ12 in T is
infeasible and, requires a detour.

One approach is to search for a detour path τv in the
visibility graph Gv = (V∗, Ev), where Ev = {eij |βij ̸=
∞,∀ij}. However, restricting the plan to Gv may lead to
an inefficient path due to the constraint defined in Eq. 2c.
For instance, as illustrated in Fig. 3(c), replacing ẽ12 with
τv = {x1, x7, · · · , x2} is suboptimal.

Alternatively, we expand Gv to the roadmap graph Gr =
(V∗, Er) such that Gv ⊂ Gr. The edge set Er satisfies
xi 7→ xj for ∀eij ∈ Er, but the sensor-range constant r
relaxes to explore more free space. Gr is efficiently computed
using Delaunay triangulation [27] with edge cutting. Fig.
3(d) shows Gr with newly added edges (e68, e26, e36). Since
these may violate the distance constraint r, a Steiner node
is inserted in the edges, for instance, the yellow node x9 in
Fig. 3(e), between x2 and x6.

Given two route choices τr and τv , the next challenge is
to decide which one is more optimal. This is not simply
choosing the shorter path, since the robot must physically
visit nodes and spend time capturing images at viewpoints.
To reflect this cost, we define the following cost function:

ψ(τ) = (1− η)

m−1∑
i

ρ(xi+1, xi) + η · n, (5)

where n represents the number of newly added viewpoints,
while η is a penalty factor balancing the total path length
and the number of additional viewpoints. We observed that
a new viewpoint adds approximately 50 more seconds to our
panoramic scanning. Lastly, we substitute all ẽij ∈ T with
min(ψ(τv), ψ(τr)) to obtain the final scan sequence T ∗, as
shown in Fig. 3(f) as T ∗ = {e17, e76, · · · , e78}.

After T ∗ is obtained, a standard motion planner plans the
continuous motion. In our case, we use the A* algorithm for
global planning between successive viewpoints xi and xi+1,
and the TEB planner [28] for collision-free local planning.

V. EXPERIMENTS

A. Performance Analysis in Synthetic Environments

This section compares the performance of our method
with state-of-the-art approaches in synthetic environments.
All experiments were conducted on the same machine with
an AMD Ryzen 9 CPU and an NVIDIA RTX 3090 GPU,
running Ubuntu 20.04. For the synthetic world experiments,
we utilized Gazebo worlds from Explore-Bench [29], orig-
inally designed for the TurtleBot3 robot. However, for this
experiment, we slightly modified the “room” world to accom-
modate a larger robot, as shown in Fig. 4(a). This change was
necessary because one of the baseline approaches, 3DMR,
required the use of the Jackal robot for the experiment.
Additionally, we created a custom world, called “rooms”,
as shown in Fig. 4(b).

To ensure a diverse set of baselines, we selected four
state-of-the-art methods from Section II. Specifically, we

(a) Room (b) Rooms

Fig. 4: Examples of synthetic worlds. The modified “room”
and the newly created “rooms” world.

included two CPP approaches: BCD [8] and CLCPP [30],
a global Kriging variance minimization (GKVM) based IPP
solver [17], and one active SLAM method: 3DMR [31].
Notably, [31] is one of the latest implementations of the next-
best-view (NBV) planning approach [32]. Since the NBV
approach is an online adaptive planner, we first allowed the
module to explore the test environment into 2m sensor range
satisfying the overlapping constraint (Eq. 2c). The viewpoints
used for comparison were selected based on those chosen
during the online NBV process. For the other three baselines,
we first utilized Autoexplorer [7] to construct the base map.
Using this map, we applied each method to generate a view
plan. The final set of viewpoints was obtained by segmenting
these trajectories into 2m segments, satisfying Eq. 2c and 3c.

Table I summarizes the total coverage achieved and the
number of viewpoints for each method. Table II reports both
exploration and planning times. Fig. 6 shows an example
of the “rooms” environment where we qualitatively compare
our method against baseline approaches. GKVM achieved
the shortest path length and the lowest number of viewpoints;
however, it only covered approximately 74% of the space.
The two CPP methods attained full 100% coverage but
required a significantly higher number of viewpoints, leading
to inefficient path lengths. In contrast, our method achieved
over 99% coverage with only 133 viewpoints, demonstrating
a balance between efficiency and completeness.

According to our study, CPP approaches, such as the BCD
and CLCPP method, exhibit the fastest planning time and the
highest coverage among the five methods. However, BCD
and CLCPP require nearly five times as many viewpoints as
our method. On the other hand, GKVM achieves the lowest
number of viewpoints among all approaches. However, its
coverage is significantly lower than other methods, and in
some cases, it fails to complete the input map reliably. Lastly,
3DMR finds a balance between coverage and the number
of viewpoints. However, it is about five times slower than
other methods regarding total planning time, including view
planning time and space exploration time. This is primarily
because the next-best-view type planners are better suited
for unknown space exploration rather than for selecting
viewpoints in a post-processing scenario.

Overall, our method generates the fewest viewpoints while
achieving over 99% scanning coverage. This is because
our method incorporates the visibility constraint in view
plan optimization, whereas other approaches do not consider

such a constraint. The two CPP-based methods achieved
faster planning times than our approach. However, the plan-
ning time constitutes a relatively small portion of the total
scanning time, which includes planning, navigation, and
image capturing. This is because the number of viewpoints
primarily influences the total scanning time. In Section V-
B, we will further discuss the comparison of total scanning
time between our approach and other baseline methods.

B. Real World Experiments

In this section, we conducted real-robot experiments to as-
sess the total scanning time, encompassing the planning, the
robot’s motion, and the image capturing time. Since the total
scanning time is closely associated with planning efficiency,
the real-world experiment provides a comprehensive analysis
of the proposed approach compared to baseline methods.

Fig. 5 introduces our scanning-bot system utilized for real-
world experiments. The system consists of a view planning
PC and a Matterport Pro2 panoramic camera mounted on top
of a differential-wheeled mobile robot. This robot is equipped
with basic sensors for 2D LiDAR SLAM. It is powered by
an Intel i5 processor with 8GB of RAM, enabling on-board
navigation processes such as SLAM and motion planning.
The view planning PC has an Intel Core i9 CPU and
an NVIDIA RTX 3080 GPU, running Ubuntu 18.04. The
captured images are transmitted to Matterport’s Cortex AI
platform to reconstruct a textured 3D mesh by [6]. A crucial
constraint for Matterport reconstruction is that each scanning
point should be within the 2m range of neighboring points.

360˚ rotation

LiDAR Sensor

Android Tablet PC

Matterport Pro2

Camera

Wheeled Mobile

Robot

View planning PC

Map

View

Plan

Fig. 5: Robot platform for real-world experiments.

Similar to Section V-A, we conducted several experiments
to assess the baseline approaches except 3DMR owing to
its strict dependency on a 3D LiDAR sensor. Consequently,
we report the BCD, CLCPP, and GKVM results as the
baselines against our method for these experiments. The
experiments were carried out using the scanning-bot system
presented in Fig. 5, including the ROS navigation SW
packages [24][28][33].

The experiments were conducted in the ASAN Engineer-
ing Building at Ewha Womans University, which consists of
a long corridor; see Fig. 7. Table III presents the quantitative
results of these experiments. We observed that our method
and CLCPP achieved over 99% coverage of the scanning
space. However, our method was approximately three times

faster than CLCPP in terms of total scanning time. The total
scanning time encompasses visiting all planned viewpoints
and capturing images at each point.

Fig. 7 highlights the superiority of our method in terms
of coverage rate and the number of viewpoints generated.
Our method produces fewer viewpoints while ensuring the
selected viewpoints thoroughly cover the entire space.

In a real-world scenario, the robot must rely on estimated
SLAM, which is prone to errors during long-term navigation.
Additionally, our method selects viewpoints away from ob-
stacles using our evaluation function (Eq. 4), whereas other
approaches ignore such factors when generating trajecto-
ries. Note that visiting viewpoints near obstacles can lead
to unintended collisions or unnecessary motion behaviors,
increasing the likelihood of SLAM errors. Moreover, this
negatively impacts the final 3D model quality, as shown in
the second row of Fig. 7. Lastly, Fig. 8 shows three more
instances of the 3D models obtained from our system.

(a) New Engineering Building

(b) Zoomed-in view 1 (c) Zoomed-in view 2

(d) SK Telecoms Building

(e) Arts & Design Building (f) Zoomed-in view

Fig. 8: The 3D models reconstructed from various envi-
ronments. (a), (d), and (e) show the 3D models; (b) and (c)
present zoom-in of (a); (f) is zoom-in of (e)

VI. CONCLUSION

We introduced a novel autonomous view planning system
for panoramic RGB-D cameras. Our visibility-based set-
covering algorithm selects the minimum set of viewpoints,
which are used to generate efficient tour plans. The system
achieved nearly 99% coverage while outperforming state-of-
the-art approaches in view planning efficiency.

Methods
Coverage (%) / Number of viewpoints

corner corridor loop loop with corridor room rooms room with corner

BCD 99.8/259 100/304 100/219 100/404 100/594 100/525 100/342
CLCPP 100/296 100/256 100/191 100/277 100/480 100/516 99.9/386
GKVM − / − 85.7/48 − / − 87.4/60 72.3/72 74.2/94 72.2/52
3DMR 99.3/86 99.3/75 99.9/61 99.3/93 99.4/182 99.1/170 99.4/117
Our method 99.0/58 99.4/70 99.6/36 99.9/70 99.6/127 99.5/133 98.9/89

TABLE I: The quantitative comparisons of coverage and number of viewpoints for different methods in various
simulation worlds. “−” indicates that no feasible plan was generated within a finite time.

Methods
Exploration time (s) / Planning time (s)

corner corridor loop loop with corridor room rooms room with corner

BCD 356.12/0.01 207.44/0.01 258.98/0.01 661.62/0.01 360.58/0.02 314.39/0.01 347.47/0.01
CLCPP 356.12/0.01 207.44/0.01 258.98/0.01 661.62/0.01 360.58/0.11 314.39/0.04 347.47/0.07
GKVM − 207.44/17.56 − 661.62/15.27 360.58/12.50 314.39/12.23 347.47/10.39
3DMR 2843.07 2246.83 1366.92 3572.30 9180.33 6939.96 5256.27
Our method 356.12/7.82 207.44/7.57 258.98/5.62 661.62/8.60 360.58/65.68 314.39/63.02 347.47/10.37

TABLE II: Comparison of exploration and planning times with baseline methods in sim environments. The exploration
time is identical for BCD, CLCPP, GKVM, and our method, as they all use the map generated by AutoExplorer [7].

BCD CLCPP GKVM 3DMR Our method

VPs: 525, Cov: 100% # VPs: 516, Cov: 100% # VPs: 94, Cov: 72.3% # VPs: 170, Cov: 99.4% # VPs: 133, Cov: 99.6%

Path length: 1054.74m Path length: 1038.24m Path length: 191.00m Path length: 508.14m Path length: 428.25m

Fig. 6: Qualitative comparisons of the sim results Top row shows the selected viewpoints (red dots) and the covered area
(yellow pixels). The bottom row shows the planned path (green lines).

BCD CLCPP GKVM Our method

VPs: 75, Cov: 83.0% # VPs: 102, Cov: 100% # VPs: 32, Cov: 93.2% # VPs: 28, Cov: 99.8%

Fig. 7: Qualitative comparisons of real-world experiments. The top row shows viewpoints (red) and covered areas (yellow).
The bottom row shows 3D models with detailed textures, highlighting our method’s better-textured mesh quality.

Methods BCD CLCPP GKVM Our method

Path length (m) 151.56 205.73 65.20 112.08
Coverage (%) 82.98 100 93.21 99.81

Number of Viewpoints 75 102 32 28
Planning time (s) 0.02 0.02 65.24 12.85

Scanning time (m) 41 95 40 33

TABLE III: Comparisons of real-world results. Our
method achieved over 99% coverage with the fewest view-
points and shortest scanning time.

In the future, we plan to unify the exploration and scanning
phases into a single process, enabling more efficient scanning
in unknown environments. Moreover, we aim to extend our
system to outdoor robots, developing a more generalized
approach for scanning indoor and outdoor environments.

VII. ACKNOWLEDGMENTS

This project was supported in part by ITRC/IITP Pro-
gram (IITP-2025-RS-2020-II201460) and the NRF (NRF-
2022R1A2B5B03001385 and RS-2024-00456464) in South
Korea.

REFERENCES

[1] C. Cao et al., “Representation granularity enables time-efficient au-
tonomous exploration in large, complex worlds,” Science Robotics,
vol. 8, no. 80, p. eadf0970, 2023.

[2] F. Niroui et al., “Deep reinforcement learning robot for search and
rescue applications: Exploration in unknown cluttered environments,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 610–617,
2019.

[3] Z. Chen et al., “Improved coverage path planning for indoor robots
based on bim and robotic configurations,” Automation in Construction,
vol. 158, p. 105160, 2024.

[4] F. Esser et al., “Field robot for high-throughput and high-resolution 3d
plant phenotyping: Towards efficient and sustainable crop production,”
IEEE Robotics & Automation Magazine, vol. 30, no. 4, pp. 20–29,
2023.

[5] R. Nagasawa et al., “Model-based analysis of multi-uav path plan-
ning for surveying postdisaster building damage,” Scientific Reports,
vol. 11, no. 1, Dec. 2021, publisher Copyright: © 2021, The Author(s).

[6] A. Chang et al., “Matterport3d: Learning from rgb-d data in indoor
environments,” International Conference on 3D Vision (3DV), 2017.

[7] K. M. Han and Y. J. Kim, “Autoexplorer: Autonomous exploration of
unknown environments using fast frontier-region detection and parallel
path planning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2022, pp. 10 536–10 541.

[8] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon
cellular decomposition,” in Field and Service Robotics, A. Zelinsky,
Ed. London: Springer London, 1998, pp. 203–209.

[9] I. Vandermeulen et al., “Turn-minimizing multirobot coverage,” in
IEEE International Conference on Robotics and Automation, 2019,
pp. 1014–1020.

[10] M. A. V. J. Muthugala et al., “Online coverage path planning scheme
for a size-variable robot,” in IEEE International Conference on
Robotics and Automation, 2023, pp. 5688–5694.

[11] P. T. Kyaw et al., “Energy-efficient path planning of reconfigurable
robots in complex environments,” IEEE Transactions on Robotics,
vol. 38, no. 4, pp. 2481–2494, 2022.

[12] M. Ramesh et al., “Anytime replanning of robot coverage paths for
partially unknown environments,” IEEE Transactions on Robotics,
vol. 40, pp. 4190–4206, 2024.

[13] R. Mitra and I. Saha, “Online on-demand multi-robot coverage path
planning,” in IEEE International Conference on Robotics and Automa-
tion, 2024, pp. 14 583–14 589.

[14] Y. Luo et al., “Star-searcher: A complete and efficient aerial system for
autonomous target search in complex unknown environments,” IEEE
Robotics and Automation Letters, vol. 9, no. 5, pp. 4329–4336, 2024.

[15] A. Blanchard and T. Sapsis, “Informative path planning for anomaly
detection in environment exploration and monitoring,” Ocean Engi-
neering, vol. 243, p. 110242, 2022.

[16] M. Popović et al., “An informative path planning framework for uav-
based terrain monitoring,” Autonomous Robots, vol. 44, no. 6, pp.
889–911, 2020.

[17] C. Xiao and J. Wachs, “Nonmyopic informative path planning based
on global kriging variance minimization,” IEEE Robotics and Automa-
tion Letters, vol. 7, no. 2, pp. 1768–1775, 2022.

[18] Y. Cao et al., “Catnipp: Context-aware attention-based network for
informative path planning,” in Proceedings of The 6th Conference
on Robot Learning, ser. Proceedings of Machine Learning Research,
K. Liu, D. Kulic, and J. Ichnowski, Eds., vol. 205. PMLR, 14–18
Dec 2023, pp. 1928–1937.

[19] J. A. Placed et al., “A survey on active simultaneous localization and
mapping: State of the art and new frontiers,” IEEE Transactions on
Robotics, vol. 39, no. 3, pp. 1686–1705, 2023.

[20] E. Ackerman, “Robots conquer the underground: What darpa’s subter-
ranean challenge means for the future of autonomous robots,” IEEE
Spectrum, vol. 59, no. 5, pp. 30–37, 2022.

[21] K. Xu et al., “Autonomous reconstruction of unknown indoor scenes
guided by time-varying tensor fields,” ACM Transactions on Graphics,
vol. 36, no. 6, pp. 1–15, 2017.

[22] B. Kerbl et al., “3d gaussian splatting for real-time radiance field
rendering,” ACM Transactions on Graphics, vol. 42, no. 4, July 2023.

[23] J. Yu et al., “Language-embedded gaussian splats (legs): Incrementally
building room-scale representations with a mobile robot,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2024, pp.
13 326–13 332.

[24] E. Marder-Eppstein et al., “The office marathon: Robust navigation in
an indoor office environment,” in International Conference on Robotics
and Automation, 2010.

[25] K. M. Han and Y. J. Kim, “Neuro-explorer: Efficient and scalable
exploration planning via learned frontier regions,” in IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 2024, pp.
3240–3245.

[26] D. L. Applegate, The traveling salesman problem: a computational
study. Princeton university press, 2006, vol. 17.

[27] D.-T. Lee and B. J. Schachter, “Two algorithms for constructing a
delaunay triangulation,” International Journal of Computer & Infor-
mation Sciences, vol. 9, no. 3, pp. 219–242, 1980.

[28] C. Rösmann et al., “Kinodynamic trajectory optimization and control
for car-like robots,” in IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2017, pp. 5681–5686.

[29] Y. Xu et al., “Explore-bench: Data sets, metrics and evaluations
for frontier-based and deep-reinforcement-learning-based autonomous
exploration,” in IEEE International Conference on Robotics and
Automation, 2022, pp. 6225–6231.

[30] R. Bormann et al., “Indoor coverage path planning: Survey, imple-
mentation, analysis,” in IEEE International Conference on Robotics
and Automation, 2018, pp. 1718–1725.

[31] L. Freda et al., “3d multi-robot exploration with a two-level coordi-
nation strategy and prioritization,” arXiv preprint arXiv:2307.02417,
2023.

[32] A. Bircher et al., “Receding horizon ”next-best-view” planner for
3d exploration,” in IEEE International Conference on Robotics and
Automation, 2016, pp. 1462–1468.

[33] S. Macenski and I. Jambrecic, “Slam toolbox: Slam for the dynamic
world,” Journal of Open Source Software, vol. 6, no. 61, p. 2783,
2021.

