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Abstract— One of the main challenges of planning legged lo-
comotion in complex environments is the combinatorial contact
selection problem. Recent contributions propose to use integer
variables to represent which contact surface is selected, and
then to rely on modern mixed-integer (MI) optimization solvers
to handle this combinatorial issue. To reduce the computational
cost of MI, we exploit the sparsity properties of L1 norm
minimization techniques to relax the contact planning problem
into a feasibility linear program. Our approach accounts for
kinematic reachability of the center of mass (COM) and of the
contact effectors. We ensure the existence of a quasi-static COM
trajectory by restricting our plan to quasi-flat contacts. For
planning 10 steps with less than 10 potential contact surfaces
for each phase, our approach is 50 to 100 times faster that
its MI counterpart, which suggests potential applications for
online contact re-planning. The method is demonstrated in
simulation with the humanoid robots HRP-2 and Talos over
various scenarios.

I. INTRODUCTION

Motion planning of legged robots in arbitrary contexts is
still an open problem. Specifically, we are concerned with
planning contact locations that allow the robot to move
towards its target without falling.

Since the problem is nonlinear, local approaches often
lead to dead-ends. Nonlinear optimization formulations are
able to provide impressive results at convergence [1], [2],
but the solvers are prone to fall in local minima. Sampling-
based approaches [3], [4], including our own work [5],
[6], as well as A*-based approaches [7], [8], [9], have
demonstrated significant successes on real robots for specific
sets of scenarios. An appealing approach to tackle the contact
planning problem in the most general way is to use mixed-
integer (MI) programming. Deits et al. have demonstrated
the potential for such approach with a purely kinematic
formulation [10]. Ponton et al. then extended MI to account
for the centroidal dynamics of the robots [11], [12].

MI can theoretically address entirely the multi-contact
planning problem, extending locomotion to non-gaited be-
haviors, involving the use of hands and other effectors. A
practical limitation of MI programming is the computation
time, resulting from the branch-and-bound techniques to
handle the combinatorial aspect of the problem (here the
issue of selecting contact surfaces), especially when the inner
problem is hard (such as when nonlinear dynamics have to
be handled). Several hundreds of milliseconds are required
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Fig. 1: A contact sequence computed by our approach, with
keyframes of the Talos robot executing the plan.

to plan one or two steps, while ideally we would like to plan
the next contact more reactively.

The objective of this paper is to mitigate the issue of
computation time for MI, while preserving its potential to
tackle contact planning in a general manner. To achieve this,
we propose a convex relaxation of the problem with an
L1-norm minimization formulation, which has the desirable
property of often converging to sparse solutions [13], [14],
[15]. The sparse solution can then be exploited to decide
which surfaces to select. 1

This reformulation, which we call SL1M (for Sparse L1-
norm Minimization) is faster than the MI approach for
planning 10 steps with less than 10 potential contact surfaces
for each phase, up to 100 times in the most favorable cases.
SL1M comes with two drawbacks. First, optimality is only
approximated, as the computed solution is a compromise
between the imperative of finding a sparse solution and
the considered objective function. Second, in some cases
involving large numbers of contacts and potential contact
surfaces (more than 15 steps and more than 10 potential
contact surfaces), the solver can fall in unsatisfying minima
(i.e. not converging to entirely sparse solutions), though we
believe those minima can be escaped by combining the
contact planner with high-level approaches [16].

A. Contributions

Our main contribution is the reformulation of the MI
contact planning program into a convex feasibility linear

1It is worth noting that while MI solvers also use a relaxation of the
problem to find a relevant starting point from which to start the branching
algorithm, the present relaxation is different. The MI relaxation simply
removes the integrality restrictions and keeps the same cost function, while
here the cost is changed to favor convergence to a sparse solution. MI tries
to reach the optimum while our approach favors feasibility.



program (Section IV), for which we provide an analysis of
the benefits and drawbacks with respect to MI (Section IX).

To guarantee that the contact plans are feasible, SL1M
continuously handles the dynamics of the robot using a quasi-
static constraint that applies on quasi-flat surfaces (for which
the friction cone contains the gravity). This is achieved by
extending the 2-PAC approach [17] to handle variable foot
positions (Section V-A.2), while we leave for future work
the extension of the formulation to fully dynamic cases such
as [11], which is not the focus of this paper.

Lastly, we combine the contact planner with a guide-
path planner to automatically initialize the contact planning
problem with relevant contact surfaces (Section IX-C).

II. RATIONALE

Given the initial and final sets of admissible contact
postures, I and G, SL1M computes a sequence of contact
locations connecting I to G such that a feasible motion exists
between each consecutive contact posture. The following
assumptions are made:
• Dynamics constraints are verified by exhibiting a

“quasi-static” trajectory for the center of mass (COM).
• The planner is limited to “quasi-flat” contact surfaces

(for which the friction cone contains the gravity). This
limitation is due to our dynamics approximation and not
to the l1-norm approximation.

• The kinematics constraints on the COM are approxi-
mated as linear inequalities attached to the frame of
each effector [18], [17]. Similarly the relative positions
of the effectors is linearly constrained.

• The yaw orientations of the contacts at each step is a
given, as opposed to [10]. Not handling orientation is
a design choice, motivated by the objective to combine
the contact planner with a higher-level method (detailed
in Section IX-C).

• As for [10] the planner requires as input a set of convex
potential contact surfaces (e.g., they may be given by a
sampling-based guide-path planner).

• The user must provide an initial guess of the order
followed by the effectors to create contacts (in our
experiments we assume a cyclic gait pattern, which is
not limiting for biped robots).

III. DEFINITIONS AND NOTATIONS

A. Important note on the mathematical formulation

To simplify the equations, we present the problem for the
case of gaited bipedal walking. Section VII discusses the
generalization to acyclic locomotion.

B. Problem variables

Contact phases: The motion of the robot is decomposed
into a discrete sequence of nph contact phases. The contact
phase 1 ≤ k ≤ nph is associated with one or several
effectors in contact. Exactly one contact is broken and
relocated from phase k to k + 1. For bipedal walking each
contact phase is a double support phase (both feet in contact).

End-effectors: Any effector is identified by an index
1 ≤ j ≤ neff , where neff is the number of effectors. The
position of the effector moving (swing foot) between phases
k − 1 and k is noted pk = [pkx, p

k
y , p

k
z ]T ∈ R3. The position

of the non-moving effector (support foot) is thus pk−1. p0

is the position of the support effector for the first phase.

Convex hulls: The convex hull of all the effectors in
contact at phase k is noted convk.

Center Of Mass (COM): The COM of the robot
c ∈ R3 moves continuously with a negligible acceleration,
under a quasi-static assumption. The quasi-static assumption
is only used to provide a certificate of feasibility, such that
the resulting motions do not follow this constraint.

Contact surfaces: The possible contact locations are
convex surfaces Si, 1 ≤ i ≤ nsurf . A surface Si is defined
by ni + 1 planes: the plane aligned with the surface defines
an equality constraint, while the ni planes that bound the
surface define as many inequality constraints:

Si : {p ∈ R3,Sip ≤ si,d
T
i p = ei}

Slack variables: Our formulation uses two
kinds of slack variables. Positive variables are
denoted αk = [αk

1 , . . . , α
k
n]T ∈ Rn+ and the others

βk = [βk
1 , . . . , β

k
n]T ∈ Rn, with k the related contact phase.

Cardinality: The cardinality operator card(α) gives
the number of entries of α that are strictly greater than 0.

IV. CONTACT SURFACE SELECTION CONSTRAINTS

When in contact, the position p of a foot must belong to a
candidate contact surface Si. In the following we detail the
convex relaxation of this non-convex constraint.

A. Logical OR as a “Minimal number of violations” problem

We look for a point p belonging to exactly one surface of
a set S =

⋃nsurf

i=1 Si. We assume that the surfaces Si do not
intersect. The problem is written:

find p,

s. t. p ∈ S1 ∨ p ∈ S2 . . . ∨ p ∈ Snsurf

(1)

With ∨ the logical or operator. Solving problem (1) is
equivalent to finding p such that as many constraints p ∈ Si
as possible are satisfied, which corresponds to 1 constraint.
This optimum is only reached if p effectively belongs to
one of the surfaces. This is in turn equivalent to finding p
such that the minimum number of violations occurs, which is
nsurf − 1. This can be written as a cardinality minimization
problem:

find p,α,β

min card(α)

s. t. Sip ≤ si + 1αi ∀i
dT
i p = ei + βi ∀i
− αi ≤ βi ≤ αi ∀i

(2)



where 1 is a vector of appropriate size filled with 1. Let us
explain why (2) and (1) are equivalent. Assume a given i
such that p /∈ Si. Then, either αi 6= 0 or βi 6= 0; moreover,
the last constraint of (2) (equivalent to |βi| ≤ αi) implies
that if βi 6= 0, then αi 6= 0. We conclude that if p /∈ Si
then αi 6= 0. If instead p ∈ Si, then βi = 0 and αi is going
to be set to zero by the solver because this decreases the
objective function. The function card(α) thus counts the
number of surfaces on which p does not lie. Therefore, the
optimal value of card(α), which is nsurf − 1, is obtained
by choosing p to lie on one of the surfaces, which is exactly
what (1) does.

Rather than addressing this problem with a branch and
bound approach (as in MI programming), we can use a
convex relaxation of the problem, approximating card(α)
with the L1-norm ||α||1. Moreover, since the elements of α
are nonnegative (as −αi ≤ βi ≤ αi), we have ||α||1 = 1>α.
This approximation of (2) is thus a Linear Program:

min 1>α

s. t. Sip ≤ si + 1αi ∀i
dT
i p = ei + βi ∀i
− αi ≤ βi ≤ αi ∀i

(3)

Because L1-minimization leads to sparse solutions, at the
optimum we can hope that one αi will be (sufficiently close
to) 0. This indicates that the surface Si has been selected.

V. REACHABILITY CONSTRAINTS

Two kinds of additional constraints are considered in
the model. First, the position of the COM is constrained
with respect to the contact points, following the 2-PAC
approach [17]. This allows to continuously guarantee fea-
sibility of the COM trajectory while only considering two
discrete COM positions at each contact phase. We recall the
method for completeness and extend it to handle variable
foot translations under the quasi-flat constraint. Then, the
position of each effector is constrained with respect to the
other effector in contact.

A. Center Of Mass constraints

To guarantee that the equilibrium and balance constraints
are continuously satisfied for a contact phase k, we will use
the 2-PAC formulation. In the following we recall that we
only need to choose 2 COM positions for each phase, namely
ck,0 and ck,1, to guarantee continuous feasibility.

1) Equilibrium constraints: For quasi-flat contact sur-
faces, a sufficient condition for the COM to allow for static
equilibrium is: ck ∈ convk [19]. For bipedal walking, this
boils down to having the COM on top of the support effector.
In this case ck,0 is constrained to lie above the support
polygon of pk−1 (i.e. the support foot used in the transition
from phase k − 1 to k, which was the swing foot for phase
k − 1) at the beginning of phase k. We then constrain ck,1

to be above pk at the end of phase k (Fig. 2):

Fk−1
i (ck,0 − pk−1) ≤ fk−1i + 1αk−1

i

Fk
i (ck,1 − pk) ≤ fki + 1αk

i

(4)

where Fk
i and fki are the matrix and vector defining the

polygonal shape of the foot associated to phase k on surface
Si. Note that these constraints depend only on the xy
coordinates of the COM and the foot positions.

By convexity of the static equilibrium region, the straight
line [ck,0, ck,1] continuously satisfies the static equilibrium
constraint. Similarly, the straight lines [ck−1,1, ck,0] and
[ck,1, ck+1,0] are also feasible because the COM stays above
the support effector for all the duration of the single support
phase (Fig. 2).

2) Reachability constraints: We additionally constrain
ck,0 and ck,1 to guarantee kinematic reachability. We stress
that the kinematic constraints are only approximated here,
thus the “guarantees” that we mention for feasibility are
only valid for this simplified representation of the robot.
The COM positions are linearly constrained as follows.
First, for each effector we compute offline a polytope that
approximates the reachable COM workspace: a large number
of configurations of the robot are randomly sampled, and
those who are collision-free and correspond to a “quasi-flat”
pair of contacts are kept. For each of those configurations,
the COM is expressed in the frame of a given effector. The
convex hull of all the computed COM positions approximates
the COM workspace in the effector frame. For each effector
j, we thus obtain a 3D polytope jR : {c ∈ R3, jRc ≤ jr}.

At contact phase k, for each contact surface Si the
orientation of the foot frame is constant2. We note Rk

i the
rotated polytope associated with contact pk at phase k,
assuming it lies on surface Si. The translation is variable,
thus the constraints depend linearly on the effector positions.
Both COM positions ck,m,m ∈ {0, 1} at phase k are thus
constrained by the two active contacts pk and pk−1:

Rl
i(c

k,m − pl) ≤ rli + 1αl
i ∀i,∀l ∈ {k − 1, k} (5)

2The yaw is a given of the problem, while the roll and pitch are given
by the surface orientation
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Fig. 2: From an initial double support phase (red), 4 double
support contact phases are planned. Each contact is used for 2
consecutive phases. The feasible COM quasi-static trajectory
is given by a polyline. Color gradients are used when the
COM moves inside the support effector during the simple
support phase, and plain colors are used to depict the COM
trajectory during a double support phase.



Here again, the slack variable α is used such that only
the constraints related to the selected contact surfaces are
applied. By convexity, kinematic constraints satisfied for ck,0

and ck,1 for all k are continuously satisfied.

B. Relative foot position constraints

Similarly to the case of the COM reachability, we use
a sampling-based approach to approximate the reachable
workspace of each foot with respect to the others. For
effector j, we obtain a polytope jQ : {p ∈ R3, jQp ≤ jq}
that constrains the other effector. If j is the moving effector
at phase k on surface Si, we abusively write Qk

i = jQi for
clarity. We then apply the same reasoning as for the COM
to obtain the following constraints at each phase:

Qk−1
i (pk − pk−1) ≤ qk−1

i + 1αk−1
i ∀i (6)

C. An important simplification

If the contact surfaces for the effectors are punctual (as
for most quadruped robots), or if the candidate surfaces
share the same orientation, then the polytope constraints
Rk

i (respectively Qk
i and Fi) are the same for all i. In

this case we do not need to use the selection variable α
in equations 4, 5 and 6.

VI. THE COMPLETE FEASIBILITY PROBLEM

Combining all the constraints, we can now write the
complete feasibility problem that defines SL1M. For the sake
of simplicity, and without loss of generality, we assume that
all contact surfaces are potential candidates for all phases.

find u = [p1, . . . ,pnph ,α1, . . . ,αnph ,β1, . . . ,βnph ,

c1,0, . . . , cnph,0, c1,1, . . . , cnph,1]T

min

nph∑
k=1

1Tαk + γl(u)

s. t. {p1, c1,0} ∈ I
{pnph−1,pnph , cnph,1} ∈ G
∀ k, i :

Sip
k ≤ si + 1αk

i

dT
i pk = ei + βk

i

− αk
i ≤ βk

i ≤ αk
i

Fk−1
i (ck,0 − pk−1) ≤ f ik−1 + 1αk−1

i

Fk
i (ck,1 − pk) ≤ fki + 1αk

i

Qk
i (pk − pk−1) ≤ qk

i + 1αk
i

∀ l ∈ {k − 1, k},∀m ∈ {0, 1} :

Rl
i(c

k,m − pl) ≤ rli + 1αl
i

(7)
where l is an optional quadratic or linear objective function
and γ is a small weighing value. Here we focus on computing
feasible solutions rather than optimal ones, and leave a
discussion for optimality comparison with respect to l for
future work.
I and G define initial and goal state conditions. The

initial/goal values for contact locations and COM can be

given exactly, or loosely specified. For instance the last
contact can be constrained to lie on a given contact surface,
which is convenient for specifying the goal state in general.

VII. EXTENSION TO ACYCLIC MULTI-CONTACT
LOCOMOTION

So far we have presented an approach to plan contacts
for bipedal locomotion on quasi-flat terrains. However, we
believe that this approach can be extended to multi-contact
locomotion, as long as contact surfaces remain quasi-flat.

To do this, the main change needed regards the equilibrium
constraints (Section V-A.1): ck ∈ convk. If we assume
point-like contacts, these constraints can be written as:

ck =
∑
j

wk
j pk

j ,
∑
j

wk
j = 1, wk

j ≥ 0 ∀j, (8)

where the pk
j ’s are the positions of the effectors in contact at

phase k, and wk is a unit weighting vector. Since the contact
positions are variable, (8) is bilinear, hence non-convex.
To maintain the formulation convex, we could choose a
conservative approach. For each phase we can fix wk, such
that the COM xy coordinates are directly determined from
the contact positions. A similar approach could be used for
finite-size contact surfaces: we can express the COM as a
convex combination of virtual contact points p̄k

j , which must
lie inside the associated effector surfaces with position pk

j :

ck =
∑
j

wk
j p̄k

j

Fk
i (p̄k

j − pk) ≤ fki + 1αk
i

(9)

Apart from this new formulation of the equilibrium con-
straints, problem (7) could be used almost as it is for multi-
contact problems—even though we plan to test this extension
in future work.

VIII. FIXING THE SPARSITY

A. Near sparse convergence

Once problem (7) is solved, in the ideal case, for each
phase k one and only one αk

i value is equal or sufficiently
close to 0. We can then fix the sparsity by assigning to each
phase its selected surface and solve problem (7) without the
slacks α and β again to obtain an exact solution.

It might be the case that for some phases no αk
i is

close enough to 0. This indicates either that the problem
is unfeasible or that the convex relaxation leads to a non-
sparse optimum. If the number of concerned phases is low,
the non-sparse minimum might be close enough to a sparse
optimum. We then solve a small combinatorial problem. We
test all the possible combinations of surface selection for
the unresolved phases by assigning one and only one single
contact surface to each unresolved phase, and we solve again
problem (7). We can either test all combinations or stop at the
first feasible solution, in which case the resolution remains
computationally efficient.

In our tests we noticed that, if the problem was feasible,
choosing the surfaces associated to the lowest αk

i led to the
desired sparse solution in the majority of cases.



B. Handling non-sparse optimum
If too many phases are unresolved (i.e. no αk

i ≈ 0) the
non-sparse optimum might be too far from a sparse optimum.

This happens with a brute force formulation of our main
test scenario (Fig. 1), where the start and goal configurations
are spatially close, but a long path is required to connect
them. This is a classical case where nonlinear solvers would
fail by trying to directly connect the states.

This issue can be mitigated by initializing the solver with
a relevant initial guess. Fortunately an intuitive solution can
be built either manually or automatically, by limiting the set
of contact surfaces available at each phase. If we separate
the scene into 2 distinct sets of potential contact surfaces
(“before” and “after” the top of the staircase), the solver is
able to converge to a valid solution. An option that we would
like to explore for future work is to provide an MI solver
with a non sparse solution as an initial guess to see whether
the convergence rate can be improved.

Proper and automatic initialization is thus essential for
large problems, and discussed in Section IX-C.

IX. RESULTS

SL1M has been successfully tested in simulation for two
humanoid robots with different kinematic constraints, namely
HRP-2 and Talos [20]. In this section we also present a
quantitative comparison of the performances of our approach
with respect to a mixed integer implementation.

A. Implementation details
Problem (7) has been implemented in python, using the

sparse, open source linear solver GLPK [21] 3. For compar-
ison the problem has also been implemented in its MI form
using gurobi [22], interfaced with cvxpy [23]. Tests were run
on a laptop with an i7 processor on ubuntu 16.04. Our code
is open source (github.com/loco-3d/sl1m).

B. Quantitative analysis and comparison with MI
To determine empirically the capabilities of SL1M and

compare it with the MI approach, we designed two ex-
periments and computed the ratio between the obtained
computation times for each formulation. The computation
times for SL1M include the extra steps required to fix the
sparsity described in Section VIII-A. The presented times are
averaged over 10 runs.

Toy problem: We consider an environment composed of
a single flat surface, on which the robot walks between 2
and 38 steps. Variations of this scenario iteratively split the
surface to artificially create more contact candidates.

The results are presented by the color map in Fig. 3 - top.
The computation times range from 50 ms to about 17 s for
MI, and from 0.47 ms to 585 ms for SL1M. In this scenario,
SL1M is always faster, with a speed up factor between 1.5
and 100. The most favorable setups are the smaller problems.

We conclude that, for this toy problem, SL1M outperforms
MI in finding a feasible contact sequence, without any
significant drawback.

3Once the sparsity is fixed, we use Quadprog with a quadratic cost that
favors contact positions at the center of the contact surfaces

Fig. 3: Ratio of computation times obtained for SL1M over
the times for the MI formulation for the toy planar scenario
(up) and the LAAS experiment room (down) - log10 scale.

Challenging scenario: We now consider the LAAS exper-
iment room shown in Fig. 1. Again, we change the size of
the problem by changing the number of steps and possible
contact surfaces. To achieve this, we start from a known
feasible solution of the problem connecting the first and last
poses of Fig. 1. We obtain 30 contact phases with exactly
one contact candidate for each phase. To increase the number
of surface candidates for a phase k, we add those of the
surrounding phases k− 1 and k+ 1, and iterate as required.
The problem is thus always feasible. To reduce the number
of steps, we simply cut the last phases.

The results are presented by the color map in Fig. 3
- bottom. For this scenario, when the L1-norm did not
converge to a sparse solution, we decided to mark the
scenario as unsolved if the combinatorial involved more than
4000 possible cases, otherwise we let the combinatorial run
(with the possibilities sorted according to the αk

i values) until
a feasible solution was found. The upper right part of the
plot is thus left blank, indicating a “failure” of the L1-norm.
On the other hand MI was always successful. In this case
the computation times range from 43 ms to 15 s for MI,
and from less than 1 ms to 3.5 s for SL1M. Fig. 3 shows
some cases where the MI is faster (up to 10 times) as the
number of phases increase. The drawback of SL1M is also
highlighted by the failures for large problems (with more
than 10 potential contact phases and 10 contact candidates
for each phase). However SL1M outperforms significantly
MI for small (with less than 5 phases and candidates) and
medium problems (up to 40 times faster).



Fig. 4: Left: Contact sequences on uneven surfaces for Talos.
Right: The approximated reachable workspace of the feet
(green) gives potential contact surfaces (blue). The red box
approximates the collision constraint, similarly to [10].

The large computation times can be directly mapped to
cases where the sparsity needs to be fixed as several iterations
are required to converge. These results suggest that SL1M
is especially suited for scenarios involving few potential
contact surfaces at each phase, while additional work is
required to analyze in depth the failures that occur for larger
problems, and propose a mean to address them, for instance
by considering stricter norms to enforce the sparsity [15].

C. Qualitative validation of the contact sequence

To validate SL1M qualitatively, the generated contact
sequences are given as input to an open-source whole-body
motion generator4 presented in [24], [25]. For lack of space
we cannot describe this generator in detail here.

In our demonstrations, rather than manually providing the
potential contact surfaces and orientations, we initialize (7)
with a sampling-based guide path planner [16]. Given a 3D
mesh as well as start and goal configurations for the root of
the robot, the planner computes a 6D collision-free trajectory
for this root. The planner is able to return, for each position
of the root along the path, a set of potential contact surfaces
for each effector (Fig. 4 - right). Because the contact surfaces
correspond to collision-free positions of the root, the output
of the contact planner is more likely to avoid collisions
(Fig. 4). The guide path is thus discretized into nph contact
phases, from which we extract the potential contacts for each
phase. The root yaw orientation at each phase k becomes the
orientation constraint for the moving foot pk.

The companion video demonstrates that contact plans such
as the ones displayed in Fig. 1, 4 and 5 can be extended
to dynamically consistent and collision-free motions. Talos
motions have been validated on the simulator Gazebo, using
a torque controller provided by PAL robotics.

X. CONCLUSIONS AND FUTURE WORK

We present SL1M, a convex relaxation of the mixed
integer (MI) programming approach for planning contact se-
quences for legged robots. For the issue of finding a feasible
contact sequence, L1-norm minimization seems particularly
well suited for small and medium size problems, where
SL1M outperforms MI by at least one order of magnitude,
at the cost of relegating optimality to a secondary objective.

4https://github.com/loco-3d/multicontact-locomotion-planning

Fig. 5: Example of contact sequences in the LAAS lab for
Talos (top) and HRP-2 (bottom). Interestingly the kinematic
constraints of each robot lead to different strategies.

We plan to extend the presented approach and its as-
sessment in different ways. First, our comparison with the
MI approach has shown that any approach can outperform
the other one depending on the situation. We want to carry
out further tests to understand under which conditions the
L1 optimization fails to provide a sparse solution, and
explore whether it could be enforced using stricter norm
formulations [15].

Another promising direction is the integration of contact
planning and guide-path planning, which we have already
started to explore in this paper. Using a guide-path planner
we can drastically reduce the number of candidate contact
surfaces for each contact. This greatly simplifies the contact
planning problem, and can make the difference between
failure and success. However, it also reduces the exploration
space of the contact planner, which may be detrimental.
Quantifying the benefits of guide-path planning is subject
of ongoing investigation.

While this work has focused on bipedal walking, the
presented approach can be applied to any acyclic multi-
contact locomotion (as long as contacts are quasi-flat, see
Section VII). Thus, we plan to test our method with other
gaits and with quadruped robots. In the future we would
also like to extend the formulation to integrate fully dynamic
constraints in the planning by using a convex formulation of
the problem [26].

Finally, other robotics problems such as collision-free in-
verse kinematics [27] or trajectory planning [28], [29] can be
addressed using Mixed Integer programming. Investigating
the use of L1-norm minimization for those problems provides
an exciting direction for further research.
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