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Solving Footstep Planning as a Feasibility Problem
using L1-norm Minimization (Extended Version)
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Abstract—One challenge of legged locomotion on uneven
terrains is to deal with both the discrete problem of selecting
a contact surface for each footstep and the continuous problem
of placing each footstep on the selected surface. Consequently,
footstep planning can be addressed with a Mixed Integer Pro-
gram (MIP), an elegant but computationally demanding method,
which can make it unsuitable for online planning. We reformulate
the MIP into a cardinality problem, then approximate it as a
computationally efficient `1-norm minimisation, called SL1M.
Moreover, we improve the performance and convergence of SL1M
by combining it with a sampling-based root trajectory planner
to prune irrelevant surface candidates.

Our tests on the humanoid Talos in four representative
scenarios show that SL1M always converges faster than MIP.
For scenarios when the combinatorial complexity is small (< 10
surfaces per step), SL1M converges at least two times faster
than MIP with no need for pruning. In more complex cases,
SL1M converges up to 100 times faster than MIP with the
help of pruning. Moreover, pruning can also improve the MIP
computation time. The versatility of the framework is shown with
additional tests on the quadruped robot ANYmal.

Index Terms—Humanoid and Bipedal Locomotion, Legged
Robots, Motion and Path Planning

I. INTRODUCTION

FOOTSTEP planning consists of computing a sequence of
footstep positions on which a legged robot should step to

reach a desired goal position. It is thus a crucial problem for
legged locomotion.

Footstep planning can be characterised by its combinatorial
aspect. The parts of the environment where the footsteps can
be placed (contact surfaces) are often disjoint. Thus, a discrete
choice of a surface must be made. This choice has an impact
on all future footstep locations, as they are constrained relative
to each other by non-linear kino-dynamic constraints. This
means that the discrete choices of contact surfaces must be
considered simultaneously for all footsteps.

Several relaxations have been proposed to practically ad-
dress the problem of footstep planning. The model size can
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Fig. 1. A contact sequence generated by our convex-relaxed approach with
domain-specific information. Talos robot is executing planned locomotion.

be reduced by approximating the robot with a point mass
model [1], [2], [3] and expressing the constraints as simplified
functions of the Center of Mass (COM) and contact positions
only [4], [5], [6]. The price for these approximations is paid
with the loss of completeness [7], [8] and/or the guarantees of
convergence [9], [10], [11]. Which part of the problem can be
approximated is thus a fundamental question closely related to
the issue of modelling the combinatorics. Discrete approaches
embrace the discrete nature of the problem [12], [13], [14],
[15] , while continuous, optimisation-based approaches have
to design strategies to handle the discrete variables. In [16],
a continuation method is employed to first solve a simplified
version of the problem. Then the solution is used as a starting
point for subsequent problems of increasing difficulty until
the original problem is solved. Another option is to implicitly
represent the discrete variables with continuous ones and
to approximate the environment as a continuous function
[9]. Alternatively, complementarity constraints can be used
to enforce contact decisions, resulting in a computationally
demanding, non-smooth optimisation problem [17], [18].

Though often conflicted in the literature, discrete and contin-
uous approaches can be unified in the Mixed-Integer Program-
ming (MIP) formalism [19], [20], [21], [22], [23]. Internally,
MIP solvers first solve an approximated problem, in which
they relax the discrete (integer) variables into continuous ones.
In the best-case scenario, the relaxed variables converge to
integer values, and the original problem is solved. Otherwise,
the combinatorics have to be addressed with branch-and-
bound strategies. In the worst case, this requires solving an
optimisation problem for every possible combination of values
for the integer variables. Fortunately, this is rarely needed in
practice as efficient approaches exist to solve only a fraction
of the combinations [24]. MIP solvers can efficiently handle
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convex problems, but struggle to address non-linear problems
efficiently [25], which is why MIP-based approaches such as
[19] work with linearised formulations.

In the best case, solving MIP is computationally equivalent
to solving a continuous formulation of the problem, where
no specific scheme is required to address the combinatorics.
From this perspective, our research question is: is it always
possible to end up with a best-case scenario for the MIP in
the context of footstep planning? A positive answer would
imply that the problem can be addressed effectively by off-
the-shelf optimisation solvers, resulting in simpler and faster
formulations of the contact planning problem. In this paper,
we empirically show a positive result for a diverse range of
instances of the contact planning problem, featuring stairs,
rubbles, and narrow passages.

This paper is an extension of our earlier work [26], where
we proposed a convex relaxation of the MIP approach for
footstep planning with an `1-norm minimisation, SL1M. In
this preliminary work [26], SL1M has been shown to converge
to integer solutions for “simple” problems, but fails when
the combinatorial complexity becomes too high (as defined
in Section VI). This issue is the focus of this paper.

A. Main Contributions

In this paper, we considerably improve our earlier work on
SL1M by reducing the complexity of footstep planning prob-
lems. This is achieved by automatically removing non-relevant
integer combinations using a low-dimensional path planner
that computes a trajectory for the root of the robot [27].
We verified that improved SL1M always converges to an
integer solution in our test scenarios after the pruning. We
experimentally validate our hypothesis that we can reach a
best-case scenario for the MIP in footstep planning by pruning
the irrelevant combinations.

Thus, our main contribution is an LP relaxation of the
MIP formulation, SL1M, experimentally shown to outper-
form commercial MIP solvers. Our second contribution is a
demonstration that using a trajectory planner also improves the
computational performance of MIP problems, especially for
complex scenarios. These findings are demonstrated in several
scenarios involving biped and quadruped robots navigating
across uneven terrains with a pre-established gait.

II. RATIONALE

We study the combinatorial aspect of contact planning that
results from environmental constraints. For instance, when
climbing a staircase, we must decide which steps (or contact
surfaces) our foot must land on. Planning the next n steps
considering m possible contact surfaces for each step involves
solving mn optimisation problems in the worst case under the
MIP formalism. We want to reformulate this problem so that
we can find a solution by solving a single optimisation problem
(or a few).

To achieve this objective, we first recall how to write the
footstep planning problem as a MIP. Then we follow two
paths of action. First, we automatically reduce the number of
possible combinations. In our staircase example, if the robot

TABLE I
TABLE OF NOTATION

Notation Description

n the number of footsteps in the planning
m the number of contact surfaces in the environment
S union of potential contact surfaces available
Sj ⊂ S the j-th contact surface
Si ⊂ S the contact surfaces considered in the i-th footstep
pi ∈ R3 i-th footstep position
aj
i ∈ {0, 1} integer slack variable for j-th surface in i-th footstep

αj
i ∈ R+ positive real slack variable for j-th surface in i-th footstep

βj
i ∈ R real slack variables for j-th surface in i-th footstep

Ri ∈ SE(3) root position / orientation when creating footstep i
card(a) number of non-zero entries in vector a
I,G initial / goal constraint sets
F feasibility constraint set

starts at the bottom of the stairs, it is useless to consider
the tenth step surface when planning the very first footstep.
In general, any contact surface that is not in the reachable
space of the foot can be discarded from the set of candidates.
We automate this pruning process with a low-dimensional
sampling-based trajectory planner [28]. Second, we verify
that solving a feasibility problem requires fewer iterations
than solving a minimisation problem. More interestingly, after
recalling that the feasibility problem can be relaxed into an
`1-norm minimisation problem, we empirically show that the
relaxed problem always converges to a feasible solution when
the combinatorics is first reduced using our trajectory.

Conversely, our results show that currently, our continuous
optimisation-based formulation does not work well if an objec-
tive has to be minimised simultaneously. However, this issue
can be alleviated: once the contact surfaces have been selected
by the `1-norm relaxation of the feasibility problem, we can
solve a second problem, which minimises a cost function but
without modifying the contact surfaces selected by the first
problem. This second problem boils down to a simple convex
Quadratic Program (QP) [19], [26].

III. DEFINITIONS AND NOTATION

Table I defines the notation used throughout the paper.
Unless specified, we use subscript for indicating the i-th
footstep and superscript for indicating the j-th contact surface.

We now more specifically define the environment. The
environment is represented as a union of m disjoint sets
S =

⋃m
j=1 Sj as shown in Fig. 2. Each set Sj represents

a convex contact surface, that is a polygon embedded in a 3D
plane and bounded by a set of half-spaces:

Sj := {p ∈ R3|pTnj = ej ,Sjp ≤ sj} . (1)

The equality defines the plane containing the contact surface,
given by the normal nj ∈ R3 and ej ∈ R. Sj ∈ Rh×3 and sj ∈
Rh are respectively a constant matrix and a vector defining the
h half-spaces that bound the quasi-flat1 [29] surface. Si ⊂ S
is the subset of contact surfaces that are considered for the
i-th footstep, which we call the candidate surfaces.

1A surface is quasi-flat if the associated friction cone contains the gravity
direction.
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Fig. 2. The environment is a set of contact surfaces (blue and red). The
reachable workspace of each foot is shown in green. The intersection between
the reachable workspace of the left foot and the environment (red) defines
potential contact surfaces. The normals of the contact surfaces (arrows)
constrain the orientation of the foot around the x- and y- axes.

IV. FOOTSTEP PLANNING AS A MIP

The section recalls casting the footstep planning problem as
a MIP problem, adapted from [26] and originally introduced
in [19]. We write the footstep planning problem as:

find P = [p1, · · · ,pn] ∈ R3×n

min l(P)

s.t. P ∈ I ∩ G ∩ F
pi ∈ S ∀i, 1 ≤ i ≤ n .

(2)

We want to find a user-defined number (for now) n of
footstep positions pi. Optionally we may want to minimise
an objective l(P). P must satisfy initial and goal conditions,
where simple conditions can be given by the sets I : {P,p1 =
pI} and G : {P,pn = pG}, with user-defined constants
pI and pG . F denotes the set of kinematic and dynamic
feasibility constraints that guarantee the robot to follow the
footstep plan without falling or violating joint limits, detailed
in Appendix A. We constrain the positions of P to lie on a
surface in S.

With the surface constraints (1), the constraint pi ∈ S can
then be formulated with the use of slack variables:

find pi ∈ R3

ai = [a1i , · · · , ami ] ∈ {0, 1}m

βi = [β1
i , · · · , βm

i ] ∈ Rm

s.t. card(ai) = m− 1 (3)
∀j, 1 ≤ j ≤ m : (4)

Sjpi ≤ sj +Maji1 (5)

pT
i n

j = ej + βj
i (6)

||βj
i ||1 ≤Maji (7)

with M being a sufficiently large constant2 and 1 being a
vector of appropriate size filled with ones. If aji = 0, (7)
implies than βj

i = 0 and as a result (1) is satisfied and pi ∈ Sj .
If aji = 1, then for a sufficiently large M , (5), (6), and (7)
always have a solution and are effectively ignored. We define

2This formulation is known as the “Big M” formulation [30].

a cardinality function card(·) that counts the number of non-
zero entries in a vector. Therefore, (3) ensures that one contact
surface is always selected.

The complete MIP formulation of our problem is thus:

find P = [p1, · · · ,pn] ∈ R3×n

A = [a1, · · · ,an] ∈ {0, 1}n×m

β = [β1, · · · ,βn] ∈ Rn×m

min l(P)

s.t. P ∈ I ∩ G ∩ F
∀i, 1 ≤ i ≤ n :

card(ai) = m− 1 :

∀j, 1 ≤ j ≤ m :

Sjpi ≤ sj +Maji1

pT
i n

j = ej + βj
i

||βj
i ||1 ≤Maji .

(8)

Assumptions

We make the following assumptions to guarantee that the
MIP formulation is convex:
• l(P) is a convex quadratic objective function.
• The contact surfaces are “quasi-flat” [29] and do not

intersect with one another. This limitation is due to our
dynamics constraint formulation, as explained in [26].

• Dynamic constraints are verified by computing a “quasi-
static” trajectory for the center of mass (COM).

• Kinematics constraints on the COM are approximated as
linear inequalities.

• The gait (i.e. the contact order for the effectors) is given.
• For all pi, the orientation around the z axis of the foot

in contact is given. We show how the orientation can be
computed automatically in Section V.

These assumptions define a convex feasible set F .

V. EFFICIENT REDUCTION OF THE COMBINATORICS

In (8), for each pi we consider the complete set S of po-
tential contact surfaces. However, it is reasonable to presume
that for each pi only a subset Si ⊂ S of contact surfaces are
feasible, because of the geometric and dynamic constraints
that bind each footstep with its neighbors. We approximate
the subset Si ⊂ S by exploiting the reachability condition, as
introduced in [27].

A. The reachability condition

Let us assume for now that when looking for a footstep
position pi, we know the position and orientation of the root
of the robot Ri ∈ SE(3) at the moment when the contact is
created. In this case, a necessary condition for a surface Sj to
be a valid candidate for pi is that Sj be reachable with the
foot from the root pose Ri. Mathematically, we can define the
discrete set of reachable surfaces for footstep i as:

Si = {Sj ∈ S|ROM(Ri, Fi) ∩ Sj 6= ∅} (9)

where Fi is the foot of interest, and ROM is the 3D range of
motion of the foot given a specific root pose Ri (Fig. 2).
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Fig. 3. Example of a planned root trajectory (yellow) with the intersected area
between the ROM and the environment (red: left foot, green: right foot) at each
discrete root pose. The displayed frames show the yaw (z-axis) orientation
of the trajectory at the discrete points, used as the yaw orientations of the
contacting feet.

B. Kino-dynamic planning for estimating the root frames

In [28], we use the reachability condition to plan 6D
trajectories for the root of the robot. Given the current frame
R0 and a goal frame Rn, we use a kino-dynamic RRT planner
to compute a continuous root trajectory R(t), t ∈ [0, T ] of the
robot that always satisfies the reachability condition:

∀t,∀k, 1 ≤ k ≤ nFeet,ROM(R(t), F k
i ) ∩ S 6= ∅ (10)

where each F k
i denotes one of the nFeet feet of the robot.

Additionally, the trajectory prevents a collision for whole-body
motions computed in its neighbourhood in practice.

We discretise R(t) with a time step δt, which is the
only hyperparameter required in our framework. Assuming
that a new step occurs every δt, we compute the number
n of required footsteps to reach the target, as well as the
estimated root poses R = [R(δt),R(2δt), · · · ,R(T )] at each
step creation. Fig. 3 shows an example of an SE(3) root
trajectory and its discretisation. The reachable space of each
foot is shown for each step. We assume that for each pi, the
orientation of the foot about the z-axis is aligned with the root.

The kino-dynamic planner allows us to filter the contact
candidates and pre-define the orientation of the feet, signifi-
cantly reducing the number of surface candidates in our MIP.
It is interesting to note that the information given by the
kino-dynamic planner (number of steps and rotation about
the z-axis) is handled inside the quadratic cost in the MIP
formulation by [19]. Their formulation has the advantage of
being self-contained, although it does allow for consideration
of non-flat contact surfaces. The choice of optimising the
number of steps and orientation within the cost, as opposed to
our potentially sub-optimal approach, deserves a discussion.
We believe that the tuning required to weigh the several
terms in the cost is as hard as the parametrisation of the
δt parameter. The potential sub-optimality is the price to pay
for the computational gains shown in our results, which are
connected to the reduced combinatorics by our approach. We
detail the kino-dynamic root trajectory planner in Appendix B.

VI. CONVEX RELAXATION OF THE MIP FEASIBILITY
PROBLEM

We purposely formulated (8) as a special instance of a
cardinality problem [31], [32]. We observe that the constraint

card(ai) = m − 1 constrains card(ai) to its minimum: as
all the Sj are disjoint, it is impossible for a footstep to lie
simultaneously on more than one contact surface. Therefore,
by removing the cardinality constraint and replacing the cost
with l(P) + w

∑n
i=1 card(ai), with w being a sufficiently

large weight, we obtain a strictly equivalent problem.
Cardinality minimisation problems are well-known to be

efficiently approximated with `1-norm minimisation problems,
thanks to the sparsity induced by the `1-norm [33], [34].
Therefore, we replace the Boolean variables ai with the real
variables αi and minimise their norm to obtain what we call
SL1M formulation [26]. Combining the `1-norm relaxation
with the pruning obtained through the use of the kino-dynamic
planner as proposed in Section V, we obtain the following
problem:

find P = [p1, · · · ,pn] ∈ R3×n

α = [α1, · · · ,αn],αi ∈ R+|Si|

β = [β1, · · · ,βn],βi ∈ R|Si|

min l(P) + w

n∑
i=1

|Si|∑
j=1

αj
i

s.t. P ∈ I ∩ G ∩ F
∀i, 1 ≤ i ≤ n :

∀j, 1 ≤ j ≤ |Si| :
Si,jpi ≤ si,j +Mαj

i1

pT
i ni,j = ei,j + βj

i

||βj
i ||1 ≤Mαj

i

(11)

where |Si| is the number of elements of the set Si. Si,j , si,j ,
ni,j and ei,j are the constants defined for the j-th surface
inside the set Si. We observe that since all the elements of
α are positive, ||αj

i ||1 = αj
i ,∀i, j. We set l(P) = 0 and

w = 1 when solving a feasibility problem. This transforms
the optimisation problem into a feasibility problem. Once
the contact surfaces are fixed, the quadratic cost l(P) is
reintroduced to locally optimise the footstep positions on the
selected surfaces.

For a solution of (11) to be a solution of (8), we need that
card(αi) = m−1,∀i. However, this might not be the case. To
handle any potential non-sparse optimum, we use a brute-force
approach. We fix all the variables αi for which the cardinality
constraint is satisfied. We then test all the combinations for the
remaining free variables until either i) a solution is found, ii)
a maximum number of trials is reached, or iii) all possibilities
are exhausted. This approach is not fail-proof, but this is a
good compromise for our goal of finding a solution by solving
a minimum number of optimisation problems.

An interesting observation is that because we are solving a
cardinality problem, (11) is very close to the relaxed problem
initially solved by a MIP solver for (8). It would be equivalent
if the cardinality constraint was also reformulated as part of the
cost and the pruning of contact surfaces was included in (8).
In Section VII, we will show that because of the preliminary
operations run by a MIP solver, it is more computationally
efficient to directly solve (11) if the problem converges to a
feasible solution.
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A. Extension to quadruped locomotion

In terms of discrete variables, the proposed approach ex-
tends directly to any number of legs as long as the gait is
pre-defined, leaving (11) and (8) unchanged. A conservative
change must however be brought into the quasi-static con-
straints defining F to guarantee a convex formulation. Quasi-
static bipedal locomotion requires the COM to lie above the
foot when the other foot breaks contact. For a quadruped, this
constraint is not as limiting, as the COM can lie anywhere
in the convex hull of the current contact points. However, if
both the COM and feet locations are variables, the convex hull
constraint is not convex. To preserve convexity, we express the
COM’s x and y coordinates as linear functions of the positions
of the effectors (i.e. feet) in contact:

cix,y
=

∑
k

wk
i p

k
ix,y

,
∑
k

wk
i = 1, wk

i ≥ 0 ∀i (12)

where pk
i represents the position of the k-th effectors in i-th

contact, and wk
i is a user-defined unit weighting vector that is

fixed for each contact. In our tests, we average the weights,
writing wk

i = 1/size(wi).

VII. EXPERIMENTAL RESULTS

We tested our approach in simulation in a variety of
environments for the humanoid Talos [35] and the quadruped
ANYmal [36]. To experimentally validate our framework, we
provide both quantitative and qualitative comparisons against
the different approaches explained. These results highlight
the performance improvements by reducing the combinatorial
complexity of the footstep planning problem using a trajectory.

A. Implementation details

The test environment is written in Python. The actual
initialisation and resolution of both (8) and (11) are written
in C++ and invoked through dedicated Python bindings. All
optimisation problems are solved using the Gurobi [37] solver
through those bindings3. Open-source LP/QP solvers such
as Quadprog [38] and GLPK [39] give similar performance
results for the case of SL1M. However, this is not true for the
MIP formulation. We chose Gurobi for a fair comparison. The
measured computation times represent the time spent in the
initialisation and resolution of the optimisation problem by the
solver. The trajectory planner is implemented in C++ within
the HPP framework [40] and invoked from Python using a
CORBA architecture. Tests were run on a PC with an AMD
Ryzen 7 1700X eight-core processor on Ubuntu 18.04.

B. Quantitative analysis

We selected four environments representative of the diffi-
culty of a combinatorial footstep planning problem (Fig. 4).
In each scenario, the objective is to find a sequence of

3The informed reader will observe that Python bindings already exist
for Gurobi. However, the initialisation of a problem through Python is not
computationally efficient, which justified the writing of a dedicated C++
library. This inefficiency also explains the difference in the computation times
observed for the MIP resolution in the current work and in [26].

footsteps resulting in a feasible whole-body motion containing
the given initial and goal root poses. For each scenario, we
solve the footstep planning problem using three methods: MIP
optimisation, MIP feasibility, and SL1M. MIP optimisation
corresponds to (8), where we set an objective function, just for
comparison, that minimises the sum of the squared distances
between the planned footsteps. MIP feasibility and SL1M
represent (8) and (11) respectively with l(P) = 0, solving
a feasibility problem. Once the contact surfaces are fixed, we
locally optimise the footstep positions on the selected surfaces.
To achieve this, we call an instance of (8), where all integer
variables are fixed and the quadratic cost l(P) is reintroduced.

In addition, each method is tested twice with the full
combinatorics and with reduced combinatorics based on the
trajectory. The same number of footsteps n computed by
discretising the trajectory is used in both cases.

Table II reports the computation times in milliseconds of
each method averaged over 100 runs, together with the number
of footsteps and the average number of candidate surfaces per
contact. Empty cells mean that the method was not able to
converge to a feasible solution. In all other cases, the success
rate was 100% for all the methods.

1) Easy scenarios (bridge and stairs): First, we consider
the environments composed of less than 10 candidate surfaces.
The results show that integrating the trajectory always reduces
the computation times of the optimisation problem, but the
total computation time (including the guide path computation)
is higher. SL1M always outperforms the other methods, being
up to 7.1 times faster than MIP optimisation and up to 3.7
times faster than MIP feasibility.

2) Hard scenarios (rubbles and rubbles & stairs): We also
consider environments composed of more than 10 candidate
surfaces, including sloped surfaces. We decided to mark SL1M
without trajectory planning as a failure (blank in Table II)
as the remaining combinatorics required more than 4,000
trials (Section VI). Table II shows that SL1M with trajectory
planning configuration always converges and is also always
the most computationally efficient.

The pruning improved the performance by a factor of 146.8
in the best case in the stairs & rubbles scenario with the MIP
feasibility formulation. SL1M always outperforms the other
methods and is up to 8.8 times faster than MIP optimisation
and up to 3.1 times faster than MIP feasibility.

Table III reports the optimal values obtained by both MIP
and SL1M using a cost function that minimises the sum
of squared distance traveled by the feet at each step. The
MIP formulation always converges to the global optimum and
thus provides a ground truth. SL1M first computes a feasible
set of contact surfaces and then optimises the positions in
a later stage. As expected, when MIP and SL1M select the
same contact surfaces, the optimal cost is the same (bridge).
Conversely, the cost differs when the contact surfaces selected
differ, which is expected as SL1M is only computing a feasible
solution. We also observe that the pruning based on the kino-
dynamic planner always precludes the solver from finding the
global optimum. However, we observe that the increase in
the resulting cost is small (always less than 10%), which we
consider to be an acceptable trade-off.
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TABLE II
CONTACT PLANNING COMPUTATION PERFORMANCE EVALUATION

Scenario # footstep w/o trajectory planning w/ trajectory planning

# surf. MIP opt. MIP feas. SL1M avg. # surf. trajectory MIP opt. MIP feas. SL1M

bridge 16 3 157.5 166.2 45.3 1.2 179.4 87.5 77.3 35.5
stairs 12 7 130.3 59.5 23.6 2.0 319.0 92.6 34.7 19.9

rubbles 16 18 1914.0 389.4 - 5.9 252.2 647.7 230.2 73.4
rubbles & stairs 32 24 98060.5 74710.5 - 3.9 501.8 1070.5 508.9 217.6

Fig. 4. Results of contact planning and the whole-body motion planning of Talos in our sample scenarios. The top row shows the easy problems, bridge and
stairs. The bottom row shows the challenging problems, rubbles and rubbles & stairs.

TABLE III
COST FUNCTION VALUES

Scenario w/o trajectory w/ trajectory

MIP opt. SL1M + QP MIP opt. SL1M + QP

bridge 1.887 1.887 1.974 1.974
stairs 0.797 0.872 0.870 0.929

rubbles 0.968 - 1.022 1.071
rubbles & stairs 1.880 - 2.072 2.224

C. Qualitative validation

We performed whole-body motion generation using [8], [41]
to validate the computed footstep plans. Fig. 4 shows the
snapshots of the generated motions for Talos along with the
planned contact sequences. Although there are no theoretical
guarantees that the contact plans can be extended to feasible
whole-body motions (beside the quasi-static guarantee), this
was the case in all of our scenarios. The companion video
shows the resulting motions and compares them with the MIP
formulation. The contact surfaces are selected using SL1M
with trajectory planning, and then the footstep positions are
optimised with a QP formulation. We also present a qualitative
result obtained with the quadruped (Fig. 5).

Fig. 5. Contact planning results for ANYmal crossing the palet. The colored
cubes indicate the planned contact for each foot.

D. Complete Pipeline

Table IV shows the average computation time in millisec-
onds, profiling the pipeline in SL1M with trajectory planner
configuration. The computation times are broken down into i)
trajectory planning, ii) contact surface selection with SL1M,
and iii) QP-based footstep location optimisation.

VIII. DISCUSSION

From these experiments, we draw two conclusions. First,
decreasing the possible combinations with a trajectory planner
reduces the computation time needed to solve the tested
optimisation problems. The improvement ranged from over
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146.8 times to 1.180 times. It also improved the convergence
of SL1M in challenging scenarios. Pruning the non-relevant
candidates was more effective in challenging scenarios than
in easy scenarios with a stronger reduction on the complexity
(#surf#footstep) of the problem. Indeed in easy scenarios,
the time required for pruning outweighed the time savings in
the optimisation phase. Second, solving feasibility problems
(SL1M, MIP feasibility) is faster than solving optimisation
problems (MIP optimisation) in general.

Always use the trajectory planner: Using a trajectory
planner is not efficient for easy problems in terms of com-
putation time. However, it brings other advantages such as
automatic constraint construction and foot orientation infor-
mation. Therefore, we recommend always using it. For hard
problems, computational gains are remarkable. For instance,
in the rubbles & stairs scenario, it is more than 100 times
faster when compared with MIP feasibility without trajectory
planning (yellow mark in Table II).

Non-sparse optimum handling: The `1-norm relaxation
can lead to a non-sparse optimum solution, where the relaxed
integer variables do not converge to an integer value. A brute-
force approach to handle this non-sparse optimum normally
works well with easy problems. However, with challenging
problems, we saw that it can result in large combinatorics.
We tested specific methods to enhance the sparsity of `1-norm
minimisation, such as iterative re-weighting [42]. This did not
improve the success rate for our problem, while in comparison,
trajectory pruning was proved to be more efficient.

Combinatorial reduction in MIP problems: Before solv-
ing a combinatorial problem, MIP solvers commonly perform
a “presolve” [24], where the problem is analysed, and un-
feasible solutions are removed from the search space. Our
trajectory planner can be considered as a domain-specific
implementation of the presolve routine. Studying the influence
of the presolve in challenging scenarios gives us some relevant
insight into their combinatorics. The explored branch-and-
bound node counts in MIP are shown in Table V. 0 means
that MIP converged to integer values before getting into a
branch-and-bound phase. When the trajectory is combined and
the presolve is enabled, we can see that the MIP feasibility
problems directly converge to a feasible solution. This is
expected, as the first iteration of the MIP is equivalent to
SL1M. More interestingly, this is also the case for the MIP
optimisation problems, where 2960 nodes had to be explored
to find the optimum without the trajectory. These results
suggest that for our scenarios, even when considering a cost
function, there is no combinatorics involved in the resolution
of the footstep planning problem. Studying the validity of this
hypothesis is an exciting direction for future work.

TABLE IV
COMPUTATION TIME FOR THE COMPLETE PIPELINE

Scenario Trajectory Footstep Optimisation Total

bridge 179.4 35.5 6.9 221.8
stairs 319.0 19.9 7.5 346.4

rubbles 252.2 73.4 8.0 333.6
rubbles & stairs 501.8 217.6 19.3 738.7

TABLE V
MIP EXPLORED NODE COUNTS

Scenario Presolve w/o trajectory w/ trajectory

MIP opt. MIP feas. MIP opt. MIP feas.

rubbles disabled 2742 383 117 1
rubbles & stairs disabled 20542 2724 7748 1

rubbles enabled 1 1 0 0
rubbles & stairs enabled 2960 1 0 0

Parameter tuning: Our framework requires the tuning
of the discretisation step δt for the trajectory, as δt is used
to infer the number of footsteps required by the motion (a
new footstep is created every δt). If δt is too large, the
problem can become unfeasible (not enough footsteps), while
a small value increases the complexity of the problem (more
footsteps and variables) and potentially leads to a failure in
the convergence of SL1M. We heuristically selected a value
δt = 1.0s for our scenarios.We believe δt plays a central role
in the performance of the framework and will investigate on
automatically determining its value in future work.

SL1M with a cost function: Using SL1M jointly with
an additional objective as in (11) is challenging. With the
current state of our knowledge, we do not recommend this
approach as it increases the risk of not converging to an integer
solution. However, our results show that optimising the contact
locations after selecting the contact surfaces leads to empir-
ically convincing results, with a maximum increase of 10%
of the optimal cost. Furthermore, considering the simplified
models in footstep planning, the notion of optimality is loosely
related to the optimality of the resulting whole-body motion.
Therefore, the suboptimality may not be critical in practice.

IX. CONCLUSION

We presented a convex optimisation framework for planning
the footsteps of a legged robot walking on uneven terrain.
Our results suggest a positive answer to the question: Can we
efficiently address the combinatorics of the footstep planning
problems with continuous optimisation methods?

We showed that in our use-cases, the footstep planning
problem can be relaxed as an `1-norm minimisation problem
(SL1M), converging to a feasible solution when the combi-
natorics involves less than 10 surface candidates per footstep.
Problems with larger combinatorics can be pruned thanks to a
kino-dynamic planner, which outputs an approximation of the
trajectory followed by the root of the robot.

The benefits of the framework were measured in terms of
the computational gains (more than 100 times faster than the
original Mixed-Integer Program in the best case), as well as
the simplicity of the approach, which can be implemented
using off-the-shelf open-source numerical solvers at the cost of
losing guarantees of optimality. Our analysis of the behaviour
of MIP solvers further suggests that the combination of the
kino-dynamic planner and pruning methods from the literature
can potentially remove the combinatorics of the problem, even
when an optimal solution is desired.



8 EXTENDED VERSION OF IEEE ROBOTICS AND AUTOMATION LETTERS ACCEPTED PAPER, 2021

APPENDIX A
REACHABILITY CONSTRAINTS

We detail our kinematic and dynamic (here, static equi-
librium) feasibility constraints, noted as a set F in our
formulation. Two sets of constraints guarantee that the robot
can follow the footstep plan without falling or violating joint
limits. First, the position of the COM is constrained with re-
spect to the contact points, following the 2-PAC approach [6].
This allows to continuously guarantee feasibility of the COM
trajectory while only considering two COM positions at each
contact phase. We recall the method for completeness and ex-
tend it to handle variable foot translations under the quasi-flat
constraint. Second, the position of each effector is constrained
with respect to the other effector in contact. This appendix
is largely a reproduction of the constraints expressed in the
original SL1M paper [26].

A. Center Of Mass constraints

To guarantee that a dynamically feasible trajectory exists for
the i-th footstep, we use the 2-PAC formulation. We only need
to choose 2 COM positions for each footstep, namely ci,0 and
ci,1, to guarantee continuous feasibility. Let us define a phase
as the time window between the moments two consecutive
contacts are made.

1) Equilibrium constraints: For quasi-flat contact surfaces,
a sufficient condition for the COM to allow for static equi-
librium is: ci ∈ convi [29], where convi denotes the convex
hull of all the contact points at phase i. For bipedal walking,
this boils down to having the COM on top of the support foot.
In this case ci,0 is constrained to lie above the support polygon
of pi−1 (i.e., the support foot used in the transition from phase
i − 1 to i, which was the swing foot for phase i − 1) at the
beginning of phase i. We then constrain ci,1 to be above pi

at the end of phase i :

Fj
i−1(ci,0 − pi−1) ≤ f ji−1 + 1αj

i−1

Fj
i (ci,1 − pi) ≤ f ji + 1αj

i

(13)

where Fj
i and f ji are the matrix and vector defining the polyg-

onal shape of the foot associated to phase i on surface Sj .
Note that these constraints depend only on the xy coordinates
of the COM and the foot positions.

By convexity of the static equilibrium region, all points
of the straight line segment [ci,0, ci,1] satisfy the static
equilibrium constraint. Similarly, the straight line segments
[ci−1,1, ci,0] and [ci,1, ci+1,0] are also feasible because the
COM stays above the support effector for all the duration of
the single support phase.

2) Reachability constraints: We additionally constrain ci,0
and ci,1 to guarantee kinematic reachability. We stress that
the kinematic constraints are only approximated here, thus the
“guarantees” that we mention for feasibility are only valid for
this simplified representation of the robot. The COM positions
are linearly constrained as follows. First, for each effector we
compute offline a polytope that approximates the reachable
COM workspace: a large number of configurations of the robot
are randomly sampled, and those who are collision-free and
correspond to a “quasi-flat” pair of contacts are kept. For each

of those configurations, the COM is expressed in the frame of
a given effector. The convex hull of all the computed COM
positions approximates the COM workspace in the effector
frame. For each effector k, we thus obtain a 3D polytope kR :
{c ∈ R3, kRc ≤ kr}.

At contact phase i, for each contact surface Sj the ori-
entation of the foot frame is constant. The yaw is given
by the trajectory planner, while the roll and pitch are given
by the surface orientation. We note Rj

i the rotated polytope
associated with contact pi at phase i, assuming it lies on
surface Sj . The translation is variable, thus the constraints
depend linearly on the effector positions. Both COM positions
ci,m,m ∈ {0, 1} at phase i are thus constrained by the two
active contacts pi and pi−1:

Rj
l (ci,m − pl) ≤ rjl + 1αj

l ∀j,∀l ∈ {i− 1, i} . (14)

Here again, the slack variable α is used such that only the
constraints related to the selected contact surfaces are applied.
By convexity of our (approximated) kinematic constraints, if
they are satisfied for ci,0 and ci,1 for all i then they are
continuously satisfied.

B. Relative foot position constraints

Similarly to the case of the COM reachability, we use
a sampling-based approach to approximate the reachable
workspace of each foot with respect to the others. For effector
k, we obtain a polytope kQ : {p ∈ R3, kQp ≤ kq} that
constrains the other effector. If k is the moving effector at
phase i on surface Sj , we write the associated constraint set
kQj

i . We then apply the same reasoning as for the COM to
obtain the following constraints at each phase (omitting the k
for clarity):

Qj
i−1(pi − pi−1) ≤ qj

i−1 + 1αj
i−1 ∀j . (15)

APPENDIX B
KINO-DYNAMIC ROOT TRAJECTORY PLANNER

We detail the kino-dynamic root trajectory planner [28] used
to efficiently reduce the combinatorics as proposed in Section
V. The planner is implemented as a standard RRT algorithm
with a specific steering method4 to guarantee that every
position of the root in the trajectory satisfies the reachability
condition. Additionally the dynamic constraints of the system
are approximated with a heuristic in order to obtain smoother
trajectories for the root, empirically shown to be more easily
extended to feasible motions.

Concretely the steering method augments the well-known
Double Integrator Minimum Time (DIMT) method [43] to
compute minimum time trajectories between two states of
the robot considering the dynamic constraints applying to the
Center Of Mass (COM).

4In a RRT planner, a graph of states is built by sampling random states and
using a local ’steering method’ to try to connect them. Linear interpolation
is the most trivial option. Once the local trajectory has been computed, a
validator checks whether the local trajectory satisfies the constraints of the
system. If part of the trajectory satisfies the constraints, the last valid state is
added to the graph and the partial trajectory is kept as the edge connecting
the two states
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Assuming that the COM position c is a linear function of
the root position R, given user-defined symmetric bounds on
the COM dynamics along three orthogonal axis:

−ċmax
{x,y,z} ≤ ċ{x,y,z} ≤ ċmax

{x,y,z}

−c̈max
{x,y,z} ≤ c̈{x,y,z} ≤ c̈max

{x,y,z} .
(16)

Given also an initial state S0 =< R0, c0, ċ0 > and a target
state S1 =< R1, c1, ċ1 >, the DIMT outputs a minimum
time Bezier curve c(t) that connects exactly < c0, ċ0 > and
< c1, ċ1 > and satisfies (16) without considering collision
avoidance or the reachability condition. From c(t) we can
directly retrieve the translation component of R(t), while the
orientation is given by interpolating between R0 and R1.

However, the DIMT method is not directly applicable as
for legged robots the center of mass acceleration bounds
are neither constant nor symmetric, but state-dependent. The
bounds correspond to the non-slipping condition, and are thus
determined by the COM position, as well as the contact points
and normals.

To address this issue, we propose a two-step method:
• We use the DIMT method with acceleration constraints

computed for the initial state S0. The probable contact
positions and normals are estimated using the reachability
condition. Given the root position R0, we compute the
set of obstacles intersected by the reachable workspace
and arbitrarily choose one position on one of the available
surfaces as the plausible contact. By doing so, we increase
the odds that the trajectory c(t) be dynamically feasible
in the neighborhood of S0, but not along the complete
trajectory.

• Then, in the trajectory validation phase, we verify the
dynamic equilibrium of the robot by estimating the prob-
able contact points along the trajectory and verifying the
Newton-Euler equation for the COM given this estimate.
We also verify the reachability condition (which also ap-
proximates collision avoidance constraints). The returned
trajectory c′(t) is the part of c(t) that satisfies all these
constraints.

We refer the reader to the original paper [28] for details
on how the acceleration bounds can be extracted from a state
and estimated positions using the definition of the centroidal
wrench cone and empirical evidence of the efficiency of this
approach in spite of the heuristics introduced.

ACKNOWLEDGMENT

D. Song and Y.-J. Kim are supported in part by
the ITRC/IITP program (IITP-2021-0-01460) and the NRF
(2017R1A2B3012701) in South Korea. The other authors are
supported by the H2020 project Memmo (ICT-780l684).

REFERENCES

[1] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in 2003 IEEE Int. Conf. on Robotics and
Automation, vol. 2, 2003, pp. 1620–1626 vol.2.

[2] P. M. Wensing and D. E. Orin, “High-speed humanoid running through
control with a 3d-slip model,” in 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2013, pp. 5134–5140.

[3] S. Caron, A. Escande, L. Lanari, and B. Mallein, “Capturability-based
pattern generation for walking with variable height,” IEEE Transactions
on Robotics, vol. 36, no. 2, pp. 517–536, Apr. 2020. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01689331

[4] C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov, and P. Wieber, “A
robust linear mpc approach to online generation of 3d biped walking
motion,” in 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids), 2015, pp. 595–601.

[5] J. Carpentier, R. Budhiraja, and N. Mansard, “Learning feasibility
constraints for multicontact locomotion of legged robots,” in Proc. of
Robotics: Science and Systems, Cambridge, Massachusetts, July 2017.

[6] S. Tonneau, P. Fernbach, A. Del Prete, J. Pettré, and N. Mansard, “2pac:
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