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Abstract: In this study, we are concerned with non-stationary interpolatory sub-
division schemes with refinement rules which may vary from level to level. First,

we derive a new class of interpolatory non-stationary subdivision schemes re-
producing exponential polynomials. Next, we prove that non-stationary schemes
based on the known butterfly-shaped stencils possess the same smoothness as the
known Butterfly interpolatory scheme.

1 Introduction

A non-stationary subdivision scheme consists of recursive refinements of an initial
sparse sequence with the use of rules that may vary from level to level but are the
same everywhere on the same level. Our primary concern of this study to provide a
non-stationary subdivision scheme which is exact on a certain shift-invariant space
which consists of trigonometric polynomials.

In this study, instead of thinking about generating new verticé®dity tak-
ing local averages of vertices in the control polyhedron, we are thinking of scalar
values which are assigned to the vertices of a triangulati@?inFurther, we are
particulary interested in the class of interpolatory subdivision schemes which refine
data by inserting values corresponding to intermediate points, using linear combi-
nations of neighboring points. The general form of their refinement rules (based
on a planar parametric domain) is as follows:

fé(]—&-l _ fjk7
K .
B = 3 alfK, jer? kel..
nez2

The set of coefficienta® := {a,q(}} is termed the mask of the rule at lekelMe de-
note this rule by§,q and the corresponding non-stationary schemé¢Qy }. It is
common to assume that for each lekebnly a finite number of coeﬁiciené\k] are
non-zero so that changes in a control point affect only its local neighborhood. This
property clearly facilitates the practical implementation. A subdivision scheme is
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2 2 CONSTRUCTION OF NON-STATIONARY SCHEMES

said to be stationary when the mask is independent of the levels; then we use the
notationa:= {a,}. We denote the rule at each level 8yand the corresponding
stationary scheme b§5;}.

Let f9 be a given initial data. For a non-stationary subdivision schE®e},
we have the formal relation

fk— S-Sy £0.

In particular, for the given datd = {8, : n € Z?} at level 0, with the Kronecker
deltadn o, thebasic limit functionof {S } is the function

9o:= lim Sy S0 6.

Definition 1.1. A subdivision scheme is said to bé& & for the initial dataé =
{£9 = 8n0: n € Z?}, there exists a limit functiotiy € C¥ (R), ¢o # 0, satisfying

lim sup| fX— ¢o(27¥n)| = 0. (1)

k-0 72

Let {S,x} be a non-stationary interpolatory subdivision scheme based on the
butterfly-shaped stencils. Assume th& } reproduces exponential polynomials
which constitute a shift-invariant spaSewith #S = 8. Under certain condition
of S, we prove that{S,x} is asymptotically equivalent to the original Butterfly
schemd S;}, and that{ S, } isC1, i.e., it has the same smoothness as the stationary
Butterfly subdivision schemgs, }.

In the following we use the two-dimensional index notation. First, let

72 :={(on,00) €Z%: 06 >0, i = 1,2},
Leta, B € Z2. We denote byp* the differential operator of order, and|c|; :=
o1+ 0. Also, a < B meansy < fBi fori = 1,2. Forx = (X1, %) € R?, x% = x{*x52.

The space of algebraic polynomials of degten is denoted by1_,. For a matrix
C, ||C|l» indicates itso-norm.

2 Construction of Non-stationary Schemes

The non-stationary subdivision scheme proposed in this paper are constructed in a
way of reproducing the exponential (or trigonometric) polynomials of the form

¢(u,v) =P (uv) e QCR? 2)
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3 3 ASYMPTOTIC EQUIVALENCE

with complex numberg; (i = 1,2). One may employ more general type of expo-
nential polynomials

¢ (u,v) = uny@ehighy.

o =0,---,u € Z,, with (larger) stencils. However, the same technique of this
study can be applied for the analysis. In practi¢&’s are chosen to be low degree
polynomials.

Let

S:{¢€(U7V)‘€:la""8} (3)

be a shift-invariant space with linearly independgyis of the form as in (2). In

fact, refining the triangular mesh data based on the butterfly-shaped stencils in-
volves three groups of vertices to evaluate three types of new vertices as shown
in Figure 1. Here and in the sequet;; with j = 1,2,3 indicate the three types of
stencils angy; /2 the insertion points corresponding# at level 0. For each level
k=0,1,---, and stencilZj, the non-stationary subdivision rule is constructed by
solving the linear system

ou(pi27 ) = 2 8y o (279), ¢S, (4)

This linear system can be written in the matrix form
alk — gl tpK

whereak = (aEDkJL2n ne 2;),BN,n) = (¢(n27%) :ne 2}, £=1,---,8) and

b = (¢y(pj27%1):¢=1,---,8). For the unique solution of the linear system
(4), it is required that difS| »;) = dimS for each stencilZj. This condition is
satisfied by the basic assumption: \Niq;} the Taylor polynomial around zero of
¢, of degree< 4, i.e.,

To, () = ; ()'eM(0)/v!, (5)
|V 1§3
the functionsT, , £ =1,---,8, are linearly independent.

3 Asymptotic Equivalence

Typical tools used for the analysis of the stationary schemes are Fourier transform,
eigen analysis and Laurent polynomials [1, 2]. However, these techniques are not
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4 4 ANALYSIS OF CONVERGENCE

Type 1 é Type 2 Type 3

Figure 1. Stencils of the Butterfly scheme. Blue dots indicate the insertion point.

applicable for the non-stationary case. Thus, for the analysis of non-stationary
schemes, we adopt the notion of asymptotical equivalence [5]: two (non-stationary)
subdivision scheme§S,, } and{S; } areasymptotically equivalenif

k6§+ 1S3 — Sgug [0 < 00, (6)

where

K
1Sl = max{ > Y, |iae E2}

nez2

whereE? stands for the extreme points 6 1]°.

4 Analysis of Convergence

We cite a basic result about the asymptotically equivalent subdivision schemes.

Theorem 4.1.([5]) Let{S;} be a stationary subdivision scheme, and8} } and

{S:} be asymptotically equivalent. Assume that s{gap, supp[a.[qk]} C [0,N]?,
ke Zy,N<o. Then{Sx} is C°if {S} is C°. Moreover, if

1S — Sl <275, ke Zyg,

then the basic limit functiorg of the schem¢S,x } is Holder continuous of expo-
nentv > 0.

In the following theorem, we show that the non-stationary subdivision scheme
{S} is asymptotically equivalent to the Butterfly scheft®}, which implies
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5 4 ANALYSIS OF CONVERGENCE

that{Sx } is a convergent scheme. Recall that the mggk 2, : n € Zj} of the
Butterfly scheme reproduce polynomialdin, in the sense that

% Ap;—2n p(n2*) = p(szflpj% Vpe M. 7)
nex;

Theorem 4.2. Let {a,} be the mask of the Butterfly scheg®} and {aﬁq} be
the mask of the non-stationary sche{igx } reproducing the spacg= {¢, : { =
1,---,8}. Then, there exists a constant- such that

maxjall —a,| < 2%, k>KeZ,.
NEeZ

Proof. Due to the fact thafy, = a[z'ﬂ = 6po With n e Z2, it remains to estimate

only the differenceap,; 2n — a[;l)(j]on with p; = (1,0), p2 = (0,1) andps = (1,1).

Let T, be the Taylor polynomial of degree 3 of the functipn/=1,---,8, as
in (5) and letj = 1,2, 3 be fixed. Since the madlay, 2n}, n € 2], of the Butterfly
scheme reproduce polynomialslih.4 as in (7), we have

% ap;—anTy, (27%) =Ty, (27 *py).
nexj

This linear system can be written in the matrix form
T-a=b (8)

with
T=(Tp,(n27%)), a=(ap-2n), b=(Ty (27 p))).

Recall that the masl{a&klm} of the non-stationary scheme reprodugesn the
sense that

%- a[r)l‘jth(p{(nZ*k) - (p[(sz—lpj)' ©)
nezj

LetRy, = ¢, — T, be the remainder of the Taylor polynomial, i.e.,

Qe «
R(pf(-)zgﬂa!/o (1-y)*p(® (y-)dy. (10)

Itis obvious thatR,, ("27%)| < c2~%, ne 2j. Thus, denoting = (aij],Zn ‘ne

Z) andR = (2%R, (n27¥) : n€ 2j), the linear system (9) is of the form

(T+eR)a¥ =b+ebg
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6 5 SMOOTHNESS OF NON-STATIONARY SCHEME

with € = 2%, |R||» < » and||br|| < . Note that theD(e) perturbation of the
non-singular matrix causes th@®(¢) perturbation of its inverse [6]. Thus, we can
write

a = (T1+eR)(b+ebr)

= a+¢[T br+R(b+ebgr)],

with ||R||e < 0. Sincee = 2-%* and|| T~||., = O(2%), we conclude that there is a
constant > 0 such that|aLk] —allo <c27K O

5 Smoothness of Non-stationary Scheme

5.1 Sufficient Condition for Smoothness

In this section, we infer results on the smoothness of the non-stationary interpola-
tory scheme{S,« } from known results about the smoothness of a stationary But-
terfly scheme, which is asymptotically equivalent to it. Specifically, we will prove
that the non-stationary scheme reproducing the spatas the same smoothness

as the original Butterfly scheme which reproduces the cubic polynomials.

To simplify the presentation of a subdivision scheme and its analysis, it is con-
venient to assign the Laurent polynomial to each subdivision mask. The bivariate
Laurent polynomial corresponding to the original Butterfly scheme can be put in
factored form [2]

az) =a(z,2) =2 11+ 1+ (1+2 '3 ) 2az(1- 16 'qz,2)), (11)
where
A2 =q@,2) = 2z%% +22'z,2 4zt -4zt -4zt
127 2+ 2212, + 12— 4z — 4z, — 4212, + 222, + 2215,
It seems that the Laurent polynomi(z;,z,) has single roots along the curves

z1=-12 = —-1andzz = —1. However,a(z;,z) has multiple roots around
(—1,1) and (1, -1). In the following, for convenience, we use the notation

e1=(1,0) and e =(0,1). (12)
Lemma 5.1. Let &z) = S ,cz2anZ" be the Laurent polynomials of the original
Butterfly subdivision schem{&,}. Then, for any8j = mg, j = 1,2, with m< 3

and g in (12), we have
DPia(6;) =0
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7 5 SMOOTHNESS OF NON-STATIONARY SCHEME

where
01=(—-1,1) and 6,=(1,-1). (13)

Proof. In this proof, we consider only the cage- 1 because the analysis for the
casej = 2 is exactly same. F@#; = mg with m < 3, we can write

Dhia-1,1) = S vy, S an(-ym

1€]2<|Bj1 n=(ny,nz)€Z?

for some suitable constan1y§ ,. From the fact that the masfa,} reproduces
polynomials of degree 3, it is easy to see that

3
ann' (1) = 80— (~1)] % ap,—2n(Pj/2—n)" =0

n=(ng,m) €72 = nE2;

The lemma is proved. O

When the non-stationary subdivision schefi@&y } is asymptotically equiv-

alent to the original Butterfly schemis; }, ]a%k] —an| = 0(1), ask tends toco.
Hence, the Laurent polynomial (z) associated wittg,x has (complex) roots
aroundz; = -1,z = —1 andz;z = —1, and it can be written as

a¥(z) = a¥(z,2) (14)
= 271(1 + W17kZ;|_) (1 + W27k22) ((1 + W3’kZ;|_Zz)C[k] (Zl, Zz)
for some suitable Laurent polynomidﬂ (z). From Lemma 5.1, it is easy to see

that forv =0,---,3 andj = 1,2, $-ak(6;) = o(1) with 6; in (13) ask — co. In
J
this study, we require the stronger conditions:

Condition A. A non-stationary subdivision scheri8 } satisfies Condition A
if the corresponding Laurent polynomial&éz) are of the form(14) and if

with 6; in (13).

In what follows, we prove tha{S,} with Laurent polynomials of the form
(14) satisfying Condition A has the smoothn&sif {Sx} is C°. For this, we
show that a factof1+r¢z}), A € Z?, in the Laurent polynomials a(z) with
11— r| < c27¥is a smoothing factor.
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8 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Lemma 5.2. Consider a non-stationary subdivision schefi&y } with Laurent
polynomials of the form

1
ak(z) = é(1+rkzl)|o[k](z), k>KeZy

wherel € Z? and {S,x } is C°. Suppose that
1-nf<c2®, k>KeZy, (15)

and that the schemgS } is of compact support and”C Then the basic limit
functiongg = llim Sy - Sy, S satisfiespo, 9, ¢o € CO whered = {no: n € Z2}.

Remark: For the Butterfly scheme in regular triangulation, we need to consider
only the three directionst = (1,0),(0,1),(1,1).

Proof. Due to Lemma 9 in [5], we can find th&8, } is C° with the basic limit
function ¢, of the form

90 = /R go(- — AD(t)dL,

where @, andh are the basic limit functions ofSx } and{S;..} respectively,
and whereh is bounded and sugh} = [0,1). Then, it follows thatpp € C°. In
order to proved; ¢ € C°, it is sufficient to show thady = ¢, * h € C1(R) under

the assumption thap, is continuous. To this end, let us define the sequence of
functions

X
100 = [ au(Dh(x-)dt,
Xf
where
he(t) =h(j2™), j2*<t<(j+127% j=0,-,2-1. (16)

It follows thatl(x) — ¢a(x) uniformly ask — oo. To establish thap, € C1(R), let
us examine the sequence of functiqhS ez, . By (16),

2x_1
le(x) = g h(i27)[gp(x— j27%) — go(x— (j +1)27%)] € C(R),

J:
and hence,

|

k10 —lk(x) = % h((j+2 127 —h(j27")]

=
[Bo(x— (1 +27H27%) = gp(x— (j+1)271].
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9 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Here, sincepy, is Holder continuous of exponemt> 0 (see Theorem 4.1),
|Bp(x— (J+27127) — gp(x— (j+1)27%)| < c27**
with a constant > 0 independent of andx. In addition, seeing that the Laurent
polynomial corresponding tois 1+ ryz, we find that
A .
h((i+35)27) =reh(j27);

see Example 2 in [5] for the details. Thus, we obtain the expression
k-1
e 200 = li(¥)| < c27** zo (re—=Dh(j274)| <27,
]J=

being a consequence ¢ — ry| < c2 ¥ in (15) and the boundedness laf Ac-
cordingly, we conclude thafl,} is uniformly convergent, and hence the limit is
continuous and is the derivative @f = ¢y, x h. g

5.2 Analysis of Smoothness

It is known that the subdivision scheme corresponding to the Laurent polynomial
bj(z1,22) =2(1+z) ta(z1,2), j=12

with a(z,2) in (11) isCP [4]. Since the non-stationary scherf8, } is asymp-

totically equivalent to the Butterfly scheni&,}, the scheme corresponding to

b/ (z1,2) =21+ wpz) ¥ (2, z), =12 (17

with al¥(z1, 2,) in (14) is alsaC®. Thus, according to Lemma 5.2, tBé-smoothness

of the non-stationary schem{&,x } can be proved by showing thit — w; | <

c2 %, j = 1,2. Specifically, we show that Condition A dis,« } implies the con-
dition (15) for all the factors in the representation (14). For this proof, we use the
notation

{3k = {w}
if there exist some constantg,c, > 0 such that; < xkyl:l < ¢p for all k. (Here,
Yk #0.)

Lemma 5.3. Suppose that Condition A holds for the non-stationary subdivision
scheme{S}. Let tijk}(zl,zz) in (17) be the Laurent polynomial diS;x} (14).
Then, for each £ 1,2,

I1-wjk <c27K k>KeZ,. (18)
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10 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Proof. Since{Sx} is asymptotically equivalent tf&, }, we deduce from Lemma
5.1 thatal(z,1) andal(1,2) can be written as follows:

N

ark(z) == a¥(z,1) = Cru(z) [T (1+rknz), (19)

=)
N
iR

ak(z) :=a¥(1,2) = Cok(z2) [1(1+ sn22),
1

=]
[

wherecjk(—1) =c+0(1), j = 1,2, andc # 0. We will show thatjl —ryp|,|1—
Sn| <2 Kfork>K € Z, foranyn=1,--- 4. Itis enough fow; i to be|1—
W k| < c2kKk>Ke Z., ] =1,2. For this, it is also necessary to point out that

v dV
2 Ao = (—a . )(—
(azjva >(91) <dzjva1’k)( 1) (20)
with 6; in (13).

Without loss of generality, we rearrange theggtin (14) such that

|1—rgn| =max{|L—ry,:4>¢>n}, n=1--- 4 (22)

that is, |1 —rgn| > |1 —rgne1|. Denote|l—ry 1| =: &. Since|l—rygn| < g for
anyn < 4, it is sufficient to show that swtzksk| < ¢ for a constant > 0. Now,
suppose that syp2*e,| = o, which means that there exists a sequeficé such
that

24g,| <|2g | >, as k — . (22)

Then, recallingl —rint1| < |1—rgnl, we will derive a contradiction by consider-
ing the following two cases:

Case 1:{g,} < {|1—rynl}, forn=1,--- 4.

In this case, it is clear from (14) thgfay x,(—1)|} = {eé}. By Condition A and
(20), |agk, (—1)| < c27%4, we get the boun{® ¢, | < c for anyk,, in contradiction
to (22).

Case 2:{g,} < {|1—rk.nl}, forn=1,--- ,s< 4.

That is, there exists a subsequeriég} C {k/} such that for anyn >'s, |1 —
rkj‘,n|ek*j1 — 0 askj] — «, i.e.,

|1_rkj,n’ :O(gkj)7 n>s. (23)

Then we use the lemma:
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11 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Lemma 5.4. Let .
1
R (z) = |'|l§(1+rkj,nzl).
Nn=
Under the condition of Case 2, we have
4 4-s-10)
(RS0l ={&} and [R(-1) = o(eg™), ve>0.
Proof. For the givers < 4, denotds := {1, ---,s} and letAs be the collection of

all subsets of 1,2, 3,4} =: I, with the cardinalitys, i.e.,As:={l Cls : #l =s}.
Then,

Fk(j4fs)(—1) = (es —Tk.n +Ie%ls|_l — I )( +0o(1 ))_(24)

Since|1— rkj7n| >1]1-— rkj7n+1|,

{ |1—rkj’n|}x{s§j} and |_l|1—fkj,n|=0(8|f,-)~
nels ne

(RS (-1))y = {ed -

In a similar way, we can prove the relatldﬁ((4 s (})( 1)| = o(g S”) forall ¢ > 0.
U

Thus,

Now, we turn to the proof of Lemma 5.3 in Case 2. It follows from (19) that
for some suitable constantgwith £ =0,--- ,4—s, we have

4-s

4—s ¢ ¢
191 - ;0< A DR ) (25)

4-s )
~ DRI s (Y %)el CoR

/=1

Sincecy k; (—1) = c+0(1) with a constant # 0, the identity (25) leads to
4—
(&30 (-1)} =< (&5}

by Lemma 5.4. Also, from Condition A and (2(}*4 9 (—1)| < c27%s, yielding

|2Ki &;| < c for anyk;, in a contradiction to (22). (Hereis a generic constant).
Therefore, we can conclude that—wy | < c2 kK,
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12 5 SMOOTHNESS OF NON-STATIONARY SCHEME

we can prove thatl — ry | < c2-K. Therefore, we conclude (18). O

Recall thatS = {¢,(x) : ¢ = 1,---,8} be the shift-invariant space reproduced
by the non-stationary scheri&, }. Let

T={veZ?:|vl1<3, v+#(12),(21)}
and letp =me, j = 1,2, withm < 3 ande; in (12). Here, note that®#= 8. Then,
for each stencilZj with j = 1,2, 3, let us define the function
K]
g (x) = D ( /Z g (26)
so that the coefﬁcient;;gﬂj (¢),£=1,---,8, is obtained by solving the linear system

o) (27K 1py) = 85 (—1)" V! (27)

wherep; = (1,0), p2 = (0,1) and p3 = (1,1). This linear system (27) can be
written in the matrix form

Py gg‘] =C
with

Pei= (0 (pj2 Y :1veT, ¢ €9)
c:= (85 (—1)VviiveT).

The non-singularity oPy is clear from the condition df. Then it is necessary to

point that since the masﬂe;[]k]} reproduce®, with £ =1,---,8, it also reproduces
®g j in the following sense:

®p;(27 K 1p;) = ; Eﬂ @ (27, =123 (28)
nezj

The following lemma is necessary for the proof of Condition A.

Lemma 5.5. Let®g ; be the function defined as in (26) and fet= mg, j = 1,2,
with m< 3and g in (12). Then, for any € Z2 with |v|; < 3,

195 I = O2%),  ask— e, 29)

withn > 0.
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13 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Proof. Sincegl[;k] =P.! c, the estimatﬂggq o < [IPgt|eo]lClleo Using the same

technique in Theorem 4.2, we can praj@, || = O(2%) with k > K. Then the
lemma follows immediately. 0.

We are now ready to prove the main theorem of this section which actually
proves that the Laurent polynomial! (z) of the schemg S, } satisfies the Con-
dition A.

Theorem 5.6. Let a¥(z) = ¥,.,2a 2" be the Laurent polynomial at level k as-
sociated with the non-stationary interpolatory schefigq }. Then, for anyj =
me € Z2 with m< 3, we have

|Dﬁja[k](9j)| <c2 XA k>Kez,
with 6; in (13).

Proof. In this proof, we consider only the cage- 1 because the cage= 2 can
be done by exactly the same way. Seeing that

Dﬁla[k](_17 1) = Z T z a%k]ne(_l)nl

[€)1<|B1l1 n=(ny,np)€Z2
for some constantgslj, it is sufficient to show that for anyB;|1 < 3,
= Y (-ymnPal =0 K B) k- o

n=(ny,ny)€Z2

Sp.

Y

in order to conclude Condition A. Note tha[ﬂ =bno because[aLk]} is the mask
of an interpolatory scheme. Hence,

3 .
27”31'1“&1)3[31 = 6131,0 - z (_1)J % a[p)l(JLZn((pj/z_ n)zik)ﬁl (30)
=1 nezj

where 2 is the butterfly stencil of typ¢ = 1,2,3 (see Figure 1) ang;/2 is the
corresponding insertion point. Invoking (26) and (28), we get

_k— %4 _
8p,0= Pp, j(27Mpy) = % 2y P, (N27).
ne

This together with (30) lead to

3 .
Zf\ﬁl\l(k+1)sﬁl _ Z (_1)171 Z a[pk-]—Zn (q)ﬁlJ (nsz) —((pj/2— n)ZK)ﬁl) .(31)
=1 e :
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Here, we replaceg, ;(n2~ k) by its Taylor polynomial of degree up to 3 plus the
remainder term. The Taylor expansion®j, ; around 2k 1pJ of degree up to 3
is

_ K]
g, (27 = T3, (27 + Ry (n2%)

where the Taylor polynomlaﬂr[ K and the remalndeR[ ] jare given by

Ték]J(nZ )= ZS((n_pj/Z)z) ¢§3 (sz 1 pj)/V!
RL2Y= 5 (0= pi/227)" 0} E27)/v
v|1=4

with & a point betweerp;2=%~* andn2=X. Invoking (27), i.e. (DE? )1(2 k=1p)) =
0p,v(—1)"v!with v € T, we see that

TR (p/2-m2 = Y (n-pi/2274) D) (2 py) /v
v=(1,2),(2,1)

Applying Lemma 4.2 and the polynomial reproducing property of the r{agk
of the Butterfly scheme (7), it is immediate that for each (1,2),(2,1),

K - -
| (=22 < c2 (32)
e
- K K _
for a constant > 0. Also, it is easy to check thab ,c »; a[pjthR%j’j(nZ | <
c2~* This together with (31) and (32), we obtain the required result. O

We are now ready to provide the main theorem of this section.

Theorem 5.7.If {S,} is the non-stationary interpolatory subdivision scheme re-
producing the shift-invariant spack then{S, } is C, i.e., it has the same smooth-
ness as the stationary Butterfly subdivision schéBé.

Proof. From Lemmas 5.2, 5.3, and Theorem 5.6, the proof is immediate ]

6 Approximation Order
An important issue in the implementation of subdivision algorithm is how to ac-

tually attain the original function as close as possible if the given initial @&ia
sampled from an underlying function. A high quality reconstruction scheme should
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guarantee that the approximation error decreases when the quality of the sample in-
creases. This approximation power is usually quantified by the approximation or-
der. For simplicity, suppose th&f is of the form 0 := {0 = f(2-%n) : n € 72}

for some positive integdg with a smooth functiorf. Then our concern is to find

to the largest exponemt > 0 such that

£ = L) <C27™

with a constanC > 0 independent oky, whereK is a compact set iiR2. The
exponenmis called theapproximation ordepf the subdivision scheme. It is well-
known that the original Butterfly scheme reproduces cubic polynomials and hence
it provides the approximation order 4. The goal of this section is to show that
the non-stationary schen{&, } provides the same approximation order 4 as the
original Butterfly scheme.

Since the schemgs, } is uniformly convergent, its limit function can be writ-
ten as

}ijﬂosa[kommsa[ko]fo: Y Wie(29-—n)f(27*n) (33)

nez2

whereyy, is the basic limit function oS defined by
Yio = liM Syigen -+ S0
with § = {6pn}. Indeed, sincg€ S, } reproduces functions i, it is clear that

or=S G(27n)ye(2°-—n), Ve €S,

nez?2

This observation leads to the proof of the approximation order of the subdivision
scheme{S,x }. In this paper, we are particularly interested in approximating func-
tions f in the Sobolev space

WYeo(K) = {g: ; IDWglL ) <o}, ¥EZy.
laf1<y
Theorem 6.1. Let K be a compact set iR?. Assume that £ W2(K) and f :=

{f9 = f(27%n) : n € Z2}. Then the non-stationary interpolatory schef&y }
has the approximation orde¥with respect to functions in ¥K).

Proof. Recall the notatio = {v € Z2 : |v|1 <3, v # (1,2),(2,1)}, let us define
the function

8
D(x) 1= /Zl.uz@z(x)
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so that the coefficient vectony := {u,: ¢ =1,--- ,8} is obtained by solving the
linear system

DYd(x) =D f(x)

Since® is a linear combination of,, / =1,---,8, and the schem§S, } is exact
for such functions, we easily get the identity

D(x) = /ZZ Vi (20 —n)d(n27).

Then it follows that

FO)—1"(0) = ®x)— Y wi(2°x—n)f(n27%)

nez?

= Y Wo(2ox—n)(®(n27) — f(n27))

nez2
Denote byTy the Taylor polynomial of a smooth functianof degree 3 arouns,
ie.,
Tg(y) = ; (y—x)"g"™ (x)/v!
‘V 1<3

and letRy be its remainder

Ry(y) = ; (y—x)"g™(&)/v!.
[v)1=4

for someé betweerx andy. Then, due to the facb(")(x) = f(V)(x) with v € T,

To(n20) — T¢(n2-*o) = w(¢_ £ (x).
v=(12),(2,1) v:
It follows that
F(X)— f2(x) = z ll/ko(zkox_ n) M(@_ f)(v)(XI34)
ncz? v=(12),(2,1) v:
+ Y Yo (29%—1)(Ro(n27%9) —R¢(n27)).

ncz2

Letting v be the basic limit function of the Butterfly scheme, ig.= S°5, we
find from Lemma 15 in [5] that

Wi — Wl < €277 (35)
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Applying the polynomial reproducing property of the Butterfly scheme (7), it is
immediate that for each = (1,2),(2,1),

S w(2ox—n)(n27°—x)" =0.

nez?

Note that sincey, is compactly supported,{# € 72 : wko(Z"O —n) #0} < Cyi,
for anyx. Hence, using (35), it is easy to check that the first term on the right-hand
side of (34) isO(2%*). Also, since® is bounded on any compact €t it is
obvious the second term has the prop@t2—%). It finishes the proof. O
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Appendix

In the appendix, we show parametric equations, basis funcBprsift-invariant
spacesy), and stencils£") for different surfaces that were used as benchmarking
models in our work.
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1. Sphere

X(u,V) = rsinucosy,
y(u,v) = rsinusiny,
z(u,v) = rcosu,

where 0< v < 27,0 < u < & and some constant

B := {sinucosy,sinusinv,cosu}
S = {sinu,cosu,sinv,cosy,
sinusinv, cosucosy, Sinucosy, cosusinv}
Z = Fig.1
2. Torus
X(u,v) = (14 cosu) cosy,
y(u,v) = (1+cosu)sinv,
z(u,v) = sinu,
where 0< u,v < 27.
B := { cosucosv,cosusiny,sinu}
S := {sinu,cosu,sinv,cosy,

sinusinv, cosucosy, Sinucosv, cosusinv}
Z = Fig. 1
3. Mdbius Strip

X(u,v) = acosu+vcogqu/2),
y(u,v) = asinu+vcogu/2),
z(u,v) = vsin(u/2),

where 0< u < 27, —w < v < w andw anda are constants.

B := {sinu,cosu,vsin(u/2),vcoqu/2)},
S := {sinu,cosu,sin(u/2),cogu/2),vsin(u/2),vcosu/2)},
X =
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°
8

»
g

1)

4. Fish surface

X(u,Vv) = (cosu— coq2u))cosv/4,
y(u,v) = (sinu—sin(2u))sinv/4,
z(u,v) = cosu,

whereO<u<rm, 0<v<2rm.

B := {cog2u)cosy,sin(2u)sinv,cosu
cosucosy, sinusinv}
S := { sinucosy,sinusiny,cosusiny,cosucosy,

sin(2u) cosv, sin(2u) sinv, cog2u) sinv,
cog2u) cosv, cosu, sinu}

(€] ) @3)

5. Sea shell surface

X(u,v) =a(l— l) cognv)(1+ cosu) + ccognv),

2r
y(u,v) =a(l— %)sin(nv}(lJr cosu) + csin(nv),
v AN
Z(u,v) = bg +a(l—- ﬂ) sinu,

Supplement of Exact Reconstruction of Parametric Surfaces



20 REFERENCES

where 0< u < 27, 0< v < 2r anda,b,c, andn are constants.

B := {vsinu,vsinu,cog3v),sin(3v),vcoq3v)
vsin(3v),vcog3v) cosu, vsin(3v) cosu}
S = {1,v,sinu,cosu,vsin(3v),vcog3v),

cogq3v),sin(3v),vcoqu),vsin(u),

vcog3v) cosu, veog 3v) sinu, vsin(3v) cosu,
vsin(3v) sinu, sin(3v) sinu, sin(3v) cosu,
cog3v) cosu, cog3v) sinu}

@) @] ®)

6. Figure 8 klein bottle

X(u,v) = (a+cogqu/2) sinv—sin(u/2) sin(2v)) cosu,
y(u,v) = (a+cogqu/2) sinv—sin(u/2) sin(2v)) sinu,
z(u,v) = sin(u/2) sinv+coqu/2) sin(2v),
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where 0< u < 27, 0 < v < 27 and some constaat

B := {coqu/2)sinvcosu,sin(u/2)cog2v)sinu,
coqu/2)sinvsinu, sin(u/2) sin(2v) sinu,
coqu/2)sin(2v),sin(u/2) sinv}

S = {sinu,cosu,sin(u/2)sinv,
sin(u/2) cosv,cogu/2) sinv,cogu/2) cosy,
sin(u/2)sin(2v),sin(u/2) coq2v),
coqu/2)sin(2v),coqu/2) cog2v),
sin(3u/2) sinv, sin(3u/2) cosv,
cog3u/2) sinv,coq3u/2) cosv,
sin(3u/2) sin(2v),sin(3u/2) coq2v),
cog3u/2)sin(2v),cog3u/2) cog2v)}

(€] [ @ 4 1 3) A

7. Klein bottle
r(uv) = 4(1—cosu),
X(u,v) = 6cosu(l+sinu)+rcosucosy, O<u<m,
6cosu(l+sinu)+rcoqv+m), mw<u<2m,
y(u,v) = 16sinu+rsinucosy, 0<u<m,
16sinu, 7w <u<2m,
z(u,v) = rsiny,
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where 0< v < 27.
B := { cosu,sinu,cosusinu,cosy,
cos UCOSV, COSUCOSV}
S := {cosu,sinu,cog2u),sin(2u),cosy,sinv,
sinusinv, sinucosv, cosucosv, cosusiny,
sin(2u) sinv, sin(2u) cosv, cog 2u) cosy,

coq2u)sinv}
2 =
(6} » )] 3)
8. Superellipsoid
X(U,v) = rycos"ucos?y,
y(u,v) = rycostusiny,
z(u,v) = rysinMu,

where—n/2 <u<m/2, —n <v<m, 0<ng,ny <o andry,ry,r; are con-
stants.

In case(ng,n2) = (3,1)

B := {cosusinv,cosusiny,sin’u}

S := {cogq3u),sin(3u),cosu,sinu,sinusiny,
sinucosv, cosucosy, cosusiny, sin(3u) sinv,
sin(3u) cosv, coq 3u) cosv, cog 3u) sinv}

(€3] ) (©) P
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