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Abstract: In this study, we are concerned with non-stationary interpolatory sub-
division schemes with refinement rules which may vary from level to level. First,
we derive a new class of interpolatory non-stationary subdivision schemes re-
producing exponential polynomials. Next, we prove that non-stationary schemes
based on the known butterfly-shaped stencils possess the same smoothness as the
known Butterfly interpolatory scheme.

1 Introduction

A non-stationary subdivision scheme consists of recursive refinements of an initial
sparse sequence with the use of rules that may vary from level to level but are the
same everywhere on the same level. Our primary concern of this study to provide a
non-stationary subdivision scheme which is exact on a certain shift-invariant space
which consists of trigonometric polynomials.

In this study, instead of thinking about generating new vertices inR3 by tak-
ing local averages of vertices in the control polyhedron, we are thinking of scalar
values which are assigned to the vertices of a triangulation inR2. Further, we are
particulary interested in the class of interpolatory subdivision schemes which refine
data by inserting values corresponding to intermediate points, using linear combi-
nations of neighboring points. The general form of their refinement rules (based
on a planar parametric domain) is as follows:

f k+1
2 j = f k

j ,

f k+1
2 j+1 = ∑

n∈Z2

a[k]
j−2n f k

n , j ∈ Z2, k∈ Z+.

The set of coefficientsa[k] := {a[k]
n } is termed the mask of the rule at levelk. We de-

note this rule bySa[k] and the corresponding non-stationary scheme by{Sa[k]}. It is

common to assume that for each levelk, only a finite number of coefficientsa[k]
n are

non-zero so that changes in a control point affect only its local neighborhood. This
property clearly facilitates the practical implementation. A subdivision scheme is
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2 2 CONSTRUCTION OF NON-STATIONARY SCHEMES

said to be stationary when the mask is independent of the levels; then we use the
notationa := {an}. We denote the rule at each level bySa and the corresponding
stationary scheme by{Sa}.

Let f 0 be a given initial data. For a non-stationary subdivision scheme{Sa[k]},
we have the formal relation

f k = Sa[k−1] · · ·Sa[0] f 0.

In particular, for the given dataδ = {δn,0 : n∈ Z2} at level 0, with the Kronecker
deltaδn,0, thebasic limit functionof {Sa[k]} is the function

φ0 := lim
k→∞

Sa[k] · · ·Sa[0]δ .

Definition 1.1. A subdivision scheme is said to be Cν if for the initial data δ =
{ f 0

n = δn,0 : n∈ Z2}, there exists a limit functionφ0 ∈Cν(R), φ0 6≡ 0, satisfying

lim
k→∞

sup
n∈Z2

| f k
n −φ0(2−kn)|= 0. (1)

Let {Sa[k]} be a non-stationary interpolatory subdivision scheme based on the
butterfly-shaped stencils. Assume that{Sa[k]} reproduces exponential polynomials
which constitute a shift-invariant spaceS with #S = 8. Under certain condition
of S, we prove that{Sa[k]} is asymptotically equivalent to the original Butterfly
scheme{Sa}, and that{Sa[k]} isC1, i.e., it has the same smoothness as the stationary
Butterfly subdivision scheme{Sa}.

In the following we use the two-dimensional index notation. First, let

Z2
+ := {(α1,α2) ∈ Z2 : αi ≥ 0, i = 1,2},

Let α,β ∈ Z2
+. We denote byDα the differential operator of orderα, and|α|1 :=

α1+α2. Also,α ≤ β meansαi ≤ βi for i = 1,2. Forx= (x1,x2)∈R2, xα = xα1
1 xα2

2 .
The space of algebraic polynomials of degree< n is denoted byΠ<n. For a matrix
C, ‖C‖∞ indicates its∞-norm.

2 Construction of Non-stationary Schemes

The non-stationary subdivision scheme proposed in this paper are constructed in a
way of reproducing the exponential (or trigonometric) polynomials of the form

φ(u,v) = eβ1ueβ2v, (u,v) ∈ Ω ⊂ R2, (2)
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3 3 ASYMPTOTIC EQUIVALENCE

with complex numbersβi (i = 1,2). One may employ more general type of expo-
nential polynomials

φ(u,v) = uα1vα2eβ1ueβ2v,

αi = 0, · · · ,µ ∈ Z+, with (larger) stencils. However, the same technique of this
study can be applied for the analysis. In practice,uαi ’s are chosen to be low degree
polynomials.

Let

S = {φ`(u,v) |` = 1, · · · ,8} (3)

be a shift-invariant space with linearly independentφ`’s of the form as in (2). In
fact, refining the triangular mesh data based on the butterfly-shaped stencils in-
volves three groups of vertices to evaluate three types of new vertices as shown
in Figure 1. Here and in the sequel,X j with j = 1,2,3 indicate the three types of
stencils andp j/2 the insertion points corresponding toX j at level 0. For each level
k = 0,1, · · · , and stencilX j , the non-stationary subdivision rule is constructed by
solving the linear system

φ`(p j2
−k−1) = ∑

n∈X j

a[k]
p j−2nφ`(n2−k), φ` ∈ S. (4)

This linear system can be written in the matrix form

a[k] = B[k]−1
b[k]

wherea[k] = (a[k]
p j−2n : n∈ X j), B[k](`,n) = (φ`(n2−k) : n∈ X j , ` = 1, · · · ,8) and

b[k] = (φ`(p j2−k−1) : ` = 1, · · · ,8). For the unique solution of the linear system
(4), it is required that dim(S|X j ) = dimS for each stencilX j . This condition is
satisfied by the basic assumption: WithTϕ

`
the Taylor polynomial around zero of

ϕ
`

of degree< 4, i.e.,

Tϕ
`
(·) = ∑

|ν |1≤3

(·)ν
ϕ

(ν)
`

(0)/ν !, (5)

the functionsTϕ
`
, ` = 1, · · · ,8, are linearly independent.

3 Asymptotic Equivalence

Typical tools used for the analysis of the stationary schemes are Fourier transform,
eigen analysis and Laurent polynomials [1, 2]. However, these techniques are not
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Type 1 Type 2 Type 3

Figure 1. Stencils of the Butterfly scheme. Blue dots indicate the insertion point.

applicable for the non-stationary case. Thus, for the analysis of non-stationary
schemes, we adopt the notion of asymptotical equivalence [5]: two (non-stationary)
subdivision schemes{Sak} and{Sā[k]} areasymptotically equivalent, if

∑
k∈Z+

‖Sa[k] −Sā[k]‖∞ < ∞, (6)

where

‖Sa[k]‖∞ = max

{
∑

n∈Z2

|a[k]
α−2n| : α ∈ E2

}
whereE2 stands for the extreme points of[0,1]2.

4 Analysis of Convergence

We cite a basic result about the asymptotically equivalent subdivision schemes.

Theorem 4.1.([5]) Let{Sa} be a stationary subdivision scheme, and let{Sa[k]} and

{Sa} be asymptotically equivalent. Assume that supp{an},supp{a[k]
n } ⊂ [0,N]2,

k∈ Z+, N < ∞. Then{Sa[k]} is C0 if {Sa} is C0. Moreover, if

‖Sa[k] −Sa‖∞ ≤ c2−k, k∈ Z+,

then the basic limit functionφ0 of the scheme{Sa[k]} is Hölder continuous of expo-
nentν > 0.

In the following theorem, we show that the non-stationary subdivision scheme
{Sa[k]} is asymptotically equivalent to the Butterfly scheme{Sa}, which implies
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5 4 ANALYSIS OF CONVERGENCE

that{Sa[k]} is a convergent scheme. Recall that the mask{ap j−2n : n∈ X j} of the
Butterfly scheme reproduce polynomials inΠ<4 in the sense that

∑
n∈X j

ap j−2np(n2−k) = p(2−k−1p j), ∀p∈ Π<4. (7)

Theorem 4.2. Let {an} be the mask of the Butterfly scheme{Sa} and {a[k]
n } be

the mask of the non-stationary scheme{Sa[k]} reproducing the spaceS = {ϕ` : ` =
1, · · · ,8}. Then, there exists a constant c> 0 such that

max
n∈Z

|a[k]
n −an| ≤ c2−k, k≥ K ∈ Z+.

Proof. Due to the fact thata2n = a[k]
2n = δn,0 with n∈ Z2, it remains to estimate

only the differenceap j−2n−a[k]
p j−2n with p1 = (1,0), p2 = (0,1) andp3 = (1,1).

Let Tϕ
`

be the Taylor polynomial of degree 3 of the functionϕ
`
, ` = 1, · · · ,8, as

in (5) and letj = 1,2,3 be fixed. Since the mask{ap j−2n}, n∈X j , of the Butterfly
scheme reproduce polynomials inΠ<4 as in (7), we have

∑
n∈X j

ap j−2nTϕ
`
(n2−k) = Tϕ

`
(2−k−1p j).

This linear system can be written in the matrix form

T ·a = b (8)

with
T = (Tϕ

`
(n2−k)), a = (ap j−2n), b = (Tϕ

`
(2−k−1p j)).

Recall that the mask{a[k]
j−2n} of the non-stationary scheme reproducesϕ

`
in the

sense that

∑
n∈X j

a[k]
p j−2nϕ

`
(n2−k) = ϕ

`
(2−k−1p j). (9)

Let Rϕ
`

:= ϕ
`
−Tϕ

`
be the remainder of the Taylor polynomial, i.e.,

Rϕ
`
(·) = ∑

|α|1=4

(·)α

α!

∫ 1

0
(1−y)3

ϕ
(α)
`

(y·)dy. (10)

It is obvious that|Rϕ
`
(n2−k)| ≤ c2−4k, n∈X j . Thus, denotinga[k] = (a[k]

p j−2n : n∈
X j) andR = (24kRϕ

`
(n2−k) : n∈X j), the linear system (9) is of the form

(T + εR)a[k] = b+ εbR
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6 5 SMOOTHNESS OF NON-STATIONARY SCHEME

with ε = 2−4k, ‖R‖∞ < ∞ and‖bR‖∞ < ∞. Note that theO(ε) perturbation of the
non-singular matrixT causes theO(ε) perturbation of its inverse [6]. Thus, we can
write

a[k]
k = (T−1 + εR̃)(b+ εbR)

= a+ ε[T−1bR + R̃(b+ εbR)],

with ‖R̃‖∞ < ∞. Sinceε = 2−4k and‖T−1‖∞ = O(23k), we conclude that there is a

constantc > 0 such that‖a[k]
k −a‖∞ ≤ c2−k. �

5 Smoothness of Non-stationary Scheme

5.1 Sufficient Condition for Smoothness

In this section, we infer results on the smoothness of the non-stationary interpola-
tory scheme{Sa[k]} from known results about the smoothness of a stationary But-
terfly scheme, which is asymptotically equivalent to it. Specifically, we will prove
that the non-stationary scheme reproducing the spaceS has the same smoothness
as the original Butterfly scheme which reproduces the cubic polynomials.

To simplify the presentation of a subdivision scheme and its analysis, it is con-
venient to assign the Laurent polynomial to each subdivision mask. The bivariate
Laurent polynomial corresponding to the original Butterfly scheme can be put in
factored form [2]

a(z) = a(z1,z2) = 2−1(1+z−1
1 )(1+z−1

2 )(1+z−1
1 z−1

2 )z1z2(1−16−1q(z1,z2)), (11)

where

q(z) = q(z1,z2) = 2z−2
1 z−1

2 +2z−1
1 z−2

2 −4z−1
1 z−1

2 −4z−1
1 −4z−1

2

+2z−1
1 z2 +2z1z−1

2 +12−4z1−4z2−4z1z2 +2z2
1z2 +2z1z2

2.

It seems that the Laurent polynomiala(z1,z2) has single roots along the curves
z1 = −1 z2 = −1 andz1z2 = −1. However,a(z1,z2) has multiple roots around
(−1,1) and (1, -1). In the following, for convenience, we use the notation

e1 = (1,0) and e2 = (0,1). (12)

Lemma 5.1. Let a(z) = ∑n∈Z2 anzn be the Laurent polynomials of the original
Butterfly subdivision scheme{Sa}. Then, for anyβ j = mej , j = 1,2, with m≤ 3
and ej in (12), we have

Dβ j a(θ j) = 0
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7 5 SMOOTHNESS OF NON-STATIONARY SCHEME

where

θ1 = (−1,1) and θ2 = (1,−1). (13)

Proof. In this proof, we consider only the casej = 1 because the analysis for the
casej = 2 is exactly same. Forβ j = mej with m≤ 3, we can write

Dβ j a(−1,1) = ∑
|`|1≤|β j |1

γ
β j ,` ∑

n=(n1,n2)∈Z2

ann`(−1)n1

for some suitable constantsγ
β j ,`

. From the fact that the mask{an} reproduces
polynomials of degree 3, it is easy to see that

∑
n=(n1,n2)∈Z2

ann`(−1)n1 = δ`,0−
3

∑
j=1

(−1) j ∑
n∈X j

ap j−2n(p j/2−n)` = 0

The lemma is proved. �

When the non-stationary subdivision scheme{Sa[k]} is asymptotically equiv-

alent to the original Butterfly scheme{Sa}, |a[k]
n − an| = o(1), ask tends to∞.

Hence, the Laurent polynomiala[k](z) associated withSa[k] has (complex) roots
aroundz1 =−1, z2 =−1 andz1z2 =−1, and it can be written as

a[k](z) := a[k](z1,z2) (14)

:= 2−1(1+w1,kz1)(1+w2,kz2)((1+w3,kz1z2)c[k](z1,z2)

for some suitable Laurent polynomialc[k](z). From Lemma 5.1, it is easy to see
that forν = 0, · · · ,3 and j = 1,2, ∂ ν

∂zν
j
a[k](θ j) = o(1) with θ j in (13) ask→ ∞. In

this study, we require the stronger conditions:

Condition A. A non-stationary subdivision scheme{Sa[k]} satisfies Condition A
if the corresponding Laurent polynomials a[k](z) are of the form(14)and if∣∣∣ ∂ ν

∂zν
j
a[k](θ j)

∣∣∣≤ c2−(4−ν)k, j = 1,2, ν = 0, · · · ,3,

with θ j in (13).

In what follows, we prove that{Sa[k]} with Laurent polynomials of the form
(14) satisfying Condition A has the smoothnessC1 if {Sb[k]} is C0. For this, we
show that a factor(1+ rkzλ ), λ ∈ Z2, in the Laurent polynomials ofa[k](z) with
|1− rk| ≤ c2−k is a smoothing factor.
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8 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Lemma 5.2. Consider a non-stationary subdivision scheme{Sa[k]} with Laurent
polynomials of the form

a[k](z) =
1
2
(1+ rkz

λ )b[k](z), k > K ∈ Z+

whereλ ∈ Z2 and{Sb[k]} is C0. Suppose that

|1− rk| ≤ c2−k, k≥ K ∈ Z+, (15)

and that the scheme{Sb[k]} is of compact support and Cγ . Then the basic limit
functionφ0 = lim

k→∞
Sa[k] · · ·Sa0δ satisfiesφ0,∂λ φ0 ∈C0 whereδ = {δn,0 : n∈ Z2}.

Remark: For the Butterfly scheme in regular triangulation, we need to consider
only the three directions:λ = (1,0),(0,1),(1,1).

Proof. Due to Lemma 9 in [5], we can find that{Sa[k]} is C0 with the basic limit
functionφa of the form

φ0 =
∫

R
φb(·−λ t)h(t)dt,

whereφb andh are the basic limit functions of{Sb[k]} and{S1+rkz} respectively,
and whereh is bounded and supp{h} = [0,1). Then, it follows thatφ0 ∈C0. In
order to prove∂λ φ0 ∈C0, it is sufficient to show thatφ0 = φb ∗h ∈C1(R) under
the assumption thatφb is continuous. To this end, let us define the sequence of
functions

Ik(x) =
∫ x

x−1
φb(t)hk(x− t)dt,

where

hk(t) = h( j2−k), j2−k ≤ t < ( j +1)2−k, j = 0, · · · ,2k−1. (16)

It follows thatIk(x)→ φa(x) uniformly ask→ ∞. To establish thatφa ∈C1(R), let
us examine the sequence of functions{I ′k}k∈Z+ . By (16),

I ′k(x) =
2k−1

∑
j=0

h( j2−k)[φb(x− j2−k)−φb(x− ( j +1)2−k)] ∈C(R),

and hence,

I ′k+1(x)− I ′k(x) =
2k−1

∑
j=0

[h(( j +2−1)2−k)−h( j2−k)]

·[φb(x− ( j +2−1)2−k)−φb(x− ( j +1)2−k)].
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9 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Here, sinceφb is Hölder continuous of exponentν > 0 (see Theorem 4.1),

|φb(x− ( j +2−1)2−k)−φb(x− ( j +1)2−k)| ≤ c2−νk

with a constantc > 0 independent ofj andx. In addition, seeing that the Laurent
polynomial corresponding toh is 1+ rkz, we find that

h(( j +
1
2
)2−k) = rkh( j2−k);

see Example 2 in [5] for the details. Thus, we obtain the expression

|I ′k+1(x)− I ′k(x)| ≤ c2−νk
2k−1

∑
j=0

|(rk−1)h( j2−k)| ≤ c′2−νk,

being a consequence of|1− rk| ≤ c2−k in (15) and the boundedness ofh. Ac-
cordingly, we conclude that{I ′k} is uniformly convergent, and hence the limit is
continuous and is the derivative ofφa = φb∗h. �

5.2 Analysis of Smoothness

It is known that the subdivision scheme corresponding to the Laurent polynomial

b j(z1,z2) = 2(1+zj)−1a(z1,z2), j = 1,2,

with a(z1,z2) in (11) isC0 [4]. Since the non-stationary scheme{Sa[k]} is asymp-
totically equivalent to the Butterfly scheme{Sa}, the scheme corresponding to

b[k]
j (z1,z2) = 2(1+w j,kzj)−1a[k](z1,z2), j = 1,2, (17)

with a[k](z1,z2) in (14) is alsoC0. Thus, according to Lemma 5.2, theC1-smoothness
of the non-stationary scheme{Sa[k]} can be proved by showing that|1−w j,k| ≤
c2−k, j = 1,2. Specifically, we show that Condition A on{Sa[k]} implies the con-
dition (15) for all the factors in the representation (14). For this proof, we use the
notation

{xk} � {yk}
if there exist some constantsc1,c2 > 0 such thatc1 ≤ xk y−1

k ≤ c2 for all k. (Here,
yk 6= 0.)

Lemma 5.3. Suppose that Condition A holds for the non-stationary subdivision
scheme{Sa[k]}. Let b[k]j (z1,z2) in (17) be the Laurent polynomial of{Sa[k]} (14).
Then, for each j= 1,2,

|1−w j,k| ≤ c2−k, k≥ K ∈ Z+. (18)
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10 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Proof. Since{Sa[k]} is asymptotically equivalent to{Sa}, we deduce from Lemma
5.1 thata[k](z1,1) anda[k](1,z2) can be written as follows:

ā1,k(z1) := a[k](z1,1) = c̄1,k(z1)
4

∏
n=1

(1+ rk,nz1), (19)

ā2,k(z2) := a[k](1,z2) = c̄2,k(z2)
4

∏
n=1

(1+sk,nz2),

wherec̄ j,k(−1) = c+ o(1), j = 1,2, andc 6= 0. We will show that|1− rk,n|, |1−
sk,n| ≤ c2−k for k≥ K ∈ Z+ for anyn = 1, · · · ,4. It is enough forw j,k to be|1−
w j,k| ≤ c2−k, k≥ K ∈ Z+, j = 1,2. For this, it is also necessary to point out that(

∂ ν

∂zν
j
a[k]
)
(θ j) =

( dν

dzν
j
ā1,k

)
(−1) (20)

with θ j in (13).
Without loss of generality, we rearrange the setrk,n in (14) such that

|1− rk,n|= max{|1− rk,`| : 4≥ `≥ n}, n = 1, · · · ,4, (21)

that is, |1− rk,n| ≥ |1− rk,n+1|. Denote|1− rk,1| =: εk. Since|1− rk,n| ≤ εk for
any n≤ 4, it is sufficient to show that supk |2kεk| ≤ c for a constantc > 0. Now,
suppose that supk |2kεk| = ∞, which means that there exists a sequence{k`} such
that

|2k`εk`
| ≤ |2k`+1εk`+1| → ∞, as k` → ∞. (22)

Then, recalling|1− rk,n+1| ≤ |1− rk,n|, we will derive a contradiction by consider-
ing the following two cases:
Case 1:{εk`

} � {|1− rk`,n|}, for n = 1, · · · ,4.
In this case, it is clear from (14) that{|ā1,k`

(−1)|} � {ε4
k`
}. By Condition A and

(20), |ā1,k`
(−1)| ≤ c2−k`4, we get the bound|2k`εk`

| ≤ c for anyk`, in contradiction
to (22).
Case 2:{εk`

} � {|1− rk`,n|}, for n = 1, · · · ,s< 4.
That is, there exists a subsequence{k j} ⊂ {k`} such that for anyn > s, |1−
rk j ,n|ε−1

k j
→ 0 ask j → ∞, i.e.,

|1− rk j ,n|= o(εk j ), n > s. (23)

Then we use the lemma:
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11 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Lemma 5.4. Let

Fk j (z1) :=
4

∏
n=1

1
2
(1+ rk j ,nz1).

Under the condition of Case 2, we have

{|F(4−s)
k j

(−1)|} � {ε
s
k j
} and |F(4−s−`)

k j
(−1)|= o(εs+`

k j
), ∀` > 0.

Proof. For the givens< 4, denoteIs := {1, · · · ,s} and letΛs be the collection of
all subsets of{1,2,3,4}=: I4 with the cardinalitys, i.e.,Λs := {I ⊂ I4 : #I = s}.
Then,

F(4−s)
k j

(−1) =

(
∏
n∈Is

(1− rk j ,n)+ ∑
I∈Λs\Is

∏
n∈I

(1− rk j ,n)

)(
1
24 +o(1)

)
. (24)

Since|1− rk j ,n| ≥ |1− rk j ,n+1|,{
∏
n∈Is

|1− rk j ,n|

}
� {ε

s
k j
} and ∏

n∈I
|1− rk j ,n|= o(εs

k j
).

Thus,
{|F(4−s)

k j
(−1)|} � {ε

s
k j
}.

In a similar way, we can prove the relation|F(4−s−`)
k j

(−1)|= o(εs+`
k j

) for all ` > 0.
�

Now, we turn to the proof of Lemma 5.3 in Case 2. It follows from (19) that
for some suitable constantsc` with ` = 0, · · · ,4−s, we have

ā(4−s)
1,k j

(−1) =
4−s

∑̀
=0

(
4−s

`

)
c̄(`)

1,k j
(−1)F(4−s−`)

k j
(−1) (25)

= c̄1,k j (−1)F(4−s)
k j

(−1)+
4−s

∑̀
=1

(
4−s

`

)
c̄(`)

1,k j
(−1)F(4−s−`)

k j
(−1).

Sincec̄1,k j (−1) = c+o(1) with a constantc 6= 0, the identity (25) leads to

{ā(4−s)
1,k j

(−1)} � {ε
s
k j
}

by Lemma 5.4. Also, from Condition A and (20),|ā(4−s)
1,k j

(−1)| ≤ c2−k j s, yielding

|2k j εk j | ≤ c for any k j , in a contradiction to (22). (Herec is a generic constant).
Therefore, we can conclude that|1−w1,k| ≤ c2−k.
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12 5 SMOOTHNESS OF NON-STATIONARY SCHEME

we can prove that|1− r̄k,n| ≤ c2−k. Therefore, we conclude (18). �

Recall thatS = {φ`(x) : ` = 1, · · · ,8} be the shift-invariant space reproduced
by the non-stationary scheme{Sa[k]}. Let

T = {ν ∈ Z2
+ : |ν |1 ≤ 3, ν 6= (1,2),(2,1)}

and letβ = mej , j = 1,2, with m≤ 3 andej in (12). Here, note that #T = 8. Then,
for each stencilX j with j = 1,2,3, let us define the function

Φβ , j(x) := Φ[k]
β , j(x) :=

8

∑̀
=1

g[k]
β , j

(`)φ`(x) (26)

so that the coefficientsg[k]
β , j

(`), ` = 1, · · · ,8, is obtained by solving the linear system

Φ(ν)
β , j(2

−k−1p j) = δβ ,ν(−1)ν
ν ! (27)

where p1 = (1,0), p2 = (0,1) and p3 = (1,1). This linear system (27) can be
written in the matrix form

Pk ·g[k]
β

= c

with

Pk :=
(
φ

(ν)
` (p j2

−k−1) : ν ∈ T, φ` ∈ S
)

c :=
(
δβ ,ν(−1)|ν |1ν ! : ν ∈ T

)
.

The non-singularity ofPk is clear from the condition ofS. Then it is necessary to
point that since the mask{a[k]

n } reproducesφ` with ` = 1, · · · ,8, it also reproduces
Φβ , j in the following sense:

Φβ , j(2
−k−1p j) = ∑

n∈X j

a[k]
p j−2nΦβ , j(n2−k), j = 1,2,3. (28)

The following lemma is necessary for the proof of Condition A.

Lemma 5.5. Let Φβ , j be the function defined as in (26) and letβ = mej , j = 1,2,
with m≤ 3 and ej in (12). Then, for anyν ∈ Z2

+ with |ν |1 ≤ 3,

‖Φ(ν)
β , j‖L∞[−η ,η ] = O(23k), ask→ ∞, (29)

with η > 0.
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13 5 SMOOTHNESS OF NON-STATIONARY SCHEME

Proof. Sinceg[k]
β

= P−1
k ·c, the estimate‖g[k]

β
‖∞ ≤ ‖P−1

k ‖∞‖c‖∞. Using the same

technique in Theorem 4.2, we can prove‖P−1
k ‖∞ = O(23k) with k≥ K. Then the

lemma follows immediately. �.

We are now ready to prove the main theorem of this section which actually
proves that the Laurent polynomiala[k](z) of the scheme{Sa[k]} satisfies the Con-
dition A.

Theorem 5.6. Let a[k](z) = ∑n∈Z2 a[k]
n zn be the Laurent polynomial at level k as-

sociated with the non-stationary interpolatory scheme{Sa[k]}. Then, for anyβ j =
mej ∈ Z2

+ with m≤ 3, we have

|Dβ j a[k](θ j)| ≤ c2−k(4−|β j |), k≥ K ∈ Z+

with θ j in (13).

Proof. In this proof, we consider only the casej = 1 because the casej = 2 can
be done by exactly the same way. Seeing that

Dβ1a[k](−1,1) = ∑
|`|1≤|β1|1

γ
β1,` ∑

n=(n1,n2)∈Z2

a[k]
n n`(−1)n1

for some constantsγ
β1,`

, it is sufficient to show that for any|β1|1 ≤ 3,

sβ1
:= ∑

n=(n1,n2)∈Z2

(−1)n1nβ1a[k]
n = O(2−k(4−|β1|1)), k→ ∞,

in order to conclude Condition A. Note thata[k]
2n = δn,0 because{a[k]

n } is the mask
of an interpolatory scheme. Hence,

2−|β1|1(k+1)sβ1
= δβ1,0−

3

∑
j=1

(−1) j ∑
n∈X j

a[k]
p j−2n

(
(p j/2−n)2−k)β1 (30)

whereX j is the butterfly stencil of typej = 1,2,3 (see Figure 1) andp j/2 is the
corresponding insertion point. Invoking (26) and (28), we get

δβ1,0 = Φβ1, j(2
−k−1p j) = ∑

n∈X j

a[k]
p j−2nΦβ1, j(n2−k).

This together with (30) lead to

2−|β1|1(k+1)sβ1
=

3

∑
j=1

(−1) j−1 ∑
`∈X j

a[k]
p j−2n

(
Φβ1, j(n2−k)− ((p j/2−n)2−k)β1

)
. (31)
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14 6 APPROXIMATION ORDER

Here, we replaceΦβ1, j(n2−k) by its Taylor polynomial of degree up to 3 plus the
remainder term. The Taylor expansion ofΦβ1, j around 2−k−1p j of degree up to 3
is

Φβ1, j(n2−k) = T [k]
β1, j

(n2−k)+R[k]
β1, j

(n2−k)

where the Taylor polynomialT [k]
β1, j

and the remainderR[k]
β1, j

are given by

T [k]
β1, j

(n2−k) = ∑
|ν |1≤3

(
(n− p j/2)2−k)νΦ(ν)

β1, j
(2−k−1p j)/ν !

R[k]
β1, j

(n2−k) = ∑
|ν |1=4

(
(n− p j/2)2−k)νΦ(ν)

β1, j
(ξ2−k)/ν !

with ξ a point betweenp j2−k−1 andn2−k. Invoking (27), i.e.,Φ(ν)
β1, j

(2−k−1p j) =
δβ1,ν(−1)νν ! with ν ∈ T, we see that

T [k]
β1, j

(n2−k)− ((p j/2−n)2−k)β1 = ∑
ν=(1,2),(2,1)

((n− p j/2)2−k)νΦ(ν)
β1, j

(2−k−1p j)/ν !

Applying Lemma 4.2 and the polynomial reproducing property of the mask{an}
of the Butterfly scheme (7), it is immediate that for eachν = (1,2),(2,1),

| ∑
`∈X j

a[k]
p j−2n((n− p j/2)2−k)ν | ≤ c2−4k (32)

for a constantc > 0. Also, it is easy to check that|∑`∈X j
a[k]

p j−2nR[k]
β1, j

(n2−k)| ≤
c2−4k.This together with (31) and (32), we obtain the required result. �

We are now ready to provide the main theorem of this section.

Theorem 5.7. If {Sa[k]} is the non-stationary interpolatory subdivision scheme re-
producing the shift-invariant spaceS, then{Sa[k]} is C1, i.e., it has the same smooth-
ness as the stationary Butterfly subdivision scheme{Sa}.

Proof. From Lemmas 5.2, 5.3, and Theorem 5.6, the proof is immediate.�

6 Approximation Order

An important issue in the implementation of subdivision algorithm is how to ac-
tually attain the original function as close as possible if the given initial dataf 0 is
sampled from an underlying function. A high quality reconstruction scheme should
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15 6 APPROXIMATION ORDER

guarantee that the approximation error decreases when the quality of the sample in-
creases. This approximation power is usually quantified by the approximation or-
der. For simplicity, suppose thatf 0 is of the form f 0 := { f 0

n = f (2−k0n) : n∈ Z2}
for some positive integerk0 with a smooth functionf . Then our concern is to find
to the largest exponentm> 0 such that

‖ f ∞− f‖L∞(K) ≤C2−mk0

with a constantC > 0 independent ofk0, whereK is a compact set inR2. The
exponentm is called theapproximation orderof the subdivision scheme. It is well-
known that the original Butterfly scheme reproduces cubic polynomials and hence
it provides the approximation order 4. The goal of this section is to show that
the non-stationary scheme{Sa[k]} provides the same approximation order 4 as the
original Butterfly scheme.

Since the scheme{Sa[k]} is uniformly convergent, its limit function can be writ-
ten as

lim
`→∞

Sa[k0+`] · · ·Sa[k0] f 0 = ∑
n∈Z2

ψk0(2
k0 ·−n) f (2−k0n) (33)

whereψk0 is the basic limit function ofSdefined by

ψk0 = lim
`→∞

Sa[k0+`] · · ·Sa[k0]δ

with δ = {δ0,n}. Indeed, since{Sa[k]} reproduces functions inS, it is clear that

φ` = ∑
n∈Z2

φ`(2−k0n)ψk0(2
k0 ·−n), ∀φ` ∈ S.

This observation leads to the proof of the approximation order of the subdivision
scheme{Sa[k]}. In this paper, we are particularly interested in approximating func-
tions f in the Sobolev space

Wγ∞(K) = {g : ∑
|α|1≤γ

‖D(α)g‖L∞(K) < ∞}, γ ∈ Z+.

Theorem 6.1. Let K be a compact set inR2. Assume that f∈W4
∞(K) and f0 :=

{ f 0
n = f (2−k0n) : n ∈ Z2}. Then the non-stationary interpolatory scheme{Sa[k]}

has the approximation order4 with respect to functions in W4∞(K).

Proof. Recall the notationT = {ν ∈ Z2
+ : |ν |1 ≤ 3, ν 6= (1,2),(2,1)}, let us define

the function

Φ(x) :=
8

∑̀
=1

µ`φ`(x)
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so that the coefficient vectormx := {µ` : ` = 1, · · · ,8} is obtained by solving the
linear system

DνΦ(x) = Dν f (x)

SinceΦ is a linear combination ofφ`, ` = 1, · · · ,8, and the scheme{Sa[k]} is exact
for such functions, we easily get the identity

Φ(x) = ∑̀
∈Z

ψk0(2
k0 −n)Φ(n2−k).

Then it follows that

f (x)− f ∞(x) = Φ(x)− ∑
n∈Z2

ψk0(2
k0x−n) f (n2−k0)

= ∑
n∈Z2

ψk0(2
k0x−n)

(
Φ(n2−k0)− f (n2−k0)

)
Denote byTg the Taylor polynomial of a smooth functiong of degree 3 aroundx,
i.e.,

Tg(y) = ∑
|ν |1≤3

(y−x)νg(ν)(x)/ν !

and letRg be its remainder

Rg(y) = ∑
|ν |1=4

(y−x)νg(ν)(ξ )/ν !.

for someξ betweenx andy. Then, due to the factΦ(ν)(x) = f (ν)(x) with ν ∈ T,

TΦ(n2−k0)−Tf (n2−k0) = ∑
ν=(1,2),(2,1)

(n2−k0 −x)ν

ν !
(Φ− f )(ν)(x).

It follows that

F(x)− f ∞(x) = ∑
n∈Z2

ψk0(2
k0x−n) ∑

ν=(1,2),(2,1)

(n2−k0 −x)ν

ν !
(Φ− f )(ν)(x)(34)

+ ∑
n∈Z2

ψk0(2
k0x−n)(RΦ(n2−k0)−Rf (n2−k0)).

Letting ψ be the basic limit function of the Butterfly scheme, i.e.,ψ = S∞δ , we
find from Lemma 15 in [5] that

‖ψk0 −ψ‖∞ ≤ c2−k0. (35)
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Applying the polynomial reproducing property of the Butterfly scheme (7), it is
immediate that for eachν = (1,2),(2,1),

∑
n∈Z2

ψ(2k0x−n)(n2−k0 −x)ν = 0.

Note that sinceψk0 is compactly supported, #{n∈ Z2 : ψk0(2
k0 −n) 6= 0} ≤Cψk0

for anyx. Hence, using (35), it is easy to check that the first term on the right-hand
side of (34) isO(2−k04). Also, sinceΦ is bounded on any compact setK, it is
obvious the second term has the propertyO(2−k04). It finishes the proof.
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Appendix

In the appendix, we show parametric equations, basis functions(B), shift-invariant
spaces (S), and stencils (X ) for different surfaces that were used as benchmarking
models in our work.
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1. Sphere

x(u,v) = r sinucosv,

y(u,v) = r sinusinv,

z(u,v) = r cosu,

where 0≤ v≤ 2π,0≤ u≤ π and some constantr.

B := { sinucosv,sinusinv,cosu}
S := { sinu,cosu,sinv,cosv,

sinusinv,cosucosv,sinucosv,cosusinv}
X := Fig. 1

2. Torus

x(u,v) = (1+cosu)cosv,

y(u,v) = (1+cosu)sinv,

z(u,v) = sinu,

where 0≤ u,v≤ 2π.

B := { cosucosv,cosusinv,sinu}
S := { sinu,cosu,sinv,cosv,

sinusinv,cosucosv,sinucosv,cosusinv}
X := Fig. 1

3. Möbius Strip

x(u,v) = acosu+vcos(u/2),
y(u,v) = asinu+vcos(u/2),
z(u,v) = vsin(u/2),

where 0≤ u≤ 2π, −w≤ v≤ w andw anda are constants.

B := { sinu,cosu,vsin(u/2),vcos(u/2)},
S := { sinu,cosu,sin(u/2),cos(u/2),vsin(u/2),vcos(u/2)},

X :=
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(2) (3)(1)

4. Fish surface

x(u,v) = (cosu−cos(2u))cosv/4,

y(u,v) = (sinu−sin(2u))sinv/4,

z(u,v) = cosu,

where 0≤ u≤ π, 0≤ v≤ 2π.

B := { cos(2u)cosv,sin(2u)sinv,cosu

cosucosv,sinusinv}
S := { sinucosv,sinusinv,cosusinv,cosucosv,

sin(2u)cosv,sin(2u)sinv,cos(2u)sinv,

cos(2u)cosv,cosu,sinu}
X :=

(1) (2) (3)

5. Sea shell surface

x(u,v) = a(1− v
2π

)cos(nv)(1+cosu)+ccos(nv),

y(u,v) = a(1− v
2π

)sin(nv)(1+cosu)+csin(nv),

z(u,v) = b
v

2π
+a(1− v

2π
)sinu,
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where 0≤ u≤ 2π, 0≤ v≤ 2π anda,b,c, andn are constants.

B := { v,sinu,vsinu,cos(3v),sin(3v),vcos(3v)
vsin(3v),vcos(3v)cosu,vsin(3v)cosu}

S := { 1,v,sinu,cosu,vsin(3v),vcos(3v),
cos(3v),sin(3v),vcos(u),vsin(u),
vcos(3v)cosu,vcos(3v)sinu,vsin(3v)cosu,

vsin(3v)sinu,sin(3v)sinu,sin(3v)cosu,

cos(3v)cosu,cos(3v)sinu}
X :=

(2)(1) (3)

6. Figure 8 klein bottle

x(u,v) = (a+cos(u/2)sinv−sin(u/2)sin(2v))cosu,

y(u,v) = (a+cos(u/2)sinv−sin(u/2)sin(2v))sinu,

z(u,v) = sin(u/2)sinv+cos(u/2)sin(2v),
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where 0≤ u≤ 2π, 0≤ v≤ 2π and some constanta.

B := { cos(u/2)sinvcosu,sin(u/2)cos(2v)sinu,

cos(u/2)sinvsinu,sin(u/2)sin(2v)sinu,

cos(u/2)sin(2v),sin(u/2)sinv}
S := { sinu,cosu,sin(u/2)sinv,

sin(u/2)cosv,cos(u/2)sinv,cos(u/2)cosv,

sin(u/2)sin(2v),sin(u/2)cos(2v),
cos(u/2)sin(2v),cos(u/2)cos(2v),
sin(3u/2)sinv,sin(3u/2)cosv,

cos(3u/2)sinv,cos(3u/2)cosv,

sin(3u/2)sin(2v),sin(3u/2)cos(2v),
cos(3u/2)sin(2v),cos(3u/2)cos(2v)}

X :=

(1) (2) (3)

7. Klein bottle

r(u,v) = 4(1−cosu),
x(u,v) = 6cosu(1+sinu)+ r cosucosv, 0≤ u < π,

6cosu(1+sinu)+ r cos(v+π), π ≤ u < 2π,

y(u,v) = 16sinu+ r sinucosv, 0≤ u < π,

16sinu, π ≤ u < 2π,

z(u,v) = r sinv,
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where 0≤ v≤ 2π.

B := { cosu,sinu,cosusinu,cosv,

cos2ucosv,cosucosv}
S := { cosu,sinu,cos(2u),sin(2u),cosv,sinv,

sinusinv,sinucosv,cosucosv,cosusinv,

sin(2u)sinv,sin(2u)cosv,cos(2u)cosv,

cos(2u)sinv}
X :=

(1) (3)(2)

8. Superellipsoid

x(u,v) = rxcosn1 ucosn2 v,

y(u,v) = rycosn1 usinn2 v,

z(u,v) = rzsinn1 u,

where−π/2≤ u≤ π/2,−π ≤ v≤ π, 0 < n1,n2 < ∞ andrx, ry, rz are con-
stants.

In case(n1,n2) = (3,1)

B := { cos3usinv,cos3usinv,sin3u}
S := { cos(3u),sin(3u),cosu,sinu,sinusinv,

sinucosv,cosucosv,cosusinv,sin(3u)sinv,

sin(3u)cosv,cos(3u)cosv,cos(3u)sinv}
X :=

(2)(1) (3)
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